

421 SW 6th Avenue, Suite 1000 Portland, Oregon 97204 503-423-4000

Agency Review Revised Draft Remedial Investigation Work Plan for Upland Areas

31 March 2023

Prepared for

Georgia-Pacific Consumer Operations LLC

401 NE Adams Street Camas, Washington 98607

KJ Project No. 1865004*23

Table of Contents

	ii
	iii
ces	iv
tions and Acronyms	iv
Introduction and Background	1
 1.1 Purpose and Objectives	2 3 4 5 6
Site Setting	9
 2.1 General Facility Information	9 9 9 9
Site History and Current Operations	11
 3.1 Operational History	11 12 18 19 21 25 26 31 32 35
	Des. tions and Acronyms 1.1 Purpose and Objectives 1.1.1 Remedial Investigation 1.2 Current Work Plan 1.3 Project Management Strategy 1.3 Project Schedule 1.4 Report Organization 1.5 Sediments RI Work Plan Overview Site Setting

			3.5.3.3	OA-C3: Operational Support	44
			3.5.3.4	OA-C4: Pump Houses	46
			3.5.3.5	OA-C5: Wooded Area	47
		3.5.4	SOU-D: L	ady Island	47
			3.5.4.1	ÓA-D1: Wastewater Treatment Plant	48
			3.5.4.2	OA-D2: Dredge Spoils Area	50
		3.5.5	SOU-E: A	ncillary Area	51
			3.5.5.1	OA-E1: Former Service Station	52
			3.5.5.2	OA-E2: Former Laundromat and Dry Cleaner	52
			3.5.5.3	OA-E3: Former Gas Station	53
		3.5.6	SOU-F: C	BC	53
			3.5.6.1	OA-F1: CBC Area	54
			3.5.6.2	OA-F2: No. 7 Substation	55
Section 4:	Preli	i <mark>minary</mark>	Concep	tual Site Model	57
	4.1	Consti	tuents of F	Potential Concern	
	4.2	Releas	se Mechan	isms and Potential Migration Pathways	60
	4.3	Potent	tial Exposu	ire Pathways	61
	4.4	Initial [Data Gaps		63
Section 5:	Rem	edial In	nvestiga	tion Activities	64
	51	Pre-Fi	eld Activiti		65
	5.2	Non-In	wasive Ex	nloration	65
	5.3	Shallo	w Monitori	ng Wells	66
	0.0	531	Installatio	n and Soil Sampling	66
		5.3.2	Groundwa	ater Monitoring	67
	5.4	Additic	onal Soil S	ampling	68
		5.4.1	Shallow S	Soil Sampling.	
		5.4.2	Surface S	oil Sampling	
		5.4.3	Test Pits	с. с., р	69
		5.4.4	Soil Sam	bling in Former Wastewater Ditches	
	5.5	Seep.	Sediment.	and Stormwater Sampling	70
	5.6	Labora	atory Analy	/sis	71
References					72

List of Tables

- 1 Existing Monitoring and Inspection Programs
- 2 Summary of Operational Areas
- 3 Previous Sampling and Clean Up Activities

- 4 Summary of Proposed Activities
- 5 Proposed New Monitoring Well Location Rationale
- 6 Proposed Groundwater Monitoring
- 7 Proposed Soil Sampling

List of Figures

- 1 Site Map
- 2 Topography
- 3 Operable Units
- 4 Site Operable Units Lady Island
- 5 Operational Areas
- 6 Operational Areas Lady Island
- 7 Paper Mill Process
- 8 Main Mill Area Current Sewer System Areas
- 9 Operational Features
- 10 Operational Features Lady Island
- 11 Utility Map Woodmill
- 12 Utility Map Pulping, Power House, Specialty Minerals, and Warehouse/Product Storage North
- 13 Utility Map Power House, Bleaching, and Finishing/Coatings North
- 14 Utility Map Finishing/Coatings/Additives South, Pump Houses
- 15 Utility Map Warehouse/Product Storage South
- 16 Utility Map Operational Support
- 17 Utility Map Wooded Area
- 18 Utility Map Lady Island
- 19 Utility Map Lady Island
- 20 Utility Map Ancillary Area
- 21 Utility Map CBC
- 22 Previous Investigations
- 23 Previous Investigations Lady Island
- 24 Preliminary Conceptual Site Model
- 25 Proposed Monitoring Well Locations
- 26 Proposed Soil Sampling Locations
- 27 Proposed Soil Sampling Locations Lady Island

List of Appendices

- A Sampling and Analysis Plan/Quality Assurance Project Plan
- B Previous Investigation Environmental Data Tables
- C Previous Investigation Well Logs
- D Summary of Spills
- E SPCC Tank and Equipment Inventory Tables

List of Abbreviations and Acronyms

AO	Agreed Order No. DE 18201
ARARs	applicable, relevant, and appropriate requirements
AST	above ground storage tank
bgs	below ground surface
BNSF	Burlington Northern-Santa Fe
BTEX	benzene, toluene, ethylbenzene, total xylenes
CBC	Camas Business Center
cis-1,2-DCE	cis-1,2-Dichloroethene
CLARC	Cleanup Levels and Risk Calculation
COPCs	constituents of potential concern
CSM	conceptual site model
CY	cubic yards
Ecology	Washington State Department of Ecology
EPA	U.S. Environmental Protection Agency
ESA	environmental site assessment
ft	feet
GP	Georgia-Pacific Consumer Operations LLC
GPR	ground penetrating radar
HASP	health and safety plan
LF	linear feet
LILF	Lady Island Landfill
mg/kg	milligrams per kilogram
MMA	main mill area
MTCA	Model Toxics Control Act

Table of Contents (cont'd)

NAVD88	North American Vertical Datum of 1988
NPDES	National Pollutant Discharge Elimination System
NWTPH-Dx	Northwest Total Petroleum Hydrocarbons as Diesel and Oil Extended
NWTPH-Gx	Northwest Total Petroleum Hydrocarbons as Gasoline Extended
OA	operational area
OF	operational feature
OFEE	oil filled electrical equipment
PCBs	polychlorinated biphenyls
PCDD/PCDF	polychlorinated dibenzodioxin and polychlorinated dibenzofuran compounds (also referred to as "dioxins/furans")
PCE	tetrachloroethylene
PFAS	per- and polyfluoroalkyl substances
PID	photoionization detector
QAPP	quality assurance project plan
RCRA	Resource Conservation and Recovery Act
RI	remedial investigation
SAP	sampling and analysis plan
SOG	Standard Operating Guidelines
SOU	site operational unit
SPCC plan	spill prevention, control, and countermeasure plan
SVOCs	semi-volatile organic compounds
TCE	trichloroethylene
TDEM	time domain electromagnetic induction
TIC	tentatively identified compounds
TPH	total petroleum hydrocarbons
TPHd	total petroleum hydrocarbons diesel range
TPHg	total petroleum hydrocarbons gasoline range
TPH-HCID	total petroleum hydrocarbon - hydrocarbon identification
USGS	United States Geological Survey
UST	underground storage tank
VCP	voluntary cleanup program
VOCs	volatile organic carbons
WAC	Washington Administrative Code
WWTP	wastewater treatment plant
µg/L	micrograms per liter

Section 1: Introduction and Background

This Work Plan (WP) presents a scope of work to initiate remedial investigation (RI) activities for the Georgia-Pacific Consumer Operations LLC (GP) Site located at 401 NE Adams Street, Camas, Washington ("the Site"). Figures 1 and 2 identify the Site location. Washington State Department of Ecology (Ecology) identifies the Site as Facility Site ID No. 66765272 and Cleanup Site ID No. is 15156 (https://apps.ecology.wa.gov/gsp/Sitepage.aspx?csid=15156). RI activities will occur in accordance with the Model Toxics Control Act (MTCA) regulations (Washington Administrative Code [WAC] 173-340)¹, policies, and guidance. This RI WP addresses upland areas of the Site (herein termed RI WP for Upland Areas); in-water areas will be addressed separately (herein termed Sediment RI WP; see Section 1.5). The Agency Review Draft RI WP was submitted to Ecology on 3 January 2022 (Kennedy Jenks 2022). Ecology provided comments on the Agency Review Draft RI WP on 4 November 2022 (Ecology 2022). GP provided responses in a response to comment (RTC) letter dated 3 February 2023 (GRES 2023). This revised Draft RI WP for Upland Areas incorporates changes consistent with the RTC letter.

In 2019, GP ceased certain operations at the Site, including wood pulping, the communication paper machine, fine paper converting, and related equipment. Demolition² plans are being considered for selected structures and equipment³. Continuing operations at the Site include production of tissue paper and paper towels from purchased pulp (Brynelson 2017). In response to cessation of certain operations, Ecology engaged GP to initiate RI activities in areas where "release or threatened release of hazardous substance(s), as defined in RCW 70A.305.020(32) and (13), respectively, has occurred" (WDOE 2021). On 12 August 2021, GP and Ecology completed Agreed Order (AO) No. DE 18201 to develop a Remedial Investigation WP and prepare a Remedial Investigation Report per WAC 173-340-350 and WAC 173-204-550. Figure 3 and Figure 4 show areas of the Site included in the RI scope of work for upland areas: the Main Mill Area (MMA), located north of the Camas Slough; the Camas Business Center⁴ (CBC), located north of the MMA; and Lady Island, located between the Camas Slough and the Columbia River⁵.

This revised Draft RI WP for Upland Areas summarizes available historical information about operations at the Site, identifies constituents of potential concern (COPCs) based on historical

https://apps.ecology.wa.gov/gsp/Sitepage.aspx?csid=2961).

¹ MTCA (Chapter 173-340 WAC) applies to cleanups in upland areas (on dry land, including groundwater) and sediment cleanups. For in-water work in freshwater and marine environments (i.e., sediment cleanups), the Sediment Management Standards apply (WAC 173-204). This distinction and terminology are presented on the Ecology website and used herein (Ecology 2021a).

² As stated in the AO (Section VII.H), planned demolition and construction activities at the Site that do not disturb soil are not considered remedial actions for purposes of this Order.

³ Multiple demolition plans are currently in progress. Demolition activities including above-ground structures in the Woodyard, Lime Kiln, Warehouse/Product Storage – North, and South Mill Office areas are scheduled to begin in 2023; ground disturbing activities are not included in this demolition plan. Demolition activities for in- and over-water structures are in the planning and permitting stages. Other demolition plans may be developed.

⁴ The former Fort James Specialty Chemicals site is located within the CBC (Ecology assigned Facility Site ID No. 78452582 and Cleanup Site ID No. 2961;

⁵ As noted in the RTC letter, MTCA and the AO are not limited by property boundaries.

and continuing operations, and proposes initial data collection efforts in accessible areas unimpeded by ongoing manufacturing and related operations. This RI WP also presents a preliminary conceptual site model (CSM) to describe current and historical site operations, the associated chemical use and history of known releases, and the potential for chemical migration and receptor exposure in environmental media. The preliminary CSM informs proposed initial data collection efforts to evaluate environmental conditions (e.g., depth to groundwater) and presence and distribution of COPCs in environmental media on Site (e.g., soil, groundwater).

Analytical results from RI field activities, as well as other available data (see Section 3.4), will be compared with MTCA cleanup levels⁶ for current and planned future land use as well as other applicable, relevant, and appropriate requirements (ARARs) to evaluate potential risks to human health and the environment to guide decision making for subsequent investigation and response activities. Data, analytical results, and evaluations will be presented in a RI report.

1.1 Purpose and Objectives

Per WAC 173-340-350⁷, the purpose of a remedial investigation in upland areas is to collect. develop, and evaluate sufficient information regarding a site to select a cleanup action under WAC 173-340-360 through 173-340-390. To this end, for the implementation of RI activities, the AO recognizes that this Site has operated as a mill for nearly 140 years and continues to operate as a mill in certain areas of the Site. These operations encumber safe access amidst materials movement, active machinery producing product, and above- and underground active utilities that energize, fuel, and enable ongoing production, amongst others. Specifically, Section 1 of the AO states: "due to the ongoing operations at the Site, specific areas may be inaccessible and not allow for complete investigation/characterization/cleanup actions to occur at this time. The cleanup actions described in this Order shall be deferred for such locations until they become accessible. In the event that such identified locations become accessible, Remedial Investigation WP and Remedial Investigation Report addenda shall be submitted to Ecology." Accordingly, this RI WP proposes an initial scope of work focused on screening COPCs in soil and groundwater as an initial step of the RI, and will be used to support subsequent investigation efforts. Additional information regarding currently accessible areas is presented in Section 3.5.

As a result, the RI process at the Site is expected to be iterative and sequential – summarizing known information, identifying data gaps, conducting activities to resolve data gaps, refining the CSM, and working in successive phases until the RI objectives outlined in Section 1.1.1 are met. This RI WP represents the initial, screening phase of RI activities. Additional iterative activities, addressed in RI WP and report addenda, will be performed in currently accessible areas as information from initial phases provides an understanding of site conditions and in currently inaccessible areas (owing to continuing manufacturing operations) as areas become accessible (e.g., after demolition activities are complete in an area) until the RI process is complete at the Site. This approach will allow for the investigation to build on available data in a step-wise manner, make decisions rooted in science and an understanding of Site conditions, and follow adaptive management principles.

⁶ See Section 4.1 of this RI WP for discussion of MTCA Cleanup Levels.

⁷ Sediment management requirements are defined in WAC 173-204. See Section 1.5.

Activities proposed in this Draft RI WP for Upland Areas are recognized to be an initial, first step. Additional work plans or work plan addenda are anticipated and will build on the information obtained through implementation of the scope of work proposed herein. Objectives for the remedial investigation are presented in Section 1.1.1; objectives for this Draft RI WP for Upland Areas are presented in Section 1.1.2.

1.1.1 Remedial Investigation

Specific objectives of the RI include:

- Describe current understanding of Site setting based on a review of Site history, operations, and known spills or releases.
- Develop a CSM based on available information and identify data gaps.
- Collect data to describe the geological and hydrogeological setting for the Site, as well as the nature and extent of COPCs present in Site environmental media. Where environmental data are already collected through existing programs (see Section 3.4), this existing data will be used.
- Based on available data, characterize the migration pathways of COPCs and evaluate potential risk to human health and the environment in the context of current and future land use.

1.1.2 Current Work Plan

This RI process is expected to be iterative and follow adaptive management principles. As stated above, this RI WP for Upland Areas proposes a screening scope of work as a first step of the RI. Objectives specific to this RI WP include:

- Introduce a Site organization. This RI WP organizes the Site into six Site Operational Units (SOUs) to facilitate presentation of historical information. The SOUs are further organized into Operational Areas (OAs) based on historical and current operations. Operational Features are identified within each OA. This organizational structure facilitates an adaptive management approach to the RI, allowing evaluation of investigation results and refinement of a CSM to guide identification of data gaps for each OA and SOU. SOUs are presented on Figures 3 and 4, and OAs are presented on Figures 5 and 6.
- Summarize information regarding operational history, past investigations and/or cleanup activities, existing monitoring programs, and land use.
- Identify continuing manufacturing operations occurring at this time that impede safe and practical access for implementation of RI activities in certain OA. In the AO, these areas are known as inaccessible areas.
- Identify COPCs based on known historical and current operational history as well as documented or known spills or releases.

- Present a preliminary CSM based on information known at this time.
- Identify initial data gaps in accessible upland areas. There is limited information available regarding Site geology and hydrogeology and their effect on fate and transport of COPCs, and limited data regarding potential presence of COPCs. Therefore, this WP focuses on upland media (e.g., soil and groundwater). Other media (e.g., surface water, sediment) will be addressed separately (see Section 1.5). At this time, groundwater characterization of COPCs is prioritized to understand potential COPC transport from upland areas to the Camas Slough. Soil sampling is proposed during monitoring well installation and in additional target locations.
- Propose RI activities to address initial data gaps in accessible areas. Activities proposed in this WP are guided by the current understanding of the Site based on historical records and ongoing operations.

At this initial stage of the RI, activities described in this WP focus on potential releases to soil and groundwater in upland OAs of the Site in accessible areas. Proposed RI activities (see Section 5) do not distinguish between soluble and insoluble COPCs at this initial stage of the RI. However, some COPCs may be more water soluble and others less water soluble. While the distinction between soluble and insoluble COPCs was not considered for proposing the scope of work for this initial stage of the RI (presented in Section 5), it is noted that this distinction will be relevant for the CSM (see Section 4) and may influence future RI activities. This initial RI phase focuses particularly on COPCs in groundwater to identify potential exposure pathways to receptors and soil in OAs where insoluble COPCs (e.g., polychlorinated biphenyls [PCBs]) may be present. If there are other changes in operations and/or as demolition proceeds, additional areas may become accessible; additional RI activities will be considered for areas that become accessible, if warranted (see Section 3.5 and Section 5; GRES 2023).

1.2 Project Management Strategy

The RI WP has been developed by Kennedy/Jenks Consultants (Kennedy Jenks) on behalf of GP. Ecology provides regulatory oversight of the RI in accordance with the AO (No. DE 18201). As required by the AO, key personnel involved in conducting the RI are listed below.

The project coordinator for Ecology is:

Mady Lyon Department of Ecology Solid Waste Management Program, Industrial Section P.O. Box 47600 Olympia, Washington 98504 360-407-7563 E-mail: mlyo461@ECY.WA.GOV

The project coordinator for GP is:

Matt Tiller Global Remediation & Environmental Services, LLC 133 Peachtree Street Atlanta, Georgia 30303 404-652-5243 E-mail: <u>matt.tiller@gapac.com</u>

Each project coordinator shall be responsible for overseeing the implementation of the AO.

1.3 Project Schedule

Exhibit B of the AO defines a schedule for project milestones. The first milestone in Exhibit B of the AO is a Remedial Investigation Planning Meeting; this meeting was held on 17 August 2021. The next milestone in Exhibit B of the AO is submittal of an Agency Review Draft RI WP (this WP), due within 120 calendar days following the effective date of the AO. Subsequent milestones include completing RI field work within 1 year after approval of the Final Sampling and Analysis Plan/Quality Assurance Project Plan (SAP/QAPP) and Health and Safety Plan (HASP), an Agency Review Draft RI Report, and a Public Review Draft RI Report. Quarterly Progress Reports are also required on or before the 10th of the month after the end of each quarter. A Remedial Investigation Pre-Report Check-in Meeting is required prior to submittal of the Draft RI Report for Agency Review.

As described in Section 1.1, the RI process will be iterative. Parts of the Site are currently inaccessible, and there are initial data gaps to be addressed. To accommodate the current state of Site understanding, we propose following adaptive management principles (i.e., following a systematic approach based on defining the current understanding of site conditions, identifying and resolving data gaps, and re-evaluating and re-prioritizing Site activities). There are likely additional RI WP Addenda and associated reports to follow this initial RI WP as we refine our understanding of Site conditions and identify the next priority data gaps. Additionally, in-water areas will be addressed in a separate investigation (see Section 1.5). With this in mind, the following timeline is anticipated:

Project Milestone	Completion Time Defined in Agreed Order	Estimated Date
Agency Review Draft <i>Initial</i> RI Work Plan for Upland Areas	120 calendar days following effective date of the AO	3 January 2022 (e)
Completion of the <i>Initial</i> RI Field Work for Upland Areas	12 months following completion of the Final SAP/QAPP and HASP	Third Quarter 2024 (a)
Agency Review Draft <i>Initial</i> RI Report for Upland Areas	90 days following receipt of laboratory data (b)	Fourth Quarter 2024

Agency Review Revised Draft Remedial Investigation Work Plan for Upland Areas, Georgia-Pacific Consumer Operations LLC Vafocad/projects/is-proj/2018/1865004.18_gp_camas/09-reports/ri work plan/draft ri work plan/03_revised/agency review revised draft/23_camasmill_doc-out_rev-draft-riworkplan_ecy_20230331.docx

Project Milestone	Completion Time Defined in Agreed Order	Estimated Date	
Additional RI Work Plan Addendum(s) to follow as needed			
Agency Review Draft RI Report for Upland Areas	90 days following receipt of laboratory data (b)	After purpose of RI met	
Public Review Draft RI Report for Upland Areas	45 calendar days following receipt of Ecology comments on Agency Review Draft RI Report	After purpose of RI met	

Notes:

(a) This date assumes Ecology approves Final SAP/QAPP and HASP in Third Quarter 2023.

(b) It is assumed that 90 days begins when the last laboratory report associated with RI activities is received.

- (c) The Remedial Investigation Pre-Report Check-in Meeting will be held prior to submittal of the Draft RI Report for Agency Review.
- (d) The Public Review Draft RI Report for Upland Areas will be prepared when the purpose of the RI has been met and after the Agency Review Draft RI Report for Upland Areas. A Public Review Draft RI Report will not be prepared after implementation of each RI Work Plan.

(e) Ecology approved a deadline extension from 10 December 2021 to 7 January 2022 to incorporate the CBC into the Draft RI Work Plan (Ecology 2021b). The Agency Review Draft RI WP was submitted on 3 January 2022.

1.4 Report Organization

The remainder of this RI WP is organized as follows:

- Section 2 summarizes information regarding the Site location and description and a summary of local geology and hydrogeology.
- Section 3 summarizes information regarding existing monitoring programs, operational history, past field investigations and cleanup activities, and initial data gaps.
- Section 4 presents a preliminary CSM.
- Section 5 identifies details regarding the specific investigative activities that will be performed during this initial RI effort. This section identifies approximate sampling locations, number of samples to be collected, and analytical methods for each sample matrix. Additionally, this section references the SAP/QAPP and HASP developed for the site and references Kennedy/Jenks Consultants Standard Operating Guidelines (SOGs) that have been updated for this project (Appendix A).
- Figures, tables, and appendices are referred to in the above sections to support information presented in the text.

1.5 Sediments RI Work Plan Overview

The AO identifies the remedial investigation work plan requirements for environmental site media including surface water and sediments. Through discussions with Ecology, it was agreed that GP will prepare a separate remedial investigation work plan to address aquatic sediments and surface water adjacent to the site in the Camas Slough and in the Columbia River along

Lady Island (Sediments RI Work Plan). As described in Section 1.1, this RI Work Plan for Upland Areas will provide information to support evaluation of sources of contamination from the Site to sediments and the status of source control activities. A separate work plan, the Sediment RI Work Plan, will address the remaining RI Tasks specific to sediments described in the AO which include sampling and analysis of surface and subsurface sediments. Following approval of the RI Work Plan for Upland Areas and completion of data collection along pathways of potential COPC sources to sediments, if additional types of data collection are needed (for example outfall sampling, or sediment trap sampling in the river or slough), those will be obtained as part of the sediment remedial investigation.

The Sediments RI Work Plan will include the required work plan content identified in the AO, which includes compilation of historical information concerning potential impacts to sediments, a preliminary CSM that includes sediments, an evaluation of data gaps pertaining to sediments, an overview of the field investigation and data collection for surface water, surface sediment, and subsurface sediments, and a proposed schedule. An associated Sediment SAP and a Sediments QAPP will be prepared for aquatic sediment sampling. A HASP will be prepared and/or updated for each phase of sediment sampling. The Sediments RI Work Plan, Sediment SAP, and Sediment QAPP will be prepared, consistent with the provisions of the Sediment Management Standards (SMS), Chapter 173-204 WAC and the Sediment Cleanup User's Manual (SCUM; Ecology 2021c). In addition, the Sediments QAPP will follow Ecology's Guidelines for Preparing Quality Assurance Project Plans for Environmental Studies (Ecology 2004) and USEPA Region 10 guidance.

The Sediment RI Work Plan will define an approach to sampling sufficient to evaluate the nature and extent of COPCs in surface and subsurface sediment exceeding preliminary SMS sediment cleanup standards, and other regulatory requirements. Surface water sampling to be included in the Sediment RI Work Plan will provide data to evaluate water quality compared to applicable water quality criteria (WAC 173-201A-240). The proposed analyte list for surface water and sediments will be prepared in consideration of Ecology's 4 November 2022 comments on the draft RI Work Plan.

The proposed organization of the Sediments RI Work Plan is as follows:

- Introduction
- Existing Information Regarding Surface Water and Sediments Adjacent to the Site
- Identify or Summarize Applicable SMS Sediment Cleanup Standards for COPCs
- Conceptual Site Model and Data Gaps for Surface Water and Sediment
- Field Investigations and Data Collection
 - Initial Phase
 - Subsequent Phases
- Data Management and Reporting
- Schedule

The objectives of sampling and analysis activities to be described in the Sediment RI Work Plan, Sediments SAP, and associated QAPP will be to:

• Fill data gaps and refine the conceptual site model.

- Confirm sources of COPCs to sediments have been controlled, to the extent additional information is needed to supplement that collected through the RI Work Plan for Upland Areas.
- Provide information sufficient to evaluate water quality against applicable standards.
- Identify the nature and extent of contamination in surface sediment.
- Provide information sufficient to identify COPCs and confirm chemicals of concern (COCs) in the sediments. The term COPCs and COCs in this context includes chemicals that are toxic or bioaccumulative for humans or aquatic life, as well as other substances (e.g., wood waste) that may cause toxicity to the benthic community.
- Gather information on natural or regional background concentrations in sediment, if not already available.
- Provide information sufficient to identify boundaries of potential sediment cleanup areas (any such areas will be identified in collaboration with Ecology based on data provided through the RI field sampling activities).

The Sediment RI will employ a phased investigation approach, with the initial phase developed to provide sufficient information to evaluate and screen surface water quality and the presence of COPCs in sediment adjacent to the Site. The initial phase sampling design will be based on the available site information and assessment of sediment bed elevations and texture, with sampling locations selected based on locations of site operations, prior releases, observed wood waste, and accumulated fine-grained sediments. If existing information is insufficient for this purpose, a preliminary reconnaissance phase of work will be included to collect this information sufficient to design the first phase of sediment sampling. The SAP will describe a process for evaluation of the results of initial sampling to identify subsequent phases of sampling in coordination with Ecology.

Section 2: Site Setting

Per WAC 173-340-250 (7)(c), this section presents available information about Site conditions, including location and size, topography, climate, geology, hydrogeology, and hydrology.

2.1 General Facility Information

The Site is located in southwestern Washington along the banks of the Camas Slough and Columbia River in the City of Camas, Washington (Figure 1). The Site occupies approximately 661 acres, consisting of 476 utilized acres on Lady Island and 159 acres on the upland side north of the Camas Slough. Washington State Route 14 traverses east-west through the Site at Lady Island.

2.1.1 Topography

The Site (excluding Lady Island) topography generally slopes to the south towards the Camas Slough with ground surface elevations ranging from 12 feet to 175 feet, North American Vertical Datum of 1988 (NAVD88). Burlington Northern-Santa Fe (BNSF) railroad tracks and infrastructure split the MMA into northern and southern portions. The southern portion of the MMA has generally flat surface topography. The northern portion of the MMA and the CBC area occur at a higher ground surface elevation with more topographic relief, including exposed bedrock outcroppings in some locations. The highest ground surface elevation at the Site occurs north of NW 6th Avenue at the CBC. Lady Island has generally flat surface topography at an elevation of approximately 30 feet AMSL. Figure 2 presents Site topography.

2.1.2 Climate

Camas receives an average rainfall of 51 inches annually. The majority of precipitation occurs during winter months, with December identified as the wettest month. Summers are drier with July identified as the driest month. Monthly precipitation ranges from 0.5 to 6.5 inches per month (City of Camas 2013).

Based on regional reports, the area experiences mild weather with typical winter temperatures near 40 degrees Fahrenheit and typical summer temperatures from 65 degrees Fahrenheit up into mid-80 degrees Fahrenheit (City of Camas 2013; City of Vancouver 2021).

2.1.3 Geology

Soils in this region are alluvial sediments, deposited by the Washougal and Columbia Rivers during recent and Pleistocene (ice age) periods, underlain by bedrock. Shallower, more recent alluvial deposits consist of fine-grained silt and sand. Deeper, Pleistocene alluvial deposits consist of coarse-grained sands, gravel, and cobbles with areas of abundant silt (PGWG 2003).

Based on available information from areas of the Site where previous investigations have occurred, surface soils (beneath the asphalt or concrete) are generally described as fill material consisting of gravel and sand to depths ranging from approximately 8 feet to 14 feet below

ground surface (bgs; Arcadis 2016). Beneath the fill material, soil consists of varying amounts of silt, sand, and gravel. Basalt bedrock was encountered at depths ranging from 15 feet to 18 feet, and also occurs as outcrops at ground surface.

2.1.4 Hydrogeology and Hydrology

A shallow, unconfined aquifer underlies the Site in the Pleistocene alluvial deposits. Native surface soils near the Site belong to hydrologic soil groups C and D which typically have slow to very slow infiltration rates (USDA NRC 2021). Recharge to this unconfined aquifer occurs by precipitation and flow from streams and rivers under influence from tidal fluctuations in the Columbia River (PGWG 2003). Groundwater flow direction is assumed to be southward toward the Camas Slough. Based on previous investigations, groundwater has been encountered at depths ranging from approximately 3 feet to 9 feet bgs (Arcadis 2016).

Blue Creek flows north to south through the Facility. The lower portion is piped through the MMA and conveys stormwater from upstream areas beyond the Site. It also conveys flows from a tributary, Whiskey Creek, which is also piped and merges with Blue Creek just north of the MMA. Blue Creek discharges to the Camas Slough. Both creeks receive urban stormwater runoff (Georgia-Pacific 2019).

Camas Slough and the Columbia River border the Site to the South. The Columbia River is the fourth largest river in North America by volume with a total annual runoff of approximately 198 million acre-feet and year-round average flows of 275,000 cubic feet per second. It flows 1,214 miles from British Columbia to the mouth at the Pacific Ocean near Astoria, Oregon. The tidal influence of the ocean extends 126 miles upriver from the Pacific Ocean to the Bonneville Dam. Substrate in Camas Slough and Columbia River adjacent to the Site consists primarily of sand, gravel, and rock with lesser amounts of silt and clay. Previous sediment sampling investigations have experienced difficulties in collecting enough material for a sediment sample at Outfall 001 and Outfall 002 due to the rocky substrate and absence of significant fine sediment thickness due to strong currents in the Columbia River and Camas Slough (ESA 2018). Flow rates in the Columbia River experience a large seasonal fluctuation. The highest flows occur in the spring and early summer when the moisture stored as snowpack is released from the mountains (BPA 2001).

The Washougal River flows along the eastern edge of the Site to its confluence with the Camas Slough, which separates Lady Island from the MMA. The Site Wastewater Treatment Plant (WWTP) discharges treated storm and process water to the Columbia River on the south side of Lady Island.

Stormwater is discussed in Section 3.4.

Section 3: Site History and Current Operations

This section summarizes information obtained through extensive review of paper and electronic files, documents, reports, plans, drawings, images, historical aerials, laboratory reports, and correspondence. The mill has been owned and operated by several different entities throughout its approximate 140-year history. Requirements for documentation of various processes, operations, incidents, etc. have evolved through the years within and between these operating entities. Additionally, regulations requiring retention of specific information has evolved as well. As a result, records are generally stored in electronic format for more recent decades and physical copies for older information. While there is a large volume of records that are available, they are sporadic and incomplete as they relate to older generations of the mill. In an attempt to catalogue information relevant to this Remedial Investigation, GP and Kennedy Jenks staff spent over a year reviewing more than 400 files. This compendium of information provides the basis for identification of Operational Areas (OAs) and the operational features (OFs) and COPC involved in processes within OAs. Documents reviewed included incident reports of spills and releases, aerial imagery, historical permits, and engineering drawings. Interviews were also conducted with GP personnel who have worked at the Site for 30 years or more in August 2019. Environmental data tables and well logs from previous investigations and ongoing monitoring programs are provided in Appendix B and Appendix C, respectively.

3.1 **Operational History**

Mill operations at the Site commenced circa 1883 when Henry Pittock formed the Columbia River Paper Company. Pittock, owner of the Oregonian newspaper, chose the Site owing to ample access to water to power paper-making machines to support his newspaper. In 1885, mill operations at the Site were recognized as the first in the Pacific Northwest to produce wood pulp. Following a fire in 1886, the mill was rebuilt 2 years later with two paper machines. By 1906, the mill produced paper bags in the northern portion of the mill known as the Bag Factory. The mill expanded operations and by 1914 became one of the largest paper producers in the world (City of Camas 2015).

In the 1940s, to support efforts during World War II, machine shops at the mill manufactured parts for Liberty ships assembled at shipyards in nearby Portland and Vancouver. Following the war effort, the Central Research and Technical Department formed in 1946 and two laboratory buildings were constructed in the 1950s at the Camas Business Center (CBC). These facilities became known as the Central Research Division in 1960. Research involved pesticides⁸, energy production, crop yields, and synthetic pulp production. A summary of chemicals stored, used, and manufactured in this area was presented in the 2000 Site Investigation Report (SECOR 2001). The research laboratory shut down in 1997 (Joner 2010).

Other additions to the Site over time include a wastewater treatment plant (WWTP) located on Lady Island. Operational features and improvements to the WWTP include a primary clarifier⁹

⁸ Based on available records, pesticides relevant to the CBC area include dimethyl sulfoxide (DMSO).
⁹ A clarifier is generally used to remove solid particulates or suspended solids from liquid.

constructed in 1968, the South Aerated Stabilization basin¹⁰ (ASB) added between 1956 and 1961 (based on historical aerials; South ASB¹¹) initially as a sulfite liquor lagoon and converted to an ASB in 1975, and the North ASB added in 1977 for secondary wastewater treatment. The WWTP captures and treats process water and stormwater¹² that is conveyed from the mill via a pipeline under the Camas Slough. Treated water discharges to the Columbia River under a National Pollutant Discharge Elimination System (NPDES) Waste Discharge Permit (see Section 3.4). Solids from the primary clarifier are either disposed at the Lady Island Landfill (LILF), which operates as a limited purpose landfill under Clark County Public Health Department Permit Number PT 0006096 (LILF permit), or beneficially reused offsite.

From 1981 to 1984, mill operations underwent a modernization project involving demolition of buildings containing outdated production processes and equipment, plus the addition of new machines to manufacture communication papers for copiers and printing. In 2000, GP, now a subsidiary of Koch Industries Inc., acquired the Site and mill operations.

Recently, in November 2017, GP announced plans to cease certain mill operations at the Site, including the communication paper machine, fine paper converting assets, pulping operations, and related equipment. In 2019, GP completed shutdown of these operations. Currently, mill operations continue to produce tissue paper and paper towels, using pulp purchased from off-site sources (Brynelson 2017).

3.2 Paper Making Process

Generally, the paper making process shown on Figure 7 converts pulp fibers (separated from wood) into paper products. Summarily, this section describes processes and operations used in the past or present at the mill to produce paper products.

Historically, paper making at the mill began at the woodmill. Logs delivered to the mill were sent to the Woodyard, where they were processed by a woodmill to remove bark¹³ and produce wood chips¹⁴. These wood chips were conveyed to the pulping area where they underwent mechanical or chemical pulping process that separates cellulose fibers from the wood chips to produce "brown stock." Next, the brown stock was sent to the bleaching area where it underwent bleaching and delignification processes to yield a whiter, "bleached pulp." Bleached pulp was then sent to the Paper Mill where it was converted to a continuous roll of paper called

- ¹² Based on available documentation (Georgia-Pacific Consumer Products 2011, 2017c, Ecology 2020a,b), Site stormwater has been generally captured and treated with process wastewater. Improvements have been made over the mill's history to improve capture of stormwater from mill operational areas. At this time, known industrial stormwater associated with the Site is captured and treated by the WWTP.
- ¹³ Removal of bark occurs in machinery known as a debarker. Removed bark provides a fuel to generate steam for other mill operations.
- ¹⁴ Wood (or wood chips) used to make pulp contain three main components (apart from water): cellulose fibers (primary component for papermaking), lignin (a natural organic polymer that binds cellulose fibers to provide structure in wood) and hemicelluloses (polysaccharide, a carbohydrate composed of monosaccaharides, or simple sugars).

¹⁰ An aeration basin (also known as an ASB) is a pond-like structure with aeration to promote treatment (biochemical oxidation) of wastewater.

¹¹ The South ASB was originally a sulfite liquor lagoon. It was refurbished in 1975 and turned into an aerated lagoon.

a "parent roll." Depending on the final use of the paper, the parent roll may have undergone a finishing step. Finally, the parent roll was cut into the desired final size in the Converting area to produce a final product.

As of 2019, the woodmill/woodyard, pulping, and bleaching operations ceased at the mill. Continuing operations at the mill involve use of purchased pulp (from offsite sources) at the Paper Mill for finishing and converting into paper products such as paper towels. Processes used at the mill are described in more detail below.

Woodmill

The woodmill historically served as the handling area for logs staged in the adjacent Camas Slough. Whole, untreated logs were initially processed into wood chips at the original woodmill (visible in Image 1 below), formerly located in the eastern portion of the Woodyard to the northwest of the dock warehouse. It was replaced in 1947 by a woodmill in the western portion of the Woodyard (seen in Image 2). Both the first woodmill and second woodmill were demolished in 2003. After demolition of the woodmills, log processing ceased on site and wood chips arrived by truck and barge; chips were briefly received via railcar during construction of the truck dumps. The wood chip piles provided feedstock for pulping operations until the cessation of pulping operations in 2018-2019.

Image 1. Aerial Imagery from 1948 showing the first woodmill

Image 2. Aerial Imagery from 1980 showing the second woodmill

<u>Pulping</u>

Pulping operations at the mill involved mechanical and/or chemical processes¹⁵ to separate (cellulose) fibers from logs or wood chips. Chemical pulping produces brown stock (pulp) in pressure vessels called "digesters" in a process commonly called "cooking". Over its history, prior to cessation of pulping operations in 2018-2019, both the sulfite and Kraft (sulphate) processes produced pulp at the mill. After pulp production in the digesters, a mechanical washing process separates the cooking chemicals from the pulp.

The sulfite pulping process was the first chemical pulping process used at the mill. In the sulfite pulping process, cellulose (wood) fibers are separated from the wood chips by dissolving lignin and hemicellulose. Generally, the sulfite process refers to several methods that involve acidic cooking liquors containing bisulfite (HSO₃). The sulfite process uses sulfur dioxide (SO₂) dissolved in water to yield an acid (sulfurous acid) to extract lignin from wood in digesters using high heat and pressure. From circa 1890 to 1950, the only commercially important sulfite pulping process used a cooking liquor prepared from sulfurous acid and limestone (USEPA 1978). In the 1950s, modifications to the sulfite process involved use of other soluble bases, such as sodium or magnesium (Magnefite) instead of calcium (limestone). In its operational history, sulfite pulping at the mill used calcium, magnesium, and sodium as soluble bases.

Pulping using the Kraft process began at the mill in 1926 (Lacamas Magazine). The Kraft pulping process uses a chemical mixture of water, sodium hydroxide, and sodium sulfide (called "white liquor") along with heat and pressure to separate (cellulose) fibers from wood chips. Multiple "cooking" steps break down the cellular components of wood. The Kraft process yields

¹⁵ Available records circa 1951 indicate that the Mill used three processes to produce pulp: groundwood (mechanical) installed in 1884, sulphite (chemical) initiated in 1884, and sulphate/Kraft (chemical) begun in 1926 (Adams, W. Claude. "History of Papermaking in the Pacific Northwest: II." Oregon Historical Quarterly 52, no. 2 (1951): 154-185).

pulp (fiber) and black liquor¹⁶; white liquor converts to black liquor during the cooking process. Before proceeding to the bleaching step, the pulp is washed¹⁷ to separate the pulp from the black liquor.

After washing, the black liquor enters a chemical recovery process. This chemical recovery process is a defining feature of the Kraft process and recovers spent "cooking" chemicals for reuse (i.e., white liquor). The black liquor from pulp washing (called "weak black liquor") is collected in tanks and pumped through evaporators and concentrators to remove water and increase the black liquor solids content. The collected black liquor, which has a high energy value, is burned in a recovery boiler. The heat in the recovery boiler is used to produce steam for processes throughout the mill. A liquid smelt¹⁸ is removed from the recovery boiler and converted to "green liquor" by addition of a weak caustic solution in a "smelt dissolving tank". Lime is added to the green liquor to produce white liquor and lime mud, completing the chemical recovery cycle.

The Lime Kiln supports the Kraft process by providing quicklime. Lime mud (calcium carbonate, CaCO₃) is converted to quicklime (calcium oxide, CaO) in the lime kiln using heat, mechanical movement of materials, and airflow in a process called calcination. Quicklime provides a base to counteract the (sulfurous) acid condition in the sulfite pulping process. A summary of substances involved in the Kraft pulping process appears below.

Product Name	Primary Composition
White Liquor	Sodium hydroxide (NaOH), Sodium sulfide (Na ₂ S)
Green Liquor	Sodium carbonate (Na ₂ CO ₃), Sodium sulfide (Na ₂ S)
Black Liquor	Degraded cellulose, hemicellulose, and lignin from wood, Sodium hydroxide (NaOH), Sodium carbonate (Na ₂ CO ₃), Sodium sulfide (Na ₂ S), Sodium sulfate (Na ₂ SO ₄)
Lime Mud	Calcium carbonate (CaCO ₃)

Kraft pulping operations at the mill ceased in April 2018 (Ecology 2020a). Based on historical aerials, sulfite pulping operations at the mill ceased by the 1980s.

¹⁶ Black liquor contains inorganic substances from the white liquor used in the cooking process; lignin, hemicellulose, and cellulose degradation products; soaps; and organic acids dissolved from the wood chips during pulping. Inorganic components of black liquor include sodium hydroxide (NaOH), sodium carbonate (Na₂CO₃), sodium sulfide (Na₂S), sodium sulfate (Na₂SO₄) and other sodium salts combined with organic matter.

¹⁷ After the Pulp Mill was constructed during the Mill Modernization Project (1981 to 1984), pulp washing occurred at the Pulp Mill.

¹⁸ Smelt contains mainly sodium sulfide (Na₂S) and sodium carbonate (Na₂CO₃).

<u>Bleaching</u>

In the bleaching process, brown stock completes one or more cycles of low pH bleaching, washing, and high pH extraction, until pulp achieves the desired level of brightness. Unbleached pulp (brown stock) is brown in color due to the presence of residual lignin and residual weak black liquor. Originally, not all pulp at the mill was bleached; pulp at the Pulp Mill reportedly was not bleached and was used to manufacture brown paper products. According to available documentation, the first sulfite mill bleach plant is understood to have been installed in 1924.

The bleaching process was completed in the K4 Bleach Plant, K5 Bleach Plant, Sulfite Pulp Bleaching, and Kraft Pulp Bleaching. There are separate bleaching operations to process pulp from the sulfite pulping process and pulp from the Kraft pulping process.

In the sulfite pulp bleaching process, hydrogen peroxide is used to effectively remove lignin from sulfite pulps (NCASI 2013). In contrast to the Kraft pulp bleaching process, the sulfite pulp bleaching process uses less chemicals, is less reliant on chlorine or chlorine dioxide, and removes less lignin.

Two types of bleaching processes were used in the Kraft process at the mill: chlorine bleaching¹⁹ and elemental free chlorine (ECF) bleaching. In the chlorine bleaching process, elemental chlorine is the bleaching agent. When chlorine reacts with the high organic content of the brown stock, polychlorinated dibenzodioxin and polychlorinated dibenzofuran compounds (PCDD/PCDF or dioxins/furans) can form as unintended byproducts. To reduce production of PCDD/PCDF, mill bleaching operations transitioned to the ECF process in 2000. In the ECF bleaching process, the bleaching and delignification agent is chlorine dioxide (CIO₂) rather than elemental chlorine and significantly less chlorinated organic matter is generated compared to chlorine bleaching. To supply ECF bleaching agent, chlorine dioxide was manufactured at the R8 plant using sulfuric acid, methanol, and sodium chlorate.

Kraft bleaching operations at the mill ceased in April 2018 (Ecology 2020a). Based on historical aerials, sulfite bleaching operations at the mill ceased by the 1980s.

Paper Mill

At the Paper Mill, bleached pulp moves through presses and dryers to form large rolls of paper (parent rolls). Generally, this process involves three stages: 1) stock preparation, 2) wet-end, and 3) dry end (NCASI 2013). Stock preparation involves repulping and refining the various fiber furnishes, blending with additives, and removing particulates using screens and cleaners. In the wet-end stage, pulp is applied to a wire mesh and undergoes multiple pressing and drying steps. In the dry end stage, pulp undergoes additional drying, pressing between rolls to manage sheet thickness and smoothness, and winding into a parent roll. The parent rolls are cut (see "Converting" below) and may be treated with coatings or other chemical additives (see "Finishing" below) depending on the grade of paper and the product being produced. Pulp continues to be used to produce parent rolls at the Mill (using pulp purchased from off-site sources).

¹⁹ Chlorine bleaching includes the use of both elemental chlorine and hypochlorite.

Finishing

The finishing step is dependent on the use of the final product and can involve surface coatings. Coatings involve aqueous mixtures containing mostly solids and include:

- Pigments such as clay, calcium carbonate (CaCO₃), titanium dioxide (TiO₂), and polystyrene.
- Adhesives bind coating to paper and include water-soluble glues, starches, and gums and polymers (e.g., latexes, acrylics).

Other specialty coatings are also used. An example of paper treatment operations in the mill's history is the treatment of paper to be used as food wrapping. Examples of chemicals used for this purpose include diphenyl, which was used primarily as a fungicide for papers used in food wrapping for citrus fruit, and ethoxyquin, which was used in papers specifically to reduce browning (scald) in pears. Other known finishing processes are described in Section 3.5 as applicable.

Converting

The final step in the paper making process is the converting step. At this stage, parent rolls are converted into smaller sizes depending on the type of paper product being produced. This step is primarily a mechanical step; chemical use during this step involves glues to produce cores for products such as paper towels. The mill produced various paper products over its history with different converting and finishing requirements, such as paper towels, tissue paper, coffee filters, envelopes, food wrap, card stock, newspaper, communication paper, and bags. Converting operations continue at the Mill.

Power Boilers

Historically, there have been multiple Power Boilers supplying steam and/or power for mill operations. Power Boilers generate steam by using heat generated by combusting fuel in a furnace chamber. Power Boilers are typically able to burn multiple types of fuel sources, including coal, natural gas, oil, and wood waste (hog fuel).

There was a central Power House at the mill that included a steam plant, turbines and multiple power boilers. These power boilers included:

- No. 1 through No. 4 Hog Fuel Boilers: four power boilers that were primarily fueled by hog fuel, but also had the capability to use fuel oil and natural gas. They were reportedly decommissioned in 1988 and demolished by 1990.
- No. 3 Power Boiler: this power boiler was fueled by natural gas and was decommissioned in 1988 and demolished by 1990.
- No. 3 Combination Boiler: the existing (but inactive) Power Boiler in this area was fueled by hog fuel. It was decommissioned in October 2020.

• No. 4 Power Boiler: the existing (but inactive) Power Boiler in this area was fueled by fuel oil. It was decommissioned in 2020.

Historically, the Power House provided steam for mill operations. The Power House is no longer operational.

Additional Power Boilers were located in other areas of the mill. The No. 5 Power Boiler is located in the northwestern portion of OA-B1 and was permanently decommissioned in September 2021. The No. 6 Power Boiler, located in the western portion of OA-C1, is the only active Power Boiler and continues to generate steam and electricity for ongoing mill operations. The No. 6 Power Boiler is powered by natural gas.

Other boilers, called recovery boilers, also produce steam for use in the mill. The recovery boilers use concentrated black liquor as the primary fuel and are a critical piece of the Kraft pulping chemical recovery cycle (see "Pulping" above).

3.3 Past, Present, Future Land Use

As described in Section 3.1, the mill has operated since 1883 under various ownership and is currently owned and operated by GP. The mill property is currently designated by the City of Camas as Industrial land use and zoned for Heavy Industrial land use (City of Camas 2016, 2021a), and GP intends to continue heavy industrial operations at the mill for the foreseeable future.

MTCA (WAC 173-340-200) defines industrial as properties that are "zoned for industrial use by a city or county conducting land use planning under chapter 36.70A RCW (Growth Management Act)." The City of Camas completes their planning under the Growth Management Act (City of Camas 2021b) and as described above, the City of Camas identifies the mill property zoning as heavy industrial and designated for industrial land use. Therefore, per WAC 173-340-200, the mill property is considered an industrial property under MTCA.

3.4 Ongoing Monitoring Programs

There are monitoring programs for compliance with existing permits and programs that pre-date the AO and will continue to occur in parallel with RI activities. Summaries of existing monitoring programs and monitored parameters are described below and presented in Table 1.

National Pollutant Discharge Elimination System (NPDES) Waste Discharge Permit

The mill's wastewater treatment plant (WWTP) operates under NPDES Waste Discharge Permit No. WA0000256. The WWTP treats process wastewater and stormwater²⁰ flows from the Woodyard, Main Mill Areas, and Ancillary Area (conveyed through the K6 sewer, K7 sewer, process sewer, and acid sewer; see Figure 8)²¹. As summarized in Table 1, monitoring of

²⁰ As noted in the Storm Water Monitoring Plan (Georgia-Pacific Consumer Operations LLC 2017c), mill runoff and non-mill runoff are commingled and transported together, and ultimately treated by the WWTP.

²¹ Until demolition activities in 2021, the WWTP also treated process wastewater and stormwater flows from the CBC.

treated process wastewater effluent and stormwater as well as sediment (in the vicinity of Outfall 001²² and Outfall 002²³; ESA 2018) and sludge occurs through the ongoing NPDES monitoring programs. Sediment samples have been collected to support dredging activities in the Camas Slough and continue to be collected through the existing NPDES permit. The WWTP is active and continues to operate, and RI activities are not proposed for active WWTP areas at this time. However, monitoring data collected through existing programs will be evaluated together with analytical data collected during the RI (see Section 5). Monitoring data are available on Ecology's Water Quality Permitting and Reporting Information System (PARIS), and recent years of NPDES permit monitoring data are presented in Appendix B.

Spill Prevention, Control, and Countermeasure (SPCC) Plan

Spill response follows the SPCC Plan (Georgia-Pacific 2019) prepared in accordance with the requirements of the SPCC regulations (40 CFR 112) and the mill's NPDES Waste Discharge Permit. The SPCC Plan maintains a comprehensive list of bulk oil storage tanks, mobile/portable containers (e.g., drums/totes), and oil-containing equipment and describes preventative measures for routine handling of products, countermeasures for spill response and cleanup, disposal methods, and reporting requirements. Regular inspections occur in accordance with the SPCC Plan. Incident and spill response documentation was reviewed to define the operational features and was one source of information used to define COPCs for an area (see Section 3.5).

LILF Clark County Public Health Department Permit

Dewatered solids from the primary clarifier and No. 3 Power Boiler ash (prior to decommissioning) are either managed at the Lady Island Landfill (LILF) or beneficially reused offsite. The mill operates the LILF as a limited purpose landfill under Clark County Public Health (CCPH) Permit Number PT 0006096 (LILF permit). In accordance with the LILF permit, groundwater monitoring is completed quarterly, and seep inspections are completed annually. Seeps have been identified previously but have not been identified for at least 3 years (2019 to 2021). Leachate from this landfill is collected and sent to the WWTP for treatment. The LILF remains regulated by Clark County, continues to receive dewatered wastewater solids, and is considered inaccessible for RI activities at this time. Recent years of LILF permit monitoring data are presented in Appendix B.

3.5 Site Operational Units (SOUs) and Operational Areas (OAs)

Based on the information review, for the purpose of developing the RI approach, this WP for Upland Areas organizes, presents, and describes historical and recent Site information as follows:

²² Outfall 001 is the primary outfall for the Waste Discharge Permit and discharges treated mill wastewater (Ecology 2020b). There is strong turbulence in the river where Outfall 001 discharges (Ecology 2008).

²³ Discharge at Outfall 002 contains Lacamas Lake water, mill water treatment filter backwash, and stormwater from the City of Camas (Ecology 2008, 2020).

- Six (6) Site Operational Units (SOUs; Figures 3 and 4) based on location and historical and continuing mill operations.
- Sixteen (16) Operational Areas (OAs), distributed across the SOUs based on historical and continuing processes and operational features (see Figures 5 and 6, which also highlights locations of currently inaccessible areas related to continuing operations).
- Operational features within each OA based on information about equipment and processes conducted (see Figures 9 and 10) as well as documented spills and releases. These operational features are focused on historical or current activities, as well as spills or releases with the potential to affect human health or the environment, and therefore, may not cover every building at the mill.

This organization approach for the RI facilitates evaluation of prior investigation results, development of a preliminary CSM and identification of initial data gaps for each OA and SOU. COPCs are summarized by Operational Feature in Table 2.

SOU	OAs
A – Woodyard	A1 – Woodmill
B – Main Mill Area - North	 B1 – Pulping B2 – Power House B3 – Bleaching B4 – Finishing/Coatings - North B5 – Specialty Minerals B6 – Warehouse/Product Storage – North
C – Main Mill Area - South	C1 – Finishing/Coatings – South C2 – Warehouse/Product Storage – South C3 – Operational Support C4 – Pump Houses
	C5 – Wooded Area
D – Lady Island	D1 – Wastewater Treatment Plant D2 – Dredge Spoils Area
E – Ancillary Area	E1 – Ancillary Area
F – Camas Business Center (CBC)	F1 – CBC Area

As shown on Figures 3 through 6, SOUs and OAs consist of the following:

The following sections provide known information by OA (in each SOU) about:

- Remaining and former structures (where operations occurred)
- Historical and current operations (what was done or continues to occur, and area accessibility for RI activities at this time)

- Chemical usage in operations (what was used)
- Documented incidents or spills (what was released, see Appendix D)
- Utilities and pipelines (see Figures 11 through 21)
- Previous field investigations²⁴ (investigation activities conducted in response to a spill; see Figures 22 and 23, Table 3, Appendix B, Appendix C)
- Ongoing monitoring programs (media already monitored through another regulatory program, see Table 1, Appendix B).

As presented in Section 1.1 and in the RTC letter (GRES 2023), certain areas of the Mill are currently inaccessible for RI activities. However, each operational feature is discussed in the following sections, and RI activities are proposed where field activities can be safely and efficiently completed (see Section 5). As stated in the RTC letter (GRES 2023), as changes in operations and/or demolition activities allow for safe access in the future, RI activities will be proposed.

A complete, detailed description of site operational history, including information related to delivery, off-loading, handling, and storage of chemicals used at the facility, is difficult due to the lengthy operating history of mill and availability of Site information and operating records. Available information was reviewed and summarized in the following sections. Based on available information, COPCs and initial data gaps are identified for each operational feature. At this time, groundwater characterization of COPCs is prioritized to understand potential COPC transport from upland areas to the Camas Slough, and therefore initial data gaps focus on COPCs in groundwater. Where insoluble COPCs are identified for an operational feature, initial data gaps will include presence of insoluble COPCs and other COPCs in soil (see Section 5). Soil sampling may also be proposed opportunistically (i.e., during monitoring well installation).

3.5.1 SOU-A: Woodyard

The woodyard abuts the banks of the Camas Slough south of the railroad tracks. SOU-A contains OA -1 (Woodmill) where log processing occurred to provide wood chips and storage of wood chips for use in the pulping and papermaking operations.

²⁴ It is acknowledged that the cleanup activities in Table 2 may not have been formally closed out with respect to MTCA.

Image 3. Aerial Imagery of SOU-A

3.5.1.1 OA-A1: Woodmill

Operational features in OA-A1 are presented in the following sections. Process wastewater and stormwater from this area is collected by the grit sump and conveyed to the K7 sewer for treatment at the WWTP.

3.5.1.1.1 First Woodmill and Wood Chip Piles

The First Woodmill was located in this area before it was demolished. This area is largely unpaved and contained remnant wood chips up to approximately 16 feet bgs. GP has transported and used the majority of wood chips remaining after cessation of pulping operations at other regional facilities. The hog fuel conveyor and chip screen room structures remain but are included in the demolition plans being considered. There are also two out-of-service aboveground storage tanks (ASTs; 250 gallons and 55 gallons) that formerly contained hydraulic fluid. Operations in this area have ceased. This area is accessible, pending demolition activities.

Chemicals used in this operational feature include petroleum hydrocarbons, which fueled and lubricated machinery used in the discontinued log processing and chip pile management operations. There are documented records²⁵ of small, discrete diesel fuel and lube oil releases from machinery and vehicle traffic. Site investigation and/or cleanup activities were completed as part of the original spill response.

²⁵ The following spills documented in Appendix A of the AO occurred in this area: 4 June 2001 and 7 August 2000.

COPCs associated with operations and/or documented spills/releases include petroleum hydrocarbons and metals. PCBs, PAHs, and naphthalene are also COPCs per Table 830-1 (at WAC 173-340-900) owing to the presence of heavy oil such as lube oil and hydraulic fluid. See Section 3.4 for information regarding ongoing monitoring programs that include this area.

Initial Data Gaps in Accessible Areas:

- Depth to groundwater and groundwater flow direction
- Geologic conditions
- Presence of petroleum hydrocarbons, PCBs, PAHs, naphthalene, and metals in groundwater
- Presence of petroleum hydrocarbons, PCBs, PAHs, naphthalene, and metals in soil.

3.5.1.1.2 Dock Warehouse

The inactive dock warehouse provided product storage for pulp and paper and shipped product. The dock warehouse is included in the demolition plans being considered. This area will be accessible after completion of planned demolition activities²⁶.

There are no known chemicals used for operations at the Dock Warehouse. The Dock Warehouse was previously used for chemical storage; there are no known chemical releases of stored chemicals. There is a documented record of a process sewer sump overflow when a pump failed in February 2002²⁷. In the notification to Ecology, it was reported that less than half a cup of oil was spilled (Fort James Camas LLC 2002a). Subsequently, a corrective action plan was completed, including a spill response and cleanup, system repair and redesign, and installation of a high-level alarm (Fort James Camas LLC 2002b).

COPCs associated with operations and/or unresolved documented spills/releases in this area include petroleum hydrocarbons and metals. See Section 3.4 for information regarding ongoing monitoring programs that include this area.

Initial Data Gaps in Accessible Areas:

- Presence of petroleum hydrocarbons and metals in groundwater
- Presence of petroleum hydrocarbons and metals in soil.

²⁶ GP is preparing to initiate the permitting process for demolition activities that include the Dock Warehouse.

²⁷ The following spills documented in Appendix A of the AO occurred in this area: 8 February 2002. The AO states the spill occurred at an oil / water separator. Per mill records, the overflow occurred at a process sewer sump (Fort James Camas LLC 2002a).

3.5.1.1.3 Second Woodmill

The Second Woodmill was located in this area before it was demolished. Existing structures include the rail car chip unloader, chip truck tippers, and an aboveground wood chip conveyor structure. This area is accessible, pending demolition activities.

Chemicals used in this operational feature include petroleum hydrocarbons associated with machinery used in the woodmill. There are documented records of small, discrete oil releases in this area²⁸. Site investigation and/or cleanup activities were completed as part of the original spill response.

COPCs associated with operations and/or documented spills/releases include petroleum hydrocarbons and metals. PAHs and naphthalene are also COPCs per Table 830-1 (at WAC 173-340-900). See Section 3.4 for information regarding ongoing monitoring programs that include this area.

Initial Data Gaps in Accessible Areas:

- Depth to groundwater and groundwater flow direction
- Geologic conditions
- Presence of metals, PAHs, naphthalene, and petroleum hydrocarbons in groundwater.

3.5.1.1.4 Former Cat Shop, Electric Shop, and Underground Storage Tanks (USTs)

A former Cat shop, electric shop, and USTs located in this area supported the woodmills. Structures remain in this inactive area, including the Cat shop, an office and parts storage building, and a maintenance shop; these structures are included in the demolition plans being considered. Two USTs in this area were removed in 1985: a 2,000-gallon UST containing gasoline; and a 600-gallon UST containing degreaser solvent. This area is accessible, pending demolition activities.

Chemicals used in this operational feature include diesel fuel, gasoline, and degreaser solvents stored in the USTs and/or used in the shops. There are documented records of spills in this area associated with vehicular traffic²⁹. For example, in 2015, during sewer line trenching activities, petroleum hydrocarbons were observed between the Cat Shop and the Wood Chip Pile. GP advanced soil borings and collected soil and groundwater samples in the area for analysis of total petroleum hydrocarbons (TPH) in the gasoline range (TPHg), diesel range (TPHd), and heavy oil range (Figure 22; Arcadis 2016, Georgia-Pacific Consumer Operations LLC 2016). Approximately 20 cubic yards (CY) of soil containing petroleum hydrocarbons were removed and disposed of offsite.

²⁸ The following spills documented in Appendix A of the AO occurred in this area: 22 January 2001.
 ²⁹ The following spills documented in Appendix A of the AO occurred in this area: 30 June 1999 and 1 July 1999.

COPCs associated with operations and/or documented spills/releases include metals, petroleum hydrocarbons, and volatile organic compounds (VOCs)³⁰ related to solvent use. See Section 3.4 for information regarding ongoing monitoring programs that include this area.

Initial Data Gaps in Accessible Areas:

- Depth to groundwater and groundwater flow direction
- Geologic conditions
- Presence of petroleum hydrocarbons, metals, and VOCs in groundwater
- Presence of petroleum hydrocarbons, metals, and VOCs in soil.

3.5.2 SOU-B: Main Mill Area – North

MMA – North (SOU-B) is located south of Northwest 6th Avenue and north of the railroad tracks. MMA-North encompasses six OAs: pulping, Power House, bleaching, finishing/coating, Specialty Minerals, and product storage.

Image 4. Aerial Imagery of SOU-B

³⁰ Specific VOC analytes are listed in the SAP/QAPP provided as Appendix A.

3.5.2.1 OA-B1: Pulping

Operational features in OA-B1 are presented in the following sections. Process wastewater and stormwater in this OA is collected by the K6, K7, acid, and process sewers (see Figure 8 for approximate coverage areas) and conveyed to the WWTP for treatment.

3.5.2.1.1 Kraft Mill

The Kraft Mill was part of the Kraft pulping process. Structures remain in this area, including the Kraft Mill. However, operation of the Kraft Mill ceased in April 2018 and this area is inactive. RI activities will be limited while the existing structures remain due to the density of structures and below-grade features (e.g., basements and utilities). As changes in operations and/or demolition activities allow for safe access in the future, RI activities will be proposed.

Chemicals used in this operational feature include white liquor used in the cooking of wood chips during the chemical pulping. There are documented records of black liquor spills (spent cooking chemicals) in this area. In 2014, in response to an observed release of black liquor at the Kraft Mill, GP completed three borings and monitored pH in groundwater encountered (Figure 22; Arcadis 2015). No further action was recommended after the investigation.

COPCs associated with operations and/or documented spills/releases at the Kraft Mill include sulfur, sodium, metals, and petroleum hydrocarbons. See Section 3.4 for information regarding ongoing monitoring programs that include this area.

Initial Data Gaps in Accessible Areas:

- Depth to groundwater and groundwater flow direction
- Geologic conditions
- Presence of metals, petroleum hydrocarbons, sulfur, and sodium in groundwater
- Current pH of groundwater (as an indicator for black liquor).

3.5.2.1.2 Black Liquor Area

ASTs storing black liquor located in this area supported the nearby Kraft Mill. This area is inactive. Black liquor storage ASTs and a green liquor clarifier remain but are included in the demolition plans being considered. RI activities will be limited while the existing structures remain due to the density of structures and below-grade features (e.g., basements, utilities). As changes in operations and/or demolition activities allow for safe access in the future, RI activities will be proposed.

Chemicals in this operational feature include inorganic components of black liquor and green liquor. There are documented records of black liquor releases and K6 sewer spills in this area³¹. An investigation was completed in response to an observed release of black liquor in the No. 4

³¹ The following spills documented in Appendix A of the AO occurred in this area: 10 October 2014, 21 April 2014, 18 September 2012, 26 August 2011, 22 September 2002, 2 August 2001, 15 May 2001, 7 July 2000, 8 May 2000, 7 December 1998, and 22 October 1997.

Swing Tank area in August 2011. Three borings were advanced; soil cores were tested for pH and a groundwater grab sample was collected (where encountered) and a pH and conductivity measurement were collected (Figure 22). Based on the findings of the investigation, no additional actions were recommended (Arcadis 2012). In 2018, there was a black liquor release of 154,000 gallons from an AST. Spilled liquids were diverted to the process sewer for treatment by the WWTP and bulk material that could be collected was disposed of off-site (Georgia-Pacific 2018c, d).

COPCs associated with operations and/or documented spills/releases include petroleum hydrocarbons, metals, sulfur, and sodium. See Section 3.4 for information regarding ongoing monitoring programs that include this area.

Initial Data Gaps in Accessible Areas:

- Depth to groundwater and groundwater flow direction
- Geologic conditions
- Presence of petroleum hydrocarbons, metals, sulfur, and sodium in groundwater
- Current pH of groundwater (as an indicator for black liquor)
- Presence of petroleum hydrocarbons, metals, sulfur, and sodium in soil.

3.5.2.1.3 Former Bag Factory

Constructed in 1906, the bag factory produced paper bags until it was demolished, and the Pulp Mill (OA-B1) was constructed during the Mill Modernization Project (1981 to 1984). This area is inactive. Existing structures in this area include the Pulp Mill and multiple ASTs, which are empty and out of service. RI activities will be limited while the existing structures remain due to the density of structures and below-grade features (e.g., basements, utilities). As changes in operations and/or demolition activities allow for safe access in the future, RI activities will be proposed.

Chemicals used in this operational feature include petroleum hydrocarbons. There are documented records of a black liquor release at the aboveground Filtrate Tank No. 2³². Mill staff observed liquid seeping from the base of one of the filtrate ASTs and subsequently observed weak black liquor in the underlying engineered fill material within the tank ringwall. GP excavated soil to approximately 1.5 feet bgs within the ringwall and pumped the encountered liquid to the WWTP for treatment. Weak black liquor leaks were then observed in two additional filtrate ASTs, which were contained by the concrete pad and discharged to the process sewer for treatment at the WWTP. Buildings, structures, and utilities (above and below ground) are dense in this area, and soil borings were advanced where feasible to monitor pH and conductivity (Figure 22). Measurements were also taken in Blue Creek upgradient and downgradient of the filtrate tank area. The investigation concluded that soils in the saturated

³² The following spills documented in Appendix A of the AO occurred in this area: 21 April 2011.

zone, groundwater, and Blue Creek had not been impacted by the filtrate tank release. (Arcadis 2011).

COPCs associated with operations and/or documented spills/releases include petroleum hydrocarbons, metals, sulfur, and sodium. See Section 3.4 for information regarding ongoing monitoring programs that include this area.

Initial Data Gaps in Accessible Areas:

- Depth to groundwater and groundwater flow direction
- Geologic conditions
- Presence of petroleum hydrocarbons, metals, sulfur, and sodium in groundwater
- Current pH of groundwater (as an indicator for black liquor).

3.5.2.1.4 Former Sulfite Mill

The Former Sulfite Mill was part of the sulfite pulping process. This area is inactive. Existing structures include an electrical and instrumentation shop, compressor building, and ASTs. The Former Sulfite Mill in this area was demolished during the Mill Modernization Project (1981 to 1984 RI activities will be limited while the existing structures remain due to the density of structures and below-grade features (e.g., basements, utilities). As changes in operations and/or demolition activities allow for safe access in the future, RI activities will be proposed.

Chemicals used in this operational feature include sulfurous acid (sulfur dioxide dissolved in water). There is a record of a weak black liquor spill in this area³³. Site investigation and/or cleanup activities were completed as part of the original spill response. Some soils were excavated during demolition and disposed in the Mill Modernization Debris Area (in OA-C2).

COPCs associated with operations and/or documented spills/releases include petroleum hydrocarbons, metals, and sulfur. See Section 3.4 for information regarding ongoing monitoring programs that include this area.

Initial Data Gaps in Accessible Areas:

- Depth to groundwater and groundwater flow direction
- Geologic conditions
- Presence of petroleum hydrocarbons, metals, and sulfur in groundwater
- Presence of petroleum hydrocarbons, metals, and sulfur in soil.

³³ The following spills documented in Appendix A of the AO occurred in this area: 21 April 2013.

Image 5. Aerial Imagery from 1973 showing the Former Bag Factory and Sulfite Mill

3.5.2.1.5 Lime Kiln

The Lime Kiln was part of the chemical recovery process for the Kraft pulping operations. This area is inactive. The Lime Kiln remains but is included in the demolition plans being considered. The area is anticipated to be accessible, but access to specific locations may be difficult due to the density of structures and demolition activities.

Chemicals used in this operational feature include green liquor and lime mud. There are documented records of lime mud and green liquor spills in this area³⁴. Lime mud primarily consists of calcium carbonate with trace amounts of other minerals; residual lime mud (calcium carbonate) from spills to land is not considered to present a threat to human health or the environment. A natural gas pipeline and a fuel oil pipeline delivered to machinery at the eastern area of the Lime Kiln (Recaust Area). Site investigation and/or cleanup activities were completed as part of the original spill response.

COPCs associated with operations and/or documented spills/releases in this area include petroleum hydrocarbons and metals. PAHs, BTEX, and naphthalene are also COPCs per Table 830-1 (at WAC 173-340-900). See Section 3.4 for information regarding ongoing monitoring programs that include this area.

Initial Data Gaps in Accessible Areas:

• Depth to groundwater and groundwater flow direction

³⁴ The following spills documented in Appendix A of the AO occurred in this area: 5 May 1999.

- Geologic conditions
- Presence of petroleum hydrocarbons, metals, PAHs, BTEX, and naphthalene in groundwater
- Presence of petroleum hydrocarbons, metals, PAHs, BTEX, and naphthalene in soil.

3.5.2.1.6 No. 5 Power Boiler

The No. 5 Power Boiler is north of the Black Liquor Area and near the northern entrance to the mill. The No. 5 Power Boiler used fuel oil and was supplied by the fuel oil pipeline. There are no known spills or previous investigations in this area.

The No. 5 Power Boiler is currently inactive. It was shut down in April 2021 and the natural gas and steam lines were disconnected in September 2021 (Georgia-Pacific Consumer Operations LLC 2021). Existing equipment includes two liquid filled non-PCB transformer units (186 gallons each) and 2 OFEE (oil filled electrical equipment) containing 55 and 80 gallons of lube oil and hydraulic oil, respectively.

Chemicals used in this operational feature include the Power Boiler fuel (fuel oil) as well as petroleum hydrocarbons associated with operation of the machinery within the power boiler. COPCs include petroleum hydrocarbons and metals. BTEX, PAHs, naphthalene, and PCBs are also COPCs per Table 830-1 (at WAC 173-340-900).

Initial Data Gaps in Accessible Areas:

- Depth to groundwater and groundwater flow direction
- Geologic conditions
- Presence of petroleum hydrocarbons, metals, BTEX, PAHs, naphthalene, and PCBs in groundwater.

3.5.2.1.7 No. 6 Substation

The No. 6 Substation is west of the Lime Kiln. Based on historical aerials, it was constructed between 1966 and 1968. Existing equipment includes three liquid filled non-PCB transformer units (<50 ppm PCB³⁵; 1,590 gallons, 1,140 gallons, and 2,429 gallons) and 10 OFEE containing between 200 to 300 gallons of oil each. There are no known spills or previous investigations in this area.

COPCs include petroleum hydrocarbons, metals, and PCBs. The equipment in this substation is routinely monitored in accordance with the SPCC Plan (see Section 3.4). This substation is active; only non-invasive activities will be proposed while the substation is active. Geology/hydrogeology information will be obtained in nearby operational features to avoid invasive activities at an active substation (see Section 5). This substation is slated for

³⁵ In accordance with 40 CFR 761.180, Camas maintains a log of PCB-containing containers, transformers, and/or large capacitors at the mill (see Appendix E).

decommissioning; if it has been decommissioned prior to the start of field activities, invasive activities (e.g., surface soil sampling) will be included in the field scope of work.

Initial Data Gaps in Accessible Areas:

• Presence of petroleum hydrocarbons, metals, and PCBs in shallow soil.

3.5.2.1.8 No. 8 Substation

The No. 8 Substation is north of the Former Bag Factory. Existing equipment includes four non-PCB transformer units (5,935 gallons, 2,700 gallons, 1,934 gallons, and 3,060 gallons) and three OFEE containing 363 gallons of oil each. There are no known spills or previous investigations in this area.

COPCs include petroleum hydrocarbons, metals, and PCBs. The equipment in this substation is routinely monitored in accordance with the SPCC Plan (see Section 3.4). This substation is active; only non-invasive activities will be proposed while the substation is active. Geology/hydrogeology information will be obtained in nearby operational features to avoid invasive activities at an active substation (see Section 5). This substation is slated for decommissioning; if it has been decommissioned prior to the start of field activities, invasive activities (e.g., surface soil sampling) will be included in the field scope of work.

Initial Data Gaps in Accessible Areas:

• Presence of petroleum hydrocarbons, metals, and PCBs in shallow soil.

3.5.2.2 OA-B2: Power House

The Power House in SOU-B is the only operational feature in OA-B2. As described in Section 3.2, there were multiple Power Boilers in this area, but they are not operational. There are pipelines (above and below ground) for the K6, acid, and process sewers in this area. Blue Creek flows in an underground pipe through this approximate area. RI activities will be limited while the existing structures remain due to the density of structures and below-grade features (e.g., basements, utilities). As changes in operations and/or demolition activities allow for safe access in the future, RI activities will be proposed. The Power House is now inactive. There are existing above ground storage tanks (ASTs), including three 3,500-gallon lube oil ASTs, one 80-gallon hydraulic oil AST, and one 55-gallon diesel fuel AST; most tanks are empty and out of service.

Chemicals used in this operational feature include the Power Boiler fuel (hog fuel, fuel oil, and natural gas), as well as petroleum hydrocarbons associated with operation of the machinery within the steam plant. There are documented records of oil releases in this area³⁶. Soils containing petroleum hydrocarbons were observed during the Mill Modernization Project (1981 to 1984) and at least in part, were reportedly removed and disposed in an area near the South Mill office.

³⁶ The following spills documented in Appendix A of the AO occurred near this area: 26 September 2015.

COPCs associated with operations and/or documented spills/releases include petroleum hydrocarbons and metals. PCBs and PAHs are also COPCs per Table 830-1 (at WAC 173-340-900) owing to the presence of heavy oil such as lube oil and hydraulic fluid. This area is inaccessible for RI activities at this time; if the area becomes accessible after potential demolition activities in the future, soil sampling will be considered. See Section 3.4 for information regarding ongoing monitoring programs that include this area.

Initial Data Gaps in Accessible Areas:

- Depth to groundwater and groundwater flow direction
- Geologic conditions
- Presence of metals, PCBs, PAHs, and residual petroleum hydrocarbons in groundwater.

3.5.2.3 OA-B3: Bleaching

Operational features in OA-B3 are presented in the following sections. Process wastewater and stormwater in this area is collected by the process and acid sewers and conveyed to the WWTP for treatment.

3.5.2.3.1 Kraft Pulp Bleaching

Pulp from the Kraft Mill was bleached in this area. When the Mill transitioned from elemental chlorine to ECF, this building was repurposed to house the R8 Chlorine Dioxide Plant, which produced chlorine dioxide. This area is inactive. RI activities will be limited while the existing structures remain due to the density of structures and below-grade features (e.g., basements, utilities). As changes in operations and/or demolition activities allow for safe access in the future, RI activities will be proposed.

Chemicals used in this operational feature include chlorine, sulfuric acid, methanol, and sodium chlorate. There are documented records of pulp and wastewater spills in this area. Site investigation and/or cleanup activities were completed as part of the original spill response.

COPCs associated with operations and/or documented spills/releases include petroleum hydrocarbons, dioxins/furans (related to wastewater releases), and metals. This area is inaccessible for RI activities at this time; if the area becomes accessible after potential demolition activities in the future, soil sampling will be considered. See Section 3.4 for information regarding ongoing monitoring programs that include this area.

Initial Data Gaps in Accessible Areas:

- Depth to groundwater and groundwater flow direction
- Geologic conditions
- Presence of petroleum hydrocarbons, dioxins/furans, and metals (including chromium) in groundwater.

3.5.2.3.2 Sulfite Pulp Bleaching

Pulp from the Sulfite Mill was bleached in this area. One out-of-service 150-gallon AST that formerly contained oil remains. The Outside Repulper is now located in this area and is still active. RI activities will be limited while the existing structures remain due to the density of structures and below-grade features (e.g., basements, utilities). As changes in operations and/or demolition activities allow for safe access in the future, RI activities will be proposed.

Chemicals used in this operational feature include chlorine, hypochlorite, and hydrogen peroxide. There are no records of notable spills in this area.

COPCs associated with operations include metals, dioxins/furans, and petroleum hydrocarbons. See Section 3.4 for information regarding ongoing monitoring programs that include this area.

Initial Data Gaps in Accessible Areas:

- Depth to groundwater and groundwater flow direction
- Geologic conditions
- Presence of petroleum hydrocarbons, dioxins/furans, and metals in groundwater.

3.5.2.3.3 K5 Bleach Plant

The K5 Bleach Plant bleached pulp using ECF. This area is inactive. One out-of-service 55gallon AST that formerly contained lube oil remains. RI activities will be limited while the existing structures remain due to the density of structures and below-grade features (e.g., basements, utilities). As changes in operations and/or demolition activities allow for safe access in the future, RI activities will be proposed.

Chemicals used in this operational feature include chlorine dioxide. There are no records of notable spills in this area.

COPCs associated with operations include metals, dioxins/furans, and petroleum hydrocarbons. PCBs are also a COPC per Table 830-1 (at WAC 173-340-900) owing to the presence of heavy oil such as lube oil. This area is inaccessible for RI activities at this time; if the area becomes accessible after potential demolition activities in the future, soil sampling will be considered. See Section 3.4 for information regarding ongoing monitoring programs that include this area.

Initial Data Gaps in Accessible Areas:

- Depth to groundwater and groundwater flow direction
- Geologic conditions
- Presence of petroleum hydrocarbons, PCBs, dioxins/furans, and metals in groundwater.

3.5.2.3.4 K4 Bleach Plant

The K4 Bleach Plant bleached pulp for the Mill. This area is inactive. Two 60-gallon oil ASTs have been removed from this area. RI activities will be limited while the existing structures remain due to the density of structures and below-grade features (e.g., basements, utilities). As changes in operations and/or demolition activities allow for safe access in the future, RI activities will be proposed.

Chemicals used in this operational feature include chlorine, sodium chlorate, sodium dichromate, and hydrochloric acid. There are documented records of sodium chlorate, sodium dichromate, and hydrochloric acid releases in this area³⁷. Site investigation and/or cleanup activities were completed as part of the original spill response.

COPCs associated with operations and/or documented spills/releases include petroleum hydrocarbons, PCBs, dioxins/furans, and metals. This area is inaccessible for RI activities at this time; if the area becomes accessible after potential demolition activities in the future, soil sampling will be considered. See Section 3.4 for information regarding ongoing monitoring programs that include this area.

Initial Data Gaps in Accessible Areas:

- Depth to groundwater and groundwater flow direction
- Geologic conditions
- Presence of petroleum hydrocarbons, PCBs, dioxins/furans, and metals (including chromium) in groundwater
- Current pH of groundwater.

3.5.2.3.5 No. 1 Substation

The No. 1 Substation is on the eastern side of OA-B3. Existing equipment includes two liquid filled non-PCB transformer units (<50 ppm PCB; 1,885 gallons and 2,309 gallons) and four OFEE containing 363 gallons of oil each. There are no known spills or previous investigations in this area.

COPCs include metals, petroleum hydrocarbons and PCBs. The equipment in this substation is routinely monitored in accordance with the SPCC Plan (see Section 3.4). This substation is active; only non-invasive activities will be proposed while the substation is active. Geology/hydrogeology information will be obtained in nearby operational features to avoid invasive activities at an active substation (see Section 5).

Initial Data Gaps in Accessible Areas:

• Presence of petroleum hydrocarbons, metals, and PCBs in shallow soil.

³⁷ The following spills documented in Appendix A of the AO occurred in this area: 7 February 2002.

3.5.2.4 OA-B4: Finishing/Coatings - North

Operational features in OA-B4 are presented in the following sections. Process wastewater and stormwater in this operational area is collected by the K6, K7, acid, and process sewers (see Figure 8 for approximate coverage areas) and conveyed to the WWTP for treatment.

3.5.2.4.1 Paper Treatment

The area is inactive, but formerly paper treatment operations were completed in this area. The buildings that housed the former paper treatment operation are still existing. RI activities will be limited while the existing structures remain due to the density of structures and below-grade features (e.g., basements, utilities). As changes in operations and/or demolition activities allow for safe access in the future, RI activities will be proposed.

Chemicals used in this operational feature include diphenyl, ethoxyquin, per- and polyfluoroalkyl substances (PFAS), and copper carbonate. There are no records of spills in this area.

COPCs associated with operations include petroleum hydrocarbons, diphenyl, PFAS, and metals. See Section 3.4 for information regarding ongoing monitoring programs that include this area.

Initial Data Gaps in Accessible Areas:

- Depth to groundwater and groundwater flow direction
- Geologic conditions
- Presence of petroleum hydrocarbons, diphenyl, PFAS, and metals (including copper) in groundwater.
- Presence of petroleum hydrocarbons, diphenyl, PFAS, and metals (including copper) in soil.

3.5.2.4.2 Machine Shop

The machine shop was used to produce various parts for machinery used throughout the mill. In order to support the war effort, the machine shop was converted to produce rudders for Liberty Ships during World War II. This area is inactive. The buildings that housed the former machine shop are still existing. RI activities will be limited while the existing structures remain due to the density of structures and below-grade features (e.g., basements, utilities). As changes in operations and/or demolition activities allow for safe access in the future, RI activities will be proposed. Chemicals used in this operational feature include oils and solvents. There are no records of spills in this area.

COPCs associated with operations include petroleum hydrocarbons, metals, and VOCs. PCBs are also a COPC per Table 830-1 (at WAC 173-340-900) owing to the presence of heavy oil such as lube oil and hydraulic fluid. This area is inaccessible for RI activities at this time; if the area becomes accessible after potential demolition activities in the future, soil sampling will be considered. See Section 3.4 for information regarding ongoing monitoring programs that include this area.

Initial Data Gaps in Accessible Areas:

- Depth to groundwater and groundwater flow direction
- Geologic conditions
- Presence of petroleum hydrocarbons, PCBs, metals, and VOCs in groundwater.

3.5.2.4.3 Fuel Oil Day Tank

The Fuel Oil Day Tank is located in the western end of OA-B4, south of the Power House (OA-B2) and the Kraft Mill (OA-B1). The existing 50,400-gallon AST is empty and has been decommissioned and removed from service. This area is inactive. The area is anticipated to be accessible, but access to specific locations may be difficult due to the density of structures.

Fuel oil was stored in the Fuel Oil Day Tank. There are no records of spills in this area; however, fuel oil has been identified in the subsurface in this area. Subsurface impacts were identified during a construction project and subsequently evaluated in 2018 (Figure 22; Kennedy Jenks 2018). Approximately 12 cubic yards of soil containing petroleum hydrocarbons were removed in this area. The excavation extended laterally to surrounding foundations or roads, where further removal was infeasible. Visual indicators of petroleum hydrocarbons were observed at approximately 3 feet bgs around the perimeter of the excavation with the exception of the southwestern corner. Petroleum impacts appeared to extend from 3 feet bgs to bedrock at 4-5 feet bgs (Kennedy Jenks 2018).

Analytical samples were collected from the four excavation sidewalls at a depth of 2 feet bgs to confirm that petroleum hydrocarbon impacts did not extend above the visibly impacted soil at 3 feet bgs. An additional soil sample was collected from the southwest corner of the excavation sidewall at a depth of 3 feet bgs as visible indicators of petroleum hydrocarbons were not observed in this area. Neither diesel-range nor oil-range organics were detected in soil samples at concentrations exceeding the MTCA screening level of 2,000 milligrams per kilogram (mg/kg).

A test pit was dug approximately 25 feet south (presumed downgradient) of the excavation, across the access road, to assess the extent of petroleum hydrocarbon impacts. No visual or olfactory evidence of petroleum hydrocarbons was observed. Groundwater was not encountered. Soil samples were collected at 4.5 feet bgs and 6 feet bgs. Neither diesel- nor oil-range organics were detected in the soil sample at 4.5 feet bgs, and oil-range organics were detected at a concentration below the MTCA screening level in the sample at 6 feet bgs. Therefore, petroleum hydrocarbon impacts were not observed at a distance of 25 feet from the southern extent of the excavation.

COPCs associated with operations include petroleum hydrocarbons and metals. PAHs, BTEX, and naphthalene are also COPCs per Table 830-1 (at WAC 173-340-900). See Section 3.4 for information regarding ongoing monitoring programs that include this area.

Initial Data Gaps in Accessible Areas:

• Depth to groundwater and groundwater flow direction

- Geologic conditions
- Presence of petroleum hydrocarbons, BTEX, PAHs, naphthalene, and metals in groundwater
- Presence of petroleum hydrocarbons, BTEX, PAHs, naphthalene, and metals in soil.

3.5.2.4.4 No. 5 Substation

The No. 5 Substation is south of the Machine Shop. Existing equipment includes six liquid filled non-PCB transformer units (<50 ppm PCB; approximately 1,000 gallons each; one spare being stored, not used), two non-PCB transformer units (2,285 gallons and 2,935 gallons), and six OFEE containing 363 gallons of oil each. There are no known spills or previous investigations in this area.

COPCs include petroleum hydrocarbons, metals, and PCBs. The equipment in this substation is routinely monitored in accordance with the SPCC Plan (see Section 3.4). This substation is active; only non-invasive activities will be proposed while the substation is active. Geology/hydrogeology information will be obtained in nearby operational features to avoid invasive activities at an active substation (see Section 5).

Initial Data Gaps in Accessible Areas:

• Presence of petroleum hydrocarbons, metals, and PCBs in shallow soil.

3.5.2.5 OA-B5: Specialty Minerals

The mill leased property in the western portion of the Site to Specialty Minerals, Inc. The area is inactive and has been demolished.

The Specialty Minerals operation produced precipitated calcium carbonate (CaCO₃) for use as a paper whitener at Paper Machine 20. There are no records of spills in this area.

There are no COPCs associated with operations or documented spills/releases in this area. See Section 3.4 for information regarding ongoing monitoring programs that include this area.

3.5.2.6 OA-B6: Warehouse/Product Storage – North

This operational area is in the northwestern portion of the Site and historically provided warehousing for product storage. There is no known chemical usage, reported spills or releases, or current operations in this OA.

3.5.3 SOU-C: Main Mill Area - South

The Main Mill Area – South (SOU-C) is located between the railroad tracks and the Camas Slough. It encompasses five operational areas which included finishing, coating, product storage, and operational support activities.

Image 6. Aerial Imagery of SOU-C

3.5.3.1 OA-C1: Finishing /Coatings/Additives – South

Operational features in OA-C1 are presented in the following sections. Process wastewater and stormwater in this operational area is collected by the K6 sewer, the acid sewer, and the process sewer (see Figure 8 for approximate coverage areas) and conveyed to the WWTP for treatment.

3.5.3.1.1 Fuel Oil Storage

Historically, this area contained ASTs which stored fuel oil to support mill operations. There is one existing fuel oil AST (No. 5 Storage Tank) located near the Camas Slough between the Dock Warehouse and the No. 20 Paper Machine. The existing No. 5 Storage Tank is empty and has been removed from service. The original capacity of the No. 5 Storage Tank was 1,680,000 gallons; in 2003, the tank was modified, and the capacity reduced to 719,000 gallons. Previously, there were four fuel oil storage tanks in the vicinity of present-day No. 20 Paper Machine (seen in Image 7). One of these tanks was demolished prior to 1950 and the remaining three were demolished during the Mill Modernization Project (1981 to 1984). The eastern portion of this area, near and at the No. 20 Paper Machine, is currently inaccessible due to ongoing operations.

Chemicals used in this operational feature include the fuel oil stored in tanks. There are no records of spills in this area; however, fuel oil has been discovered in the subsurface in this area. Previous field investigation was completed when suspected petroleum hydrocarbons were observed during excavation activities associated with equipment installation (Kennedy Jenks 2020). No evidence of an active release was observed. Six soil samples were collected from the excavation area and analyzed for Northwest Total Petroleum Hydrocarbons as Diesel and Oil Extended (NWTPH-Dx; without silica gel cleanup); benzene, toluene, ethylbenzene, and total

xylenes (BTEX), naphthalene, and PAHs (Figure 22). Eight additional soil samples were collected when excavation was completed and analyzed for NWTPH-Dx (without silica gel cleanup), BTEX, naphthalene, and PAHs. After agreement with Ecology, the excavation was backfilled.

COPCs associated with operations include petroleum hydrocarbons and metals. PAHs, BTEX, and naphthalene are also COPCs per Table 830-1 (at WAC 173-340-900).

Initial Data Gaps in Accessible Areas:

- Depth to groundwater and groundwater flow direction
- Geologic conditions
- Presence of metals, petroleum hydrocarbons, PAHs, BTEX, and naphthalene in groundwater
- Presence of metals, residual petroleum hydrocarbons, PAHs, BTEX, and naphthalene in soil.

Image 7. Aerial Imagery from 1948 showing four historical fuel oil storage tanks

3.5.3.1.2 Additives/Coatings

This area of the Mill was used to store and apply specialty chemicals used to manufacture specific paper products. This area is still active, including ASTs and Boiler No. 6. Existing structures in this area include buildings that house converting machinery, a storeroom, and finishing operations. There are also reclaim tanks along the northern boundary of these buildings and 20 existing 275-gallon oil ASTs. Based on historical aerials, structures in the northern portion of OA-C1 existed at least as early as 1948. Boiler No. 6 was recently installed in 2020. This area is inaccessible due to ongoing operations.

Chemicals used in this operational feature include petroleum hydrocarbons. There are no records of notable spills in this area.

COPCs associated with operations include petroleum hydrocarbons and metals. PCBs are also a COPC per Table 830-1 (at WAC 173-340-900) owing to the presence of heavy oil such as

lube oil and hydraulic fluid. See Section 3.4 for information regarding ongoing monitoring programs that include this area.

Initial Data Gaps in Accessible Areas:

- Depth to groundwater and groundwater flow direction
- Geologic conditions
- Presence of petroleum hydrocarbons, metals, and PCBs in groundwater
- Presence of petroleum hydrocarbons, metals, and PCBs in soil.

3.5.3.1.3 Converting

This area of the Mill was used for Converting. This area is still active. Existing structures in this area include buildings that house a converting plant and associated electrical and instrumentation rooms and mechanical shop, two converting annexes, reject paper storage, and baling operations. Based on historical aerials, the converting buildings existed at least as early as 1948. There are no known former structures in this area that do not currently exist. This area is inaccessible due to ongoing operations.

Chemicals used in this operational feature include petroleum hydrocarbons and glues. There are no records of spills in this area.

COPCs associated with operations include petroleum hydrocarbons, metals, and VOCs. See Section 3.4 for information regarding ongoing monitoring programs that include this area.

Initial Data Gaps in Accessible Areas:

- Depth to groundwater and groundwater flow direction
- Geologic conditions
- Presence of petroleum hydrocarbons, metals, and VOCs in groundwater.

3.5.3.1.4 No. 9 Substation

The No. 9 Substation is on west of the Effluent Pump Station. Existing equipment includes three non-PCB transformer units (two 1,934 gallons each, one 3,060 gallons) and three OFEE containing 363 gallons of oil each. There are no known spills or previous investigations in this area.

COPCs include petroleum hydrocarbons, metals, and PCBs. The equipment in this substation is routinely monitored in accordance with the SPCC Plan (see Section 3.4). This substation is active; only non-invasive activities will be proposed while the substation is active. Geology/hydrogeology information will be obtained in nearby operational features to avoid invasive activities at an active substation (see Section 5).

Initial Data Gaps in Accessible Areas:

• Presence of petroleum hydrocarbons, metals, and PCBs in shallow soil.

3.5.3.2 OA-C2: Warehouse / Product Storage - South

Operational features in OA-C2 are presented in the following sections. Process wastewater and stormwater in this operational area is collected by the process sewer (see Figure 8 for approximate coverage areas) and conveyed to WWTP for treatment.

3.5.3.2.1 Mill Modernization Debris Area

During the Mill Modernization Project (1981 to 1984), soil and demolition debris from the former Sulfite Mill and Bag Factory underlie the asphalt cover used for vehicle parking. Differential settlement in the parking area has caused the asphalt surface to be uneven. This area is still active. There is an existing structure in this area that is included in the demolition plans being considered. There are no known former structures in this area that do not currently exist. This area is expected to be accessible.

There are no known chemicals used for operations in this operational feature. There are also no records of spills in this area.

COPCs associated with debris underlying the asphalt surface include petroleum hydrocarbons, VOCs, semi-volatile organic compounds (SVOCs), PCBs, dioxins/furans, PFAS, and metals. PCBs and dioxins/furans have low solubility and are typically associated with soil, not groundwater. The nature and extent of buried materials will be evaluated using non-invasive methods prior to proceeding with invasive sampling activities. When they can be safely accessed, buried materials will be inspected by an accredited hazardous building materials inspector to evaluate for potential to contain hazardous materials, such as asbestos. See Section 3.4 for information regarding ongoing monitoring programs that include this area.

Initial Data Gaps in Accessible Areas:

- Depth to groundwater and groundwater flow direction
- Geologic conditions
- Extent of buried materials
- Presence of petroleum hydrocarbons, VOCs, SVOCs (including PAHs), dioxins/furans, PFAS, PCBs, and metals in groundwater
- Presence of hazardous building materials (e.g., asbestos).

3.5.3.2.2 No. 2 Substation

The No. 2 Substation is on the western side of the Mill Modernization Debris Area and may extend into the Mill Modernization Debris Area. Existing equipment includes four liquid filled

non-PCB transformer units (<50 ppm PCB; three 1,305 gallons and one 1,237 gallons). There are no known spills or previous investigations in this area.

COPCs include petroleum hydrocarbons, metals, and PCBs. The equipment in this substation is routinely monitored in accordance with the SPCC Plan (see Section 3.4). This substation is active; only non-invasive activities will be proposed while the substation is active. Geology/hydrogeology information will be obtained in nearby operational features to avoid invasive activities at an active substation (see Section 5).

Initial Data Gaps in Accessible Areas:

• Presence of petroleum hydrocarbons, metals, and PCBs in shallow soil.

3.5.3.2.3 Buried Material Area

The Sheeter Building was built on the closed Inert Waste Landfill during the Mill Modernization project (1981 to 1984). Interviews with staff confirmed uncovering trash, debris, and other materials while excavating for construction of the Sheeter Building. Historical aerial imagery identifies locations of other possible buried materials and a waste incinerator (seen in Image 8) near the present-day Sheeter Building. This area is still active. Existing structures in this area include the Sheeter Building (now called the "Will II" building), which is currently used for storage, a Mobile Maintenance Shop, and a salvage yard. There is one existing 500-gallon AST that formerly contained lube oil but is now empty and has been removed from service. There were three known USTs near the Mobile Maintenance Shop (adjacent to the Sheeter Building): a 12,000-gallon gasoline UST, a 1,000-gallon gasoline UST, and a 150-gallon UST which was part of a spill containment/oil separation system. These three USTs have been removed. An approximately 1.5-acre closed inert waste landfill is located to the east of the Sheeter Building (see Figure 22). When active, the inert waste landfill accepted hog fuel boiler bottom ash and inert construction debris (e.g., aggregate, asphalt, brick, concrete, gravel, sand, and tile). Chemicals, garbage, lime mud, woodwaste, paper, hazardous waste, sludge, and other wastes were prohibited. The inert waste landfill was formally closed in 1999 (Fort James Camas LLC 1999b). There was a waste incinerator in the southeastern corner of this area and waste was stockpiled in the southwestern corner (see Image 8 below). The incinerator was reportedly used to burn paper wastes generated at the Mill. This area is inaccessible due to ongoing operations.

Chemicals used in this operational feature include petroleum hydrocarbons. There are no records of spills in this area. Excavation activities were completed in the Buried Materials Area during construction of the Sheeter Building. During excavation activities, workers uncovered garbage, paint, and other debris. The three USTs in this area near the Mobile Maintenance Shop have been removed. COPCs in this area are related to potential buried materials as well as the former USTs.

COPCs associated with buried materials include petroleum hydrocarbons, VOCs (including 1,2dibromoethane and 1,2-dichloroethane), SVOCs (including PAHs), BTEX, MTBE, PCBs, dioxins/furans, PFAS, and metals (including total lead). PCBs and dioxins/furans have low solubility and are typically associated with soil, not groundwater. The nature and extent of buried materials will be evaluated using non-invasive methods prior to proceeding with invasive sampling activities. When they can be safely accessed, buried materials will be inspected by an accredited hazardous building materials inspector to evaluate for potential to contain hazardous

materials, such as asbestos. See Section 3.4 for information regarding ongoing monitoring programs that include this area.

Initial Data Gaps in Accessible Areas:

- Depth to groundwater and groundwater flow direction
- Geologic conditions
- Extent of buried materials
- Presence of petroleum hydrocarbons, VOCs (including 1,2-dibromoethane and 1,2dichloroethane), SVOCs (including PAHs), BTEX, MTBE, PFAS, PCBs, dioxins/furans, and metals (including total lead) in groundwater.
- Presence of petroleum hydrocarbons, VOCs (including 1,2-dibromoethane and 1,2dichloroethane), SVOCs (including PAHs), BTEX, MTBE, PFAS, PCBs, dioxins/furans, and metals (including total lead) in soil

• Presence of hazardous building materials (e.g., asbestos).

Image 8. Aerial Imagery from 1968 showing waste incinerator

3.5.3.2.4 MERT Storage Building

The Mill Emergency Response Team (MERT) Storage Building is north of the Mill Modernization Debris Area and is used as a storage building to support MERT. AF Foams for firefighting purposes are stored in the MERT Storage Building. There are no known spills or previous investigations in this area. This is the only current or previous storage location for firefighting foams that has been identified.

COPCs include PFAS, petroleum hydrocarbons, and metals. The MERT Storage Building is part of active and ongoing Mill operations.

Initial Data Gaps in Accessible Areas:

- Depth to groundwater and groundwater flow direction
- Geologic conditions
- Presence of PFAS, petroleum hydrocarbons, and metals in groundwater
- Presence of PFAS, petroleum hydrocarbons, and metals in soil.

3.5.3.3 OA-C3: Operational Support

The Operational Support area serves the Mill, including waste and product storage and fueling. Operational features in OA-C3 are presented in the following sections. Process wastewater and stormwater in this operational area is collected by the K7 sewer and conveyed to the WWTP for treatment (see Figure 8 for approximate coverage areas).

3.5.3.3.1 Waste Handling Area and Fueling Station

This is currently an active Waste Handling Area. Used and clean oil along with Dangerous wastes and miscellaneous wastes, such as waste solvent and paint, are stored in above-ground totes and other containers in this area. There is also a fueling station located in the eastern end of this area with a 5,000-gallon gasoline AST and a 1,000-gallon diesel AST, and three existing structures (two existing covered sheds and a garage). This area is inaccessible due to ongoing operations.

Chemicals used in this operational feature include gasoline and diesel for fueling operations. There are no records of spills in this area. However, petroleum hydrocarbons were identified east of the fueling station during drilling operations for a utility pole installation in 2018 (Figure 22). Diesel-range and heavy oil hydrocarbons were present in water samples collected from the boring installed to receive the utility pole (Kennedy Jenks 2019).

COPCs associated with operations include petroleum hydrocarbons, metals, and VOCs. See Section 3.4 for information regarding ongoing monitoring programs that include this area.

Initial Data Gaps in Accessible Areas:

- Depth to groundwater and groundwater flow direction
- Geologic conditions
- Presence of petroleum hydrocarbons, metals, and VOCs in groundwater.

3.5.3.3.2 Car Barn, Paint Shop, and UST Area

The Car Barn and Paint Shop were used to store drums and totes of oil and solvents. The Car Barn and Paint Shop buildings are still present. There were three known USTs near the Car

Barn: a 10,000-gallon gasoline UST, a 1,000-gallon gasoline UST, and a 300-gallon UST containing thinner solvent. The tanks were removed in the mid-1980s. This area is inaccessible due to ongoing operations.

Chemicals used in this operational feature include petroleum hydrocarbons and solvents. There are no records of spills in this area.

COPCs associated with operations include petroleum hydrocarbons, metals, and VOCs. See Section 3.4 for information regarding ongoing monitoring programs that include this area.

Initial Data Gaps in Accessible Areas:

- Depth to groundwater and groundwater flow direction
- Geologic conditions
- Presence of petroleum hydrocarbons, metals, and VOCs in groundwater.

3.5.3.3.3 Former Sulfur Pile

When the Mill used the sulfite pulping process, sulfur was stored in an outdoor pile in this location. There are no existing or former structures in this area. This area is accessible.

Chemicals used in this operational feature include the stockpiled sulfur. There are records of hydraulic oil spills in this area³⁸. In 1999, less than 1 gallon of hydraulic oil was released, and absorbent media were deployed (Fort James Camas LLC 1999a). In 2006, reportedly approximately 60 gallons of hydraulic oil spilled and contacted bare ground. In response, absorbent media was deployed, and the impacted soil was excavated and disposed (Fort James Camas LLC 2006).

COPCs associated with operations and/or documented spills/releases include petroleum hydrocarbons, metals, and sulfur. PCBs are also a COPC per Table 830-1 (at WAC 173-340-900) owing to the documented release of hydraulic fluid. See Section 3.4 for information regarding ongoing monitoring programs that include this area.

Initial Data Gaps in Accessible Areas:

- Depth to groundwater and groundwater flow direction
- Geologic conditions
- Presence of petroleum hydrocarbons, metals, PCBs, and sulfur in groundwater
- Presence of petroleum hydrocarbons, metals, PCBs, and sulfur in soil.

³⁸ The following spills documented in Appendix A of the AO occurred in this area: 6 March 2006 and 17 January 1999.

3.5.3.4 OA-C4: Pump Houses

Operational features in OA-C4 are presented in the following sections.

3.5.3.4.1 River Bank Pump House

The Riverbank Pump House on the banks of the Camas Slough supplies water for the mill's fire suppression system. There was previously an 850-gallon diesel AST to support the former diesel pump; the diesel pump has been replaced with an electric pump, and diesel is no longer stored in this area. This area is still active. This area is inaccessible due to ongoing operations.

Chemicals used in this operational feature include diesel for the pumps. Diesel releases from the AST and equipment have occurred in this location onto the bank and to the slough³⁹. In February 2017, oil sheen was observed in Camas Slough (Georgia-Pacific 2017a). The source was found to be a diesel leak at the River Bank Pump House. Oil absorbent equipment (booms, sweeps, and socks) were deployed, the contents of the concrete vault containment for the leaking tank was pumped out, and the pump engine system was disconnected. Approximately 600 cubic feet of diesel contaminated soil was excavated until diesel was not observed visually or by odor (Georgia-Pacific 2017b). Six soil samples were collected from the excavation area in August 2017 and analyzed for diesel range organics (Figure 22); results ranged from 360 mg/kg to 1,800 mg/kg, and were below MTCA cleanup level of 2,000 mg/kg.

Groundwater was not encountered during excavation activities. Additional corrective action and repairs were completed after the required permits and approvals were obtained, including decommissioning the diesel pumps at the River Bank Pump House and replacing with a new electric fire pump (Georgia-Pacific 2018a,b). A new skid-mounted diesel fire pump and a new diesel emergency generator were also installed within the WWTP collection system; there is no longer diesel storage at the River Bank Pump House. A new inspection plan was also established for the Pump House (Georgia-Pacific 2018a, b).

COPCs associated with operations and/or documented spills/releases include petroleum hydrocarbons (i.e., diesel fuel) and metals. PAHs and naphthalene are also COPCs per Table 830-1 (at WAC 173-340-900). See Section 3.4 for information regarding ongoing monitoring programs that include this area.

Initial Data Gaps in Accessible Areas:

- Depth to groundwater and groundwater flow direction
- Geologic conditions
- Presence of metals, PAHs, naphthalene, and residual petroleum hydrocarbons (diesel fuel organics) in groundwater
- Presence of metals, PAHs, naphthalene, and residual petroleum hydrocarbons (diesel fuel) in soil.

 ³⁹ The following spills documented in Appendix A of the AO occurred in this area: 11 December 2006,
7 May 2003, and 26 December 1999.

3.5.3.4.2 Effluent Pump Station

The Effluent Pump Station located on the banks of the Camas Slough pumps the mill's process wastewater (including the K6 sewer, K7 sewer, and grit sump) to the WWTP on Lady Island. This area is still active. There are no known former structures in this area that do not currently exist. This area is inaccessible due to ongoing operations.

Chemicals used in this operational feature include diesel fuel to feed the backup generator used to run the pump station in case of a power outage. There have been documented releases of wastewater to the bank and to the slough⁴⁰.

COPCs associated with operations and/or documented spills/releases include petroleum hydrocarbons, dioxin, and metals. See Section 3.4 for information regarding ongoing monitoring programs that include this area.

Initial Data Gaps in Accessible Areas:

- Depth to groundwater and groundwater flow direction
- Geologic conditions
- Presence of petroleum hydrocarbons (diesel range organics), dioxin, and metals in groundwater
- Presence of petroleum hydrocarbons (diesel range organics), dioxin, and metals in soil.

3.5.3.5 OA-C5: Wooded Area

There are no historical or current operational activities, no known spills, and no known chemical usage in this area. The area is monitored by the mill; however, the Wooded Area is not fenced, and access is not controlled.

A visual survey and soil investigation via test pits will be conducted as part of this initial stage of the RI.

Initial Data Gaps in Accessible Areas:

• Presence of petroleum hydrocarbons, VOCs, PCBs, and metals in soil.

3.5.4 SOU-D: Lady Island

Lady Island (SOU-D) is located between the Camas Slough and the Columbia River. Lady Island is only partially developed; the WWTP for the mill is located on Lady Island and consists of a primary clarifier constructed in 1968 and two ASBs added in the 1960s and 1970s. Process sewer lines⁴¹ cross the Camas Slough to convey process wastewater from the Main Mill Area to

⁴⁰ The following spills documented in Appendix A of the AO occurred in this area: 7 September 2012 and 3 July 2006.

⁴¹ Existing pipelines crossing the Camas Slough include both existing and active pipelines (acid sewer and process sewer) as well as existing but abandoned pipelines.

the WWTP on Lady Island (see Figures 8 and 14). Prior to installation of pipelines connecting the clarifier to the ASBs, wastewater was conveyed through earthen ditches. A permitted landfill is located west of the primary clarifier and is used for management of dewatered wastewater solids. Highway 14 traverses Lady Island.

The WWTP continues to operate and is regulated by the mill's existing NPDES permit, as well as the Lady Island Landfill (LILF) permit (see Section 3.4).

3.5.4.1 OA-D1: Wastewater Treatment Plant

3.5.4.1.1 Active Landfill

Solids from the primary clarifier⁴² are dewatered and managed at the LILF, which operates as a limited purpose landfill under Clark County Public Health Department Permit Number PT 0006096 (LILF permit). In accordance with the LILF permit, quarterly groundwater monitoring occurs at five monitoring wells. In addition, seep inspections occur annually as part of routine monitoring events; although seeps have been identified previously, seeps have not been identified for the last 3 years (2019 – 2021). Leachate from this landfill is collected and sent to the WWTP for treatment⁴³. The LILF is active and continues to operate as part of the WWTP, making it inaccessible for RI activities.

3.5.4.1.2 Former Wastewater Ditches

Prior to installation of pipelines connecting the clarifier to the ASBs, wastewater was conveyed through earthen ditches. Based on historical aerials, the ditches are apparent between 1968 and 1970, and conveyed effluent from the primary clarifier as well as effluent from the acid sewer to the South ASB and former outfall. The ditches are no longer used and are accessible for RI activities. COPCs include petroleum hydrocarbons, dioxin, PCBs, PFAS, and metals.

Initial Data Gaps in Accessible Areas:

• Presence of petroleum hydrocarbons, dioxin, PCBs, PFAS, and metals in shallow soil.

⁴² The primary clarifier receives flows from the K6 sewer, K7 sewer, and process water sewer.

⁴³ The following spills documented in Appendix A of the AO occurred in this area: 25 June 1999.

Image 9. Aerial Imagery from 1973 showing wastewater ditches on Lady Island

3.5.4.1.3 ASBs

There are two ASBs that are part of the WWTP on Lady Island. The South ASB was constructed in the 1960s, and the North ASB was constructed in 1977 for secondary treatment of wastewater.

The ASBs continue to provide secondary treatment for industrial wastewater treated by the Primary Clarifier. While the ASBs continue to be an active part of the treatment processes at the Mill, conditions in the ASBs will continue to be dynamic and changing, and accumulated solids will continue to be managed through sampling, dredging, and beneficial reuse or disposal in accordance with applicable permits and operations programs. Additionally, the integrity of the ASBs must be maintained, which precludes sample collection that could compromise the ASBs while they remain an active part of the treatment processes at the Mill. Therefore, RI activities at the ASBs are not proposed herein. Media at the ASBs continue to be monitored in accordance with the Mill's existing NPDES permit monitoring program (see Table 1). Monitoring data is available at Ecology's Water Quality Permitting and Reporting Information System (PARIS) and in Appendix B.

3.5.4.1.4 Primary Clarifier

The primary clarifier was constructed in the 1960s. The primary clarifier receives flows from the K6 sewer, K7 sewer, and process water sewer⁴⁴. Solids from the primary clarifier are dewatered and managed at the LILF (or beneficially reused offsite), and effluent is conveyed from the clarifier to the ASBs. The primary clarifier and supporting buildings and equipment continue to

⁴⁴ The following spills documented in Appendix A of the AO occurred in this area: 31 October 2015.

operate as part of the WWTP and are regulated by the mill's existing NPDES permit. This area is inaccessible for RI activities due to ongoing operations.

3.5.4.1.5 No. 10 Substation

The No. 10 Substation is south of the Primary Clarifier. Existing equipment includes three non-PCB transformer units (1,160 gallons each) and two OFEE containing 363 gallons of oil each. There are no known spills or previous investigations in this area.

COPCs include petroleum hydrocarbons and PCBs. The equipment in this substation is routinely monitored in accordance with the SPCC Plan (see Section 3.4). This substation is active; only non-invasive activities will be proposed while the substation is active. Geology/hydrogeology information will be obtained in nearby operational features to avoid invasive activities at an active substation (see Section 5).

Initial Data Gaps in Accessible Areas:

• Presence of petroleum hydrocarbons and PCBs in shallow soil.

3.5.4.2 OA-D2: Dredge Spoils Area

Dredge sediments from mill-related dredging activities in Camas Slough are stockpiled in the Dredge Spoils Area on Lady Island, occupying an area of approximately 5 acres (Figure 10). Figures 11, 15, 18, and 19 present approximate maintenance dredging areas in the Camas Slough. The fill area is separated from the mill proper by the Camas Slough and is west of the ASBs on Lady Island.

Dredged materials are owned by the Army Corps of Engineers (USACE). Under USACE and Washington Department of Fish and Wildlife permits, the mill is allowed to conduct annual maintenance dredging by removing up to 20,000 cubic yards (yd³) of sediment, totaling no more than 100,000 yd³ over five years. Available sampling results from dredged material are provided in Appendix B. The dredged materials generally consist of sand, silt, gravel, rock, wood, and miscellaneous debris and trash (separated during offloading).

The Dredge Spoils Area⁴⁵ consists of two storage piles separated by roadway access to the Camas Slough. Based on a survey completed in September 2014, the final top elevations of the two storage piles are 60 feet (eastern pile) and 95 feet (western pile). The piles are confined by a compacted subgrade of low permeability native clay and topographical features. The piles have been constructed over a four-decade period by placing, shaping, and hydro seeding lifts of dredged materials. The bowl-shaped contour of the current deposit retains storm water on site. Maintenance dredging has been performed routinely within the Camas Slough to maintain navigation channels for floating vessels to stage and transport materials associated with mill

⁴⁵ On 25 January 2019, Georgia-Pacific Consumer Operations LLC received confirmation from CCPH regarding the Dredge Material Landfill reclassification. Based upon the verbiage in the updated WAC 173-350-020 revisions, the regulations do not cover material from river dredging activities. The Dredge Material area receives material exclusively from Camas Slough dredging activities. Therefore, the Dredge Material area is no longer classified as a landfill by CCPH. Pursuant to this WAC rule revision and concurrence from CCHP, after consultation with Ecology, the Washington solid waste regulations no longer apply.

operations, and to maintain adequate intake flow for the mill's fire water intake structure. Following 2017, mill operations scaled back, and subsequently the annual dredging needs have greatly reduced. Ongoing dredging may be required to maintain functionality of the mill's emergency fire intake structure, but the mill no longer completes loading/unloading activities from barges. From 1970 to 2002, approximately 1,930 cubic yards of material was dredged from the Camas Slough annually. Between 2002 and 2021, annual dredging activities have been less consistent, with at least 12 years seeing no dredging activities. In total, approximately 75,000 cubic yards of material have been dredged from the Camas Slough since 2002.

COPCs associated with historical operations include petroleum hydrocarbons, BTEX, naphthalene, PAHs, metals, and PCBs.

Initial Data Gaps in Accessible Areas:

• Presence of petroleum hydrocarbons, BTEX, naphthalene, PAHs, metals, dioxins/furans, PFAS, VOCs, SVOCs, and PCBs in dredged materials.

3.5.5 SOU-E: Ancillary Area

The Ancillary Area (SOU-E) is located near the intersection of Northeast Adams Street and Northeast 6th Avenue. It contains a single operational area where former private businesses (unrelated to mill) operated.

The Mill acquired multiple properties as it expanded to the north and east including a former gas station, a former service station, and a former laundromat/dry cleaner. These buildings have been demolished. This area is currently active. Ongoing mill related activities include the repulping operation and mill parking areas; however, the former activities in the Ancillary Area will drive RI activities. Limited documentation is available for the former, non-Mill activities.

Image 10. Aerial Imagery of SOU-E

3.5.5.1 OA-E1: Former Service Station

The former service station is located in the northwestern area of the Ancillary Area. A previous cleanup report indicates that the original service station was constructed in 1941. The original service station was demolished and reconstructed in 1961 with the addition of five USTs on the west side of the property. In 1990, the USTs on the west side of the property developed leaks and reportedly the tanks were excavated and removed, and above-ground remediation of the soil was completed under Ecology oversight. In 1991, the James River Corporation acquired the property to construct a terminal to receive secondary fiber from the recycle mill in Halsey. Oregon. The purchase was completed with the understanding that USTs had been removed and the cleanup was complete. However, additional USTs were discovered and found to contain petroleum hydrocarbons and water (see Table 3). Both the contents and the tanks were subsequently removed and soil samples were collected from the bottom of the tank pits. According to records, soils impacted by petroleum hydrocarbons were excavated and bioremediated onsite and confirmation samples were collected from the bottom of the excavation. Confirmation samples were analyzed for TPHd and TPHg and the results indicate that TPHd and TPHg were not detected. Samples were also collected from the bioremediated soils and analyzed for TPHd, TPHmo, BTEX, and TPHg (James River 1992).

There are no COPCs associated with current and ongoing mill-related activities. COPCs associated with the former service station include petroleum hydrocarbons and BTEX.

Initial Data Gaps in Accessible Areas:

- Depth to groundwater and groundwater flow direction
- Geologic conditions
- Presence of petroleum hydrocarbons and BTEX in groundwater
- Presence of residual petroleum hydrocarbons and BTEX in soil.

3.5.5.2 OA-E2: Former Laundromat and Dry Cleaner

The former laundromat and dry cleaner is located in the northeastern area of the Ancillary Area. Limited information is available about the former laundromat and dry cleaner.

There are no COPCs associated with current and ongoing mill-related activities. COPCs associated with the former laundromat and dry cleaner include VOCs.

Initial Data Gaps in Accessible Areas:

- Depth to groundwater and groundwater flow direction
- Geologic conditions

- Presence of VOCs in groundwater
- Presence of VOCs in soil.

3.5.5.3 OA-E3: Former Gas Station

The former gas station is located in the southeastern area of the Ancillary Area. Limited information is available about the former service station.

There are no COPCs associated with current and ongoing mill-related activities. COPCs associated with the former gas station include petroleum hydrocarbons and BTEX.

Initial Data Gaps in Accessible Areas:

- Depth to groundwater and groundwater flow direction
- Geologic conditions
- Presence of petroleum hydrocarbons and BTEX in groundwater
- Presence of residual petroleum hydrocarbons BTEX in soil.

3.5.6 SOU-F: CBC

The CBC (SOU-F) is bound by Northwest Benton Street and residential properties to the north, Division Street to the east, Northwest 6th Avenue to the south, and Northwest Drake Street to the west. It contains a single operational area where research and development were conducted.

Image 11. Aerial Imagery of SOU-F

3.5.6.1 OA-F1: CBC Area

This area of the Facility was formerly used for research and development. Former structures in this area include the Camas Business Center, the Non-Wovens Plant, the Environmental Center, and Fort James Specialty Chemicals. Operations in this area ceased by 1999 and many of the former labs and offices were demolished by 2002. Most remaining buildings were demolished in 2021. Building 402 and a water supply tank are the only remaining structures.

Previous investigations have been completed in this area⁴⁶. A preliminary assessment and site investigation was completed in 2000 (SECOR 2000). In 2001, GP submitted a Preliminary Site Assessment Report and Site Investigation Report to Ecology (SECOR 2001). These activities were followed by a supplemental soil investigation in 2002 (Georgia-Pacific LLC 2002), a Phase II Environmental Site Assessment (ESA) in 2016 (BergerABAM 2016b), and a groundwater monitoring event in 2021. A data package summarizing environmental data collected at the CBC was submitted to Ecology via email on 12 July 2021 (GRES 2021).

During the course of investigation, soil samples were analyzed for Total Petroleum Hydrocarbon - Hydrocarbon Identification (TPH-HCID), Resource Conservation and Recovery Act (RCRA) metals, PCBs, VOCs (including tentatively identified compounds [TIC]), and SVOCs (including TIC); groundwater samples were analyzed for TPH-HCID, RCRA metals, PCBs, and VOCs. Soil analytical results were generally below MTCA cleanup levels with the exception of one surface soil sample (lead at 345 mg/kg in sample LS-147) and three boring soil samples (tetrachloroethylene [PCE] at 2.95 mg/kg at GP9 at 12 ft bgs, PCE at 0.25 mg/kg at GP10 at 21.5 ft bgs, and methylene chloride at 0.75 mg/kg at GP17 at 6 ft bgs). Other soil samples collected in the vicinity were below MTCA cleanup levels for PCE and methylene chloride. Additionally, GP9 and GP10 are in the vicinity/upgradient of MW-1 and the other existing monitoring wells. Groundwater analytical results were generally below MTCA cleanup levels; in the most recent event in March 2021, results were below MTCA cleanup levels except trichloroethylene (TCE), which exceeded the MTCA cleanup level [5 micrograms per liter (µg/L)] at MW-3 (8.2 µg/L). Methylene chloride was not detected in groundwater. Questions regarding previous sampling results were addressed in the RTC Letter (GRES 2023). Collectively, findings from previous investigations suggest that outstanding data gaps are limited to lead in soil in the vicinity of LS-1, and TCE in groundwater. PFAS will be included in groundwater monitoring proposed at existing monitoring wells.

 ⁴⁶ At one point in time, the Fort James Specialty Chemicals area was in Ecology's Voluntary Cleanup Program (VCP; Ecology assigned Facility Site ID No. 78452582 and Cleanup Site ID No. 2961).
⁴⁷ As reported in the 2016 Phase I ESA (BergerABAMa), the reservoir near building 402 and previous soil samples LS-1 and LS-2 was a water supply reservoir supplied by Lacamas Lake (the facility reportedly also had a permit to pump water from the Columbia River if insufficient supply was available from Lacamas Lake). The water from the reservoir was treated by sodium hypochlorite, sent through filtration tanks at Building 401, and conveyed to the mill for use. Building 402 was a Reservoir Chemical Storage building (previously used to store sodium hypochlorite and chlorine dioxide for raw water treatment). The exterior paint on the building may have been lead-based paint, and therefore soil samples were collected near the building to address this data gap. The settling basin received raw lake and/or river water; it did not receive process wastewater.

The COPCs for the CBC Area include PCE, TCE, 1,1,1-trichloroethane, 1,1-dichloroethene, cis-1,2-DCE in groundwater and lead in soil (in the vicinity of LS-1). Groundwater samples will also be screened for dimethyl sulfoxide (DMSO) and PFAS. Five monitoring wells exist at CBC. The monitoring wells are not currently in an ongoing monitoring program, but groundwater samples were collected most recently in March 2021. Monitoring wells at CBC are expected to represent groundwater conditions upgradient of the MMA.

Initial Data Gaps in Accessible Areas:

- Concentrations of TCE, PCE, PCBs, 1,1,1-trichloroethane, 1,1-dichloroethene, cis-1,2-DCE, and metals in groundwater
- Presence of PFAS and DMSO in groundwater at existing monitoring wells
- Presence of lead in shallow soil in the vicinity of LS-1.

Image 12. Aerial Imagery from 1985 showing the CBC, environmental center, Specialty Chemicals, and Non-Wovens Plant

3.5.6.2 OA-F2: No. 7 Substation

The No. 7 Substation is on the western side of the CBC. According to SPCC equipment inventory records, a former electrical substation existed south of Building 201 but was taken out of service in 2004.

Equipment at this former substation has been taken out of service and removed. Former equipment included three liquid filled non-PCB transformer units (<50 ppm PCB). There are no known spills or previous investigations in this area.

COPCs include petroleum hydrocarbons, metals, and PCBs. This substation is inactive and may be accessible for soil sampling, pending confirmation of subsurface utilities.

Initial Data Gaps in Accessible Areas:

• Presence of petroleum hydrocarbons, metals, and PCBs in shallow soil.

Section 4: Preliminary Conceptual Site Model

A CSM describes the relationship between COPC sources and receptors through potential or actual migration and exposure pathways. The preliminary CSM described in this section is expected to undergo refinement as information and data are obtained during the RI process.

Regional and local information about the Site setting coupled with historical and current Siterelated information (Section 3) provides bases to assemble a preliminary CSM. This information supports development of the preliminary CSM based on:

- Identification of COPC sources and release mechanisms based on review of Site historical and current operations and documentation of spills and releases (Section 3)
- Potential pathways for COPC migration within environmental media (e.g., groundwater flow) or transfer between environmental media (e.g., COPC leaching from soil to groundwater or groundwater discharge to surface water)
- Exposure pathways that may link a COPC and migration pathway to a potential receptor.

Summarily, development of a preliminary CSM facilitates identification of data gaps and/or uncertainties that RI activities will address over time to achieve the objectives listed in Section 1.1.

Previous environmental investigation and monitoring at the Site occurred:

- As part of Site operational permits (e.g., NPDES Waste Discharge Permit)
- In response to spills or discharges related to mill operations (in accordance with the Sitespecific SPCC plan)
- Area-specific environmental investigations (e.g., CBC⁴⁸).

These efforts provide operational, incident, and/or area-specific data about COPC sources and releases. Following cessation of certain mill operations and entering into the AO with Ecology, the focus of the RI will build on existing data/information and understanding of Site operations (described in Section 3) to describe the following in accessible portions of the Site:

- Potential sources of COPCs, including spatial and chronological evaluation based on Site operations
- Potentially affected environmental media

⁴⁸ As described in Section 3.5.6, previous investigation has been completed in the CBC area under Ecology's Voluntary Cleanup Program.

- Potential migration pathways and fate and transport mechanisms
- Potential receptors and exposure pathways.

The preliminary CSM is described in the following sections and shown on Figure 24. The CSM is preliminary and presented in tabular format using information available at this time. Throughout the RI process, GP will follow an adaptive management process (see Section 1.1) to revisit and refine the CSM. The adaptive management process will incorporate data and information gathered during the RI phases and incorporate existing Site data/information (e.g., permit-required monitoring) to adjust and target subsequent decisions based on observations, prior experience, and actual measurable change.

4.1 **Constituents of Potential Concern**

COPC sources relate to historical mill operations, as well as construction, renovation, and demolition over the mill's 140-year history. Historical and current chemical usage in each OA as well as known spills were described in Section 3. Isolated subsurface investigations have been performed in response to spills and leaks. Based on the understanding of historical and current chemical usage and known spills/releases at the site, COPCs have been identified for each OA. OAs and COPCs are presented in Table 2.

Review of Site information identifies two groups of COPCs:

- OA-specific COPCs these COPCs are expected to be localized to mill OAs and operational features where COPCs were used, handled, and stored or where specific documented spills or releases occurred. For example, in the Main Mill Area – North (SOU-B), spills of black liquor occurred during pulping operations in OA-B-1. COPCs related to black liquor include sulfur and sodium from salts used in the pulping operation.
- Site-wide COPCs these COPCs relate to more general mill operations, typical heavy industrial processes, and support functions. For example, Site-wide mill operations involve use of petroleum hydrocarbons as an energy source to power mill operations and as a lubricant or hydraulic fluid to operate and maintain machinery.

Based on understanding of historical and current chemical usage and known spills/releases at the site, OA-specific COPCs include VOCs, SVOCs, dioxins/furans, sulfur, PCBs, and PFAS. Site-wide COPCs include petroleum hydrocarbons⁴⁹ and metals⁵⁰.

Cleanup levels for Site COPCs have not been established at this time. MTCA cleanup standards and other ARARs will be evaluated in consultation with Ecology as the CSM is refined through implementation of the RI. Screening levels will be used to evaluate COPC data based

 ⁴⁹ Where petroleum hydrocarbons are identified as a COPC, samples will be analyzed by NWTPH-Gx and NWTPH-Dx per Ecology guidance (WAC 173-340-900). Additional analytes may be included based on the type of petroleum hydrocarbons expected to be present in the area based on operations and incident records (see Section 3.5; Table 830-1 of WAC 173-340-900).
⁵⁰ Helper etherwise apacified, metala includes the following analytical Automation.

⁵⁰ Unless otherwise specified, metals includes the following analytes: Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Nickel, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, and Mercury.

on potential receptors and exposure pathways, MTCA requirements, and Ecology's Cleanup Levels and Risk Calculation (CLARC) tool. For most sites and constituents, MTCA Method B provides the screening criteria protective of unrestricted land use; however, as presented in the Guidance for Remediation of Petroleum Contaminated Sites (Ecology 2016), MTCA Method A provides this information for petroleum hydrocarbons. For the purpose of this RI WP, screening levels consist of the following:

- Soil: MTCA Method B (WAC 173-340-740)⁵¹ provides the bases for developing screening levels for unrestricted or restricted land use. Based on City of Camas zoning, the Site meets the definition of an industrial property. However, at this time, Ecology has not made a determination regarding land use, so analytical results for soil samples analyzed during the RI will consider screening levels based on restricted and unrestricted land use. To this end, MTCA Method B specifies that soil cleanup levels shall be at least as stringent as:
 - o Concentrations established under applicable state and federal laws (ARARs);
 - Concentrations that result in no significant adverse effects on the protection and propagation of terrestrial ecological receptors established using the procedures specified in WAC 173-340-7490 through 173-340-7494 unless it is demonstrated under those sections that establishing a soil (COPC) concentration is unnecessary; and
 - For COPCs for which sufficiently protective, health-based criteria or standards have not been established under applicable state and federal laws, those concentrations that protect human health as determined by evaluating the following exposure pathways:
 - Groundwater protection (as a drinking water and transport medium to surface water)
 - Soil direct contact
 - Soil vapors.
- Groundwater: MTCA Method B (WAC 173-340-720) ⁵² provides the bases for developing screening levels for groundwater. Generally, MTCA Method B requires that groundwater cleanup levels equate to (COPC) concentrations protective of drinking water beneficial uses, unless groundwater qualifies as non-potable. Groundwater underlying the Site is not used as drinking water. However, for the purpose of the RI, analytical results for groundwater samples will consider screening levels based on MTCA Method B. To this end, MTCA Method B specifies that groundwater cleanup levels shall be at least as stringent as:

 ⁵¹ MTCA Method A (WAC 173-340-900) provides screening levels for unrestricted and industrial land use for petroleum hydrocarbons. Method B may be used but requires a site-specific calculation.
⁵² MTCA Method A (WAC 173-340-900) provides standard groundwater cleanup levels for petroleum

hydrocarbons. Method B may be used but requires a site-specific calculation.

- o Concentrations established under applicable state and federal laws (ARARs);
- Concentrations protective of surface water beneficial uses unless COPC are unlikely to reach surface water; and
- For COPCs for which sufficiently protective, health-based criteria or standards have not been established under applicable state and federal laws, those concentrations that protect human health as determined by MTCA Equations 720-1 and 720-2.

4.2 **Release Mechanisms and Potential Migration Pathways**

Release mechanisms describe the means by which a COPC is released from a source to the environment. Potential migration pathways describe the means for COPC movement within an environmental medium or transfer between environmental media. Potential migration pathways are influenced by COPC physical and chemical properties (e.g., water solubility, vapor pressure) that affect mobility and distribution, characteristics of environmental media (e.g., soil type, depth to water), and Site-specific transport mechanisms (e.g., groundwater flow direction).

Proposed field activities (discussed in Section 5) will improve current understanding of COPC presence and distribution in soil and groundwater related to releases and potential migration to other environmental media (e.g., surface water, vapor). A summary of release mechanisms and migration pathways based on existing data and current operations is presented below:

- Release Mechanisms noted on the AO include:
 - Site Operations Areas of the Mill where there is potential for COPC release due to historical operations were described in Section 3 and represent a focus of RI activities in accessible areas. It is critical to understand nature and extent of COPCs in soil and groundwater in upland areas with historical and current Site operations; this understanding will allow for an informed evaluation of the potential for COPC migration or transfer to other media.
 - Spills, dumping, leaks, housekeeping, and management practices GP complies with applicable local, state, and federal requirements, including an SPCC Plan. Spills and materials management have been reviewed and will guide RI activities. As described in Section 3, historical direct discharges have been reported to regulatory agencies, investigated, and mitigated through corrective action. Additionally, leaks or releases from existing (including existing but abandoned) pipe crossings for industrial/process waters (acid sewer and process sewer) from the Main Mill Area to Lady Island across the Camas Slough are a potential release mechanism.
 - Direct Discharges Direct discharges relate to wastewater management and monitoring programs (e.g., the NPDES permit). Some historical wastewater discharges may pre-date operation of the WWTP, but discharges are now managed with current monitoring as part of the site's NPDES Waste Discharge Permit No. WA0000256 and in accordance with the site's SPCC Plan (Georgia-Pacific 2019). Further, site stormwater is collected and conveyed to the WWTP on Lady Island; therefore, if spills were to reach the site storm system prior to being controlled, they are connected to the process sewer and managed by the WWTP and are not

expected to directly discharge to the environment. Therefore, current and more recent direct discharge of COPCs to surface water or sediment is not anticipated to be a complete migration pathway. In-water areas will be evaluated separately (see Section 1.5).

- Stormwater discharges As described in Section 3.4 and in the direct discharges summary above, stormwater is currently regulated by NPDES Waste Discharge Permit No. WA0000256. As described in the facility's Storm Water Monitoring Plan for the Camas Mill (Georgia-Pacific Consumer Operations LLC 2017c), stormwater is collected and conveyed to the WWTP. Stormwater samples have previously been collected to comply with the NPDES permit; industrial stormwater is captured and treated by the WWTP, and therefore stormwater samples are not currently collected routinely. However, the mill completes annual surveys to monitor for stormwater discharges not captured by the existing conveyance system. Recent stormwater discharges are not anticipated to be a complete migration pathway. Available information regarding historical stormwater discharges will be considered (see Figure 24).
- Migration pathways noted in the AO include:
 - Groundwater Discharges and Seeps Historical spills or releases of COPCs have the potential to reach groundwater. This medium and migration pathway will be evaluated as part of RI activities. In this initial RI WP (Section 5) monitoring wells will be installed for collection and analysis of groundwater samples and evaluation of groundwater flow direction. Characterization of groundwater will also inform and evaluating the groundwater/surface water interaction and potential groundwater seeps (discussed in Section 5).
 - Overland flow Site operations are conducted under an SPCC Plan and Site stormwater is collected for conveyance and treatment at the WWTP. Overland flow is collected in storm drains and conveyed to the WWTP. Therefore, overland flow is not anticipated to be a complete migration pathway.
 - Soil erosion The Mill is primarily paved, and the banks of the Columbia River are protected with rip rap to reduce the potential for erosion. Soil erosion is not anticipated to be a complete migration pathway.

4.3 **Potential Exposure Pathways**

As noted in Section 1.1.2, the distinction between soluble and insoluble COPCs was not considered for proposing the scope of work for this initial stage of the RI (presented in Section 5). However, it is noted that this distinction will be relevant for the CSM and may influence future RI activities. For the purposes of this RI, "soluble" COPCs will be defined as constituents that are both capable of being dissolved in water and are more likely to be found in a dissolved state. Soluble COPCs include petroleum hydrocarbons, VOCs, SVOCs, and PFAS. "Insoluble" COPCs will be defined as constituents that are less likely or do not dissolve in water and are less likely to be found in a dissolved state, and are therefore more likely to be associated with solids. Insoluble COPCs include PCBs, dioxins/furans and heavy metals.

A complete exposure pathway consists of four fundamental components: 1) a source and mechanism of COPC release; 2) an affected environmental medium and probable migration process; 3) an exposure point; and 4) an exposure route by which humans and/or ecological receptors could come into contact with a COPC (ASTM 2003, EPA 2004). If one or more of these components is missing, then the exposure pathway is considered incomplete.

Potential exposure routes include: ingestion, direct contact, and inhalation from potential COPC sources such as surface soil, subsurface soil, and groundwater; and potential uptake by ecological receptors. Potential human receptors include maintenance/utility/trench workers, construction workers, and commercial/industrial workers. Potential ecological receptors include the benthic community, plants, soil invertebrates, birds, and mammals.

The primary exposure pathways for COPCs at the Site include:

- Potential ingestion and direct contact with COPCs by site workers performing subsurface activities where COPCs may be present in soils or groundwater.
- Potential migration (via volatilization) and inhalation of airborne vapors.
- Potential migration and discharge of COPCs to the Camas Slough or Columbia River, uptake by aquatic organisms and consumption of aquatic organisms by humans.

These potential exposure pathways are evaluated by media below, including consideration of current land use, zoning, site operations, and existing permits that regulate discharges from the Mill.

- Surface and subsurface soil: The Mill is primarily paved or consists of structures that limit potential exposure to surface or subsurface soils. Intrusive work related to mill operations that may result in worker exposure are controlled through facility health and safety policies and procedures. In accordance with Ecology's Terrestrial Ecological Evaluations under the Model Toxics Control Act (Ecology 2017), which describes the Terrestrial Ecological Evaluation (TEE) process, this site may qualify for an exclusion based on incomplete exposure pathways between ecological receptors and soil, and therefore, ecological risks are not required to be evaluated. Buildings, pavement, and other physical barriers cover much of the site, particularly in areas with more intensive site operations and chemical use. As stated in Section 3.3, the Mill is zoned for heavy industrial land use (as identified by the City of Camas) and is currently used for heavy industrial operations, and therefore minimal ecological receptors are expected to be present for site surface and subsurface soils. Current demolition plans do not include removal of foundations, paved areas, or subsurface features. As such, there is limited potential human or ecological exposure to COPCs in surface and subsurface soil.
- <u>Groundwater</u>: Groundwater underlying the Site is not currently used as drinking water supply. There are no current or future plans to use Site groundwater for drinking water. Areas surrounding the Site are served by municipal water supplies (City of Camas 2019). Therefore, an exposure point for groundwater underlying the site does not currently exist and the exposure pathway is currently incomplete.

- <u>Air</u>: Mill operations are commercial/industrial in nature. The potential for indoor air exposure and/or potential for inhalation of airborne vapors (e.g., during maintenance or construction work) potentially exists.
- <u>Surface Water and Sediment</u>: As described in previous sections, overland flow, stormwater, and facility wastewater are collected and conveyed to the WWTP. The WWTP discharges to the Columbia River under NPDES Waste Discharge Permit No. WA0000256. Potential COPC migration to surface water and/or sediment may occur via surface runoff or infiltration (i.e., groundwater/surface water interaction) and will be a focus of RI activities. Surface water and sediment will be addressed separately (see Section 1.5).

4.4 Initial Data Gaps

Initial data gaps were presented for each operational feature in Section 3.5. These initial data gaps should be addressed prior to other data gaps that may exist at the Site to refine the preliminary CSM and improve understanding of potential migration pathways and exposure pathways. As described in Section 1.1.2, initial RI activities (proposed in Section 5) are focused on media in accessible upland areas (e.g., soil and groundwater) and refining an understanding of potential migration pathways from upland areas to other media (e.g., sediment) and receptors (e.g., Camas Slough). In-water areas will be addressed separately (see Section 1.5). This approach will allow for the investigation to build on available data in a step-wise manner, make decisions based on understanding of site conditions, and follow adaptive management principles.

Section 5: Remedial Investigation Activities

COPCs have been identified based on an extensive review of available records, including historical operations, utility maps, spill response reports, and site investigations (Section 3). Data gaps exist with respect to presence and migration of COPCs. As stated in Section 1.1 and Section 3.5, the initial data gaps⁵³ focus on areas currently accessible for RI activities. In some areas of the Site, the density of structures and below-ground features (e.g., basements, live utilities) render areas inaccessible for RI activities at this time⁵⁴. In other areas, ongoing operations render areas inaccessible for RI activities at this time; where the mill continues to operate, operations encumber safe access amidst materials movement, active machinery producing product, and above- and underground active utilities that energize, fuel, and enable ongoing production, amongst others. For this reason, this Draft RI WP for Upland Areas proposes an initial scope of work focused on screening COPCs in soil and groundwater as an initial step of the RI (see Section 1.1). As stated in the RTC letter (GRES 2023), if changes in operations and/or demolition activities allow for safe access in the future, RI activities will be proposed where data gaps exist.

Initial data gaps are presented in Section 3.5 and Table 4. Table 4 also indicates which operational features are currently accessible for RI activities. There is limited information available regarding site geology and hydrogeology, which is important to understand fate and transport mechanisms. As stated in Section 1.1.2 and Section 3.5, groundwater characterization of COPCs is prioritized to understand potential COPC transport from upland areas to the Camas Slough, and therefore initial data gaps prioritize COPCs in groundwater. Initial data gaps also include COPCs in soil, with an initial priority on screening soil through targeted and opportunistic (i.e., during monitoring well installation) soil sampling.

To resolve these data gaps, the following RI field activities are proposed:

- Installation of Monitoring Wells (including soil sampling during installation activities)
- Quarterly groundwater monitoring for four consecutive guarters ٠
- Focused shallow/surface soil sampling to target insoluble COPCs (e.g., PCBs, metals, and dioxins/furans)
- Non-invasive investigation to determine extent of buried materials in OA-C2. •

Proposed field activities are described in the following sections. Proposed sampling locations are shown on Figures 25 through 27 and proposed sample analyses are summarized in Tables 6 and 7 and in the SAP/QAPP (Appendix A). SOGs for the field activities that will be performed during this RI are provided in the SAP/QAPP. As stated in the RTC Letter (GRES 2022), the list of analytes proposed for each proposed sampling location was expanded for this initial stage of the RI in response to Ecology comments (Ecology 2022). This first round of groundwater monitoring (including four quarterly monitoring events) and soil sampling is considered to be a screening event, rather than establishing a long-term monitoring program.

⁵³ In-water areas will be addressed separately. See Section 1.5.

⁵⁴ RI activities are not proposed within existing building footprints.

Therefore, if a COPC is either non-detect or detected at a concentration below the relevant MTCA cleanup level, monitoring for that parameter at that location will be considered complete.

As described in Section 3, the Facility was organized into SOUs to facilitate discussion, and SOUs are further defined by operational areas and operational features. Groundwater flow direction in upland areas is presumed to be in the direction of the Camas Slough⁵⁵, and therefore SOUs may be connected through groundwater. Some field activities, such as groundwater monitoring, are expected to provide useful information for the assessment of more than one SOU.

5.1 **Pre-Field Activities**

Invasive activities will be required to complete the scope of work outlined in this Work Plan. Prior to invasive activities, a utility survey will be performed to evaluate the potential for underground utilities at each proposed well location. The utility survey will augment information provided by GP regarding potential underground utilities. The utility location procedures will include:

- Coordination with the Washington Utility Notification Center (as needed; public property only).
- Coordination with GP regarding utilities at proposed sampling locations.
- Coordination with a private utility locator to identify possible underground lines on private property. The private utility locate may be paired with Time Domain Electromagnetic Induction (TDEM) and Ground Penetrating Radar (GPR; see Section 5.2).
- Use of an air-knife or similar tool (where appropriate) to assess possible underground utilities.

When necessary, proposed boring/well locations will be adjusted in the field to accommodate possible underground or overhead utilities. A site HASP that documents the specific procedures to be used to protect the health and safety of Kennedy/Jenks Consultants personnel during the site investigation is presented in the SAP/QAPP.

5.2 Non-Invasive Exploration

There is anticipated to be an extensive network of buried utilities and potentially other buried features at the mill. Non-invasive exploration methods are proposed paired with the private utility locate for enhanced understanding of subsurface features. Two additional non-invasive explorations are proposed beyond the private utility locate:

• Buried materials are suspected to be present in the Mill Modernization Debris Area and Buried Material Area, located in SOU-C. Non-invasive exploration methods are proposed

⁵⁵ Groundwater flow direction at Lady Island is presumed to be in the direction of the Columbia River in some areas and in the direction of the Camas Slough in other areas.

in these areas to better identify the nature and extent of suspect debris buried in the Operational Features prior to developing a plan for subsurface exploration.

• Non-invasive exploration methods are proposed to locate the existing pipeline from the Primary Clarifier to the South ASB on Lady Island to support soil sampling of the former wastewater ditches.

Geophysical surveys will be completed within accessible areas to help identify potential subsurface anomalies. Surveys will be completed in a grid pattern using a combination of TDEM and GPR. Selection of survey method will be based on site specific conditions, such as proximity of metallic objects including buildings, fences, and vehicles, as well as accessibility due to current Mill operations.

5.3 Shallow Monitoring Wells

The purpose of each proposed well location is presented in Table 5. Proposed well locations are shown on Figure 25.

5.3.1 Installation and Soil Sampling

GP proposes installation of 37 monitoring wells to augment current understanding of site geology and hydrogeology and to evaluate potential presence of COPCs. Proposed monitoring well locations are presented on Figure 25; actual locations may change based on site constraints, utility locates, and field observations.

Monitoring wells will be installed using sonic drilling methods to a target depth of approximately 10 feet below the observed shallow groundwater table⁵⁶. Due to potentially difficult drilling conditions in the Camas area (e.g., cobbles and shallow bedrock) sonic drilling was chosen as the preferred method in order to avoid refusal; however, borings will not be advanced into bedrock, and the total depth of borings may be adjusted based on observed field conditions (including penetration resistance). Since the depth to groundwater at the site has not been fully characterized, field observations will be used to screen wells across the shallow water table. Short core runs may be employed if field screening indicates that the heat from the core barrel could limit easy identification of shallow groundwater levels. Monitoring wells will be constructed with 5-foot screens.

At up to six (6) select locations, as shown in Figure 25, borings will be advanced to refusal to estimate the saturated interval at the location. If the saturated interval is greater than 10 feet, a second monitoring well will be constructed with a 5-foot screen at the bottom of the boring to target heavier COPCs [(e.g., dense non-aqueous phase liquid (DNAPL]). These proposed locations were identified to target areas with likely potential sources of product (e.g., near previous discoveries).

Soil samples will be collected from the borings during monitoring well installations. Sonic drilling allows for retrieval of continuous core samples, which will be field screened and logged. Field screening will include screening for VOCs using a photoionization detector (PID), conducting a

⁵⁶ Anticipated depth to groundwater based on previous work at the Site is presented in Section 2.1.4.

field sheen test, and documenting visual characteristics (staining) or olfactory (odor) indicators of impacts.

Soil samples will be collected for laboratory analysis from each boring. Approximately one soil sample per 5 feet will be retained for possible analysis; however, depending on the boring depth and number of soil samples collected, some soil samples retained for analysis may not be analyzed. In general, soil samples prioritized for laboratory analysis will include:

- Soil samples with field indication of impacts
- Soil samples collected near the ground surface (e.g., 0-3 feet) in areas with suspected surface spills
- Soil samples collected at the shallow water table and smear zone, and
- Soil samples collected from the bottom of the boring.

A minimum of two soil samples will be analyzed at each location for the COPCs within the applicable operational area (see Table 7). Soil samples will be collected directly into laboratory-supplied bottles using cleaned equipment or clean disposable gloves.

After reaching the target drilling depth, a 2-inch monitoring well will be installed at each boring location. Wells will be constructed with Schedule 40 PVC, with 10 to 15 feet of 0.010-slot screen and a filter pack constructed with 10/20 silica sand. Drilling and well installation will be conducted by a Washington licensed driller and in accordance with the Minimum Standards for Construction and Maintenance of Wells (WAC 173-160).

Following well installation, monitoring wells will be developed by surging and pumping to remove entrained sediments.

5.3.2 Groundwater Monitoring

At least 1 week following development, water levels in the 37 new monitoring wells will be gauged and groundwater samples will be collected using low-flow sampling methods. Groundwater samples are expected to be collected using either peristaltic or bladder pump, depending on the depth to groundwater. Samples will be analyzed for the COPCs as noted in Table 6⁵⁷. After the initial sampling event, groundwater samples will be collected using the same methods for the following three quarters to complete 1 year (four consecutive quarters) of monitoring.

Groundwater monitoring at existing monitoring wells will continue in accordance with applicable permit requirements (e.g., the LILF monitoring wells). However, additional analyses may be added to existing monitoring wells (Table 6). Groundwater monitoring at the existing CBC monitoring wells will be completed with groundwater monitoring at the proposed new monitoring

⁵⁷ Unless specified otherwise, groundwater samples to be analyzed for metals will be field filtered and analyzed for dissolved metals.

wells. Groundwater monitoring at the Lady Island monitoring wells will continue on its existing schedule.

Due to the site's proximity to the Columbia River, site groundwater may be influenced by the river. Water level measurements from monitoring wells will be compared to the Columbia River stage to monitor for impacts, if any. The following river stations will be used:

- United States Geological Survey (USGS) Station 14144700 at Vancouver⁵⁸, which is approximately 13 miles downstream of the site
- USGS Station 14128870 at Bonneville Dam⁵⁹, which is approximately 24 miles upstream of the site.

5.4 Additional Soil Sampling

In addition to soil sample collection during monitoring well installation activities, soil sampling is proposed to target insoluble COPCs. Specifically, additional soil sampling is proposed to address initial data gaps identified related to PCBs and dioxin; however, additional analytes may also be proposed. Samples will be analyzed for the COPCs as noted in Table 7.

Four types of soil collection methods are proposed: shallow soil samples collected from a depth of 0-1 feet bgs, surface soil samples collected by scraping existing ground surface, test pit samples collected from the bottom of a test pit, and deeper soil samples (within the footprints of the Former Wastewater Ditches). The soil sample depth measurement will start at approximately bare ground for all three cases. If the sample location is heavily vegetated, covered by gravel, or otherwise covered, the material will be cleared locally to allow for sample collection.

5.4.1 Shallow Soil Sampling

Proposed shallow soil sampling is presented on Figures 26 and 27 and in Table 7. Generally, two soil samples will be collected from each of the proposed locations for shallow soil sampling (see Table 7). At the Dredge Spoils Area (OA-D2), 4 samples will be collected from the stockpiles.

Prior to shallow soil sample collection, the proposed sampling area will be observed for visual characteristics (staining) or olfactory (odor) indicators of impacts. Observations will be photodocumented by Kennedy Jenks staff, subject to Mill photography policy. Final sampling locations will be selected based on field observations to target areas with potential impacts. Sampling locations may also be adjusted based on local low spots or other physical features.

Shallow soil samples will be collected using a push-probe, hand auger, or other hand tools, to excavate to a total depth of 0-1 feet bgs, taking care to avoid loose materials surrounding the excavation from falling into the sample hole. Each soil sample will be collected directly into

⁵⁸ https://waterdata.usgs.gov/monitoring-location/14144700/#parameterCode=00065&period=P7D

⁵⁹ <u>https://waterdata.usgs.gov/monitoring-location/14128870/#parameterCode=00065&period=P7D</u>

laboratory-supplied bottles using cleaned equipment or clean disposable gloves. Samples will be analyzed for the COPCs as noted in Table 7.

5.4.2 Surface Soil Sampling

Two surface soil samples are proposed to be collected from each of the Substations No. 1, 2, 5, 6, 8, 9, and 10. See Figures 26 and 27 for approximate sampling locations. Prior to surface soil sample collection, the area surrounding each Substation will be observed for visual characteristics (staining) or olfactory (odor) indicators of impacts. Observations will be photo-documented by Kennedy Jenks staff, subject to Mill photography policy. Final sampling locations will be selected based on field observations to target areas of potential impact.

Some Substations are active due to ongoing operations at the Site, which limits access to these areas. At active substations, only non-invasive activities will be proposed while the substation is active. Samples will not be collected while the substation is active.

Sampling activities will only be completed at inactive substations. Non-intrusive surface soil samples will be collected by hand using scoops, such as pre-cleaned spoons or trowels. Each soil sample will be collected directly into laboratory-supplied bottles using cleaned equipment or clean disposable gloves. Samples will be analyzed for the COPCs as noted in Table 7.

Soil samples will be collected from areas that are not covered by asphalt, concrete, or other permanent barrier that cannot be removed using hand tools. Soil sampling in areas where pavement disturbance is required will be postponed until Substation is accessible for RI activities.

5.4.3 Test Pits

Following non-invasive surveys (see Section 5.2), test pits will be completed to explore select target areas. Proposed test pit locations are presented in Figure 26; actual sampling locations will be identified based on field observations and documented in the field. Test pits will be excavated up to 5 feet deep and 2 feet wide using a small excavator. At each test pit location, one soil sample will be collected from the bottom of the test pit. Additional samples at various depths during excavation may be collected based on field observations. Each soil sample will be collected directly into laboratory supplied bottles using cleaned equipment or clean disposable gloves. Samples will be analyzed for the COPCs as noted in Table 7. Following soil sampling and the visual documentation of soil characteristics in the test pit, excavated materials will be returned to their associated disturbed area.

An accredited hazardous building materials inspector will be present for test pits completed in area with suspected buried materials (e.g., the Buried Material Area).

5.4.4 Soil Sampling in Former Wastewater Ditches

An additional six samples are proposed to be collected from Lady Island, approximately every 500 linear feet (LF) along the Former Wastewater Ditches⁶⁰ (see Figure 27 for approximate

⁶⁰ Initial sampling efforts will use existing features to guide soil sampling efforts.

locations). The Former Wastewater Ditches have been backfilled; aside from a short segment near Outfall 001, there are no visible indicators of the extents of the ditches remaining. Based on historical aerials and field indicators, the existing pipeline may have been installed in the Former Wastewater Ditch between the Primary Clarifier and the South ASB.

Actual sampling locations will be identified based on field observations and documented in the field. Prior to sampling, the location of the pipeline will be identified (see Section 5.2). Sample locations will be selected within the footprints of the former ditches and offset from the location of the pipeline. To the extent feasible, this work will be completed during dry weather conditions to avoid standing water in the Former Wastewater Ditches.

Soil samples will be collected using either a hand auger or (if needed) a direct-push drill rig. At each sample location, the soil core will be observed, and the fill material used to backfill the ditches will be visually characterized. Changes in soil characteristics potentially indicative of the transition from fill material to material originally present at the base of the ditches will be noted. Based on existing site conditions and historical aerial photographs of the Former Wastewater Ditches, ditch bottom material is expected to be encountered at a depth of approximately 5 feet bgs.

Soil samples will be collected from the depth interval from the transition to ditch bottom material to 6 inches below the transition. Additional samples of the fill material above the transition to ditch bottom material may be collected based on field observations. Each soil sample will be collected directly into laboratory supplied bottles using cleaned equipment or clean disposable gloves. Samples will be analyzed for the COPCs noted in Table 7.

5.5 Seep, Sediment, and Stormwater Sampling

In addition to soil and groundwater, the AO includes sampling and analysis of the following media: seeps, surface and subsurface sediments, and stormwater and catch basin solids. As stated in Section 3.4, routine inspection and/or monitoring of seeps, sediment, and stormwater occurs as part of existing monitoring programs. These media will continue to be monitored and the results will be evaluated together with the results from RI field activities in the RI Report.

Seeps have been identified on Lady Island. However, annual seep inspections occur (Section 3.4) and seeps have not been found in the past 3 years of monitoring activities (2017-2020). As described in Section 5.3, groundwater monitoring is proposed; groundwater is typically the source of a seep, and therefore, characterization of groundwater is expected to be sufficient to characterize seeps, if observed.

Sediment samples are collected through the existing waste discharge monitoring program (Section 3.4). Sediment samples were collected near two active outfalls (Outfall 001 and Outfall 002) in September 2017 in compliance with the facility's Waste Discharge Permit (No. WA0000256) and included comparisons to the Sediment Quality Standards in the Sediment Management Standards (SMS; Chapter 173-204 WAC; ESA 2017, 2018). As reported in the Sediment Data Report (ESA 2018), none of the results from Outfall 001 or Outfall 002 exceeded the SMS chemical criteria. At Outfall 001 (Columbia River), dioxin was not detected above the reportable detection limit. At Outfall 002 (Camas Slough), most dioxin compounds were either not detected or detected between the estimated detection limit and the reportable detection limit. Monitoring through the existing monitoring program for the waste discharge permit is

representative of potential impacts from site operations to sediment. Sediment will be addressed separately (see Section 1.5).

As described in Section 3.4, site stormwater is collected and conveyed to the facility's WWTP and is sampled in accordance with the facility's NPDES Permit (Georgia-Pacific Consumer Products 2011, 2017c). Therefore, stormwater and potential solids in facility stormwater is expected to be captured, managed, and monitored by the facility's Waste Discharge Permit, and stormwater will continue to be monitored in accordance with the facility's NPDES Permit.

5.6 Laboratory Analysis

Laboratory analyses will be conducted in accordance with the SAP/QAPP (Appendix A). Soil and groundwater samples will be submitted under chain-of-custody protocol to the laboratory and will be analyzed on a standard turn-around basis. Sample handling, packing, and shipping procedures are presented in the SAP/QAPP.

Analytical methods to be used during sample analyses, including method reporting limits, are presented in the SAP/QAPP. Additional soil sample analyses may be made based on field screening results or initial analytical results to provide further characterization of site conditions.

References

- Arcadis. 2011. Memo from Shannon Dunn and Ryan Shatt, Arcadis, to David Massengill, Georgia-Pacific LLC, RE: Investigation of Weak Black Liquor Release, Georgia-Pacific Consumer Products LLC, Camas Mill, Camas, Washington. 7 June.
- Arcadis. 2011. Data Summary Report Investigation of Weak Black Liquor Release. Prepared for Georgia-Pacific Consumer Products LLC. October.
- Arcadis. 2012. Data Summary Report Investigation of Black Liquor Release from No. 4 Swing Tank. Prepared for Georgia-Pacific Consumer Products LLC. October.
- Arcadis. 2015. Data Summary Report Investigation of Black Liquor Basement Release. Prepared for Georgia-Pacific Consumer Products LLC. January.
- Arcadis. 2016. Summary Report Investigation of Hydrocarbon Release. Prepared for Georgia-Pacific Consumer Products LLC. January.
- BergerABAM. 2016a. Phase I Environmental Site Assessment, Clark County Tax Parcel 82920000, Camas, Washington. Prepared for the City of Camas. April.
- BergerABAM. 2016b. Phase II Environmental Site Assessment, Clark County Tax Parcel 82920000, Camas, Washington. Prepared for the City of Camas. August.
- Bonneville Power Administration (BPA). April 2001. *The Columbia River System Inside Story*. U.S. Bureau of Reclamation.
- Brynelson, Troy and Littman, Adam. November 26, 2017. *As Paper Mill's Presence Fades, Camas Grapples with Identity, Its Future*. The Columbian Newspaper. Accessed online.
- City of Camas. 2013. City of Camas Comprehensive Stormwater Drainage Plan. Prepared by Otak, Inc. April. City of Camas. 2015. Brief History of Camas. http://www.cityofcamas.us/parksfacilities/43-ourcommunity/69-history
- City of Camas. 2016. Camas 2035: A Comprehensive Plan to guide future growth and development for the City of Camas. June. <u>https://www.cityofcamas.us/sites/default/files/fileattachments/community_development/p_age/5971/comprehensive_plan_camas_2035.pdf</u>
- City of Camas. 2021a. Camas Zoning, Ordinance 21-010. Map dated 21 July 2021. Accessed 6 October 2021. <u>https://www.cityofcamas.us/sites/default/files/fileattachments/community_development/p_age/6131/zoning_2021.pdf</u>
- City of Camas. 2021b. Long-Range Planning. Accessed 6 October 2021. https://www.cityofcamas.us/com-dev/page/long-range-planning

City of Camas. 2019. City of Camas Water System Plan Update. October.

City of Vancouver. 2021. Climate and Weather.

https://www.cityofvancouver.us/ourcity/page/climate-and-weather. Accessed 10 December 2021.

- Washington State Department of Ecology (Ecology). 2004. Guidelines for Preparing Quality Assurance Project Plans for Environmental Studies. July. <u>https://apps.ecology.wa.gov/publications/documents/0403030.pdf</u>
- Ecology. 2008. Fact Sheet, Permit No. WA 000025-6. National Pollutant Discharge Elimination System Wastewater Discharge Permit, Georgia Pacific Consumer Products (Camas), LLC, Camas, Washington. 15 February.
- Ecology. 2016. Guidance for Remediation of Petroleum Contaminated Sites, Toxics Cleanup Program, Publication No. 10-09-057. Revised June 2016.
- Ecology. 2017. Terrestrial Ecological Evaluations under the Model Toxics Control Act, Publication No. 19-09-051. February 2017.
- Ecology. 2020a. Fact Sheet for NPDES Permit WA0000256, Georgia Pacific Consumer Products (Camas), LLC. 29 September.
- Ecology. 2020b. National Pollutant Discharge Elimination System, Wastewater Discharge Permit No. WA0000256. Issuance date: 2 November 2015. Second Modification date: 20 November 2020.
- Ecology. 2021a. Website: Model Toxics Control Act. Accessed 15 November 2021. <u>https://ecology.wa.gov/Spills-Cleanup/Contamination-cleanup/Rules-directing-our-cleanup-work/Model-Toxics-Control-Act</u>
- Ecology. 2021b. Letter from Shingo Yamazaki, Ecology, to Matt Tiller, Georgia-Pacific, RE: Request for Deadline Extension – Draft RI Work Plan. 8 December.
- Ecology. 2021c. Sediment Cleanup User's Manual (SCUM), Toxics Cleanup Program, Publication No. 12-09-057. Revised December 2021.
- Ecology. 2022. Letter from Mady Lyon, Ecology, to Sean Thomas Wood, Georgia-Pacific Consumer Operations LLC, RE: Georgia Pacific Camas Draft Remedial Investigation Work Plan Review. November 4.
- Environmental Science Associates (ESA). 2018. Sediment Data Report. Prepared for Georgia-Pacific Consumer Products LLC. February.
- ESA. 2017. Sediment Sampling and Analysis Plan: NPDES Waste Discharge Permit Number WA0000256. Prepared by Environmental Science Associates for Georgia-Pacific Consumer Products (Camas) LLC. Camas, Washington. August 2017.
- Fort James Camas LLC. 1999a. Letter from R. D. McCollister, Fort James, to Mr. Teddy Le, Department of Ecology. Dated 19 January 1999.

Fort James Camas LLC. 1999b. Inert Waste Landfill Post-Closure Report. May.

- Fort James Camas LLC. 2002a. Letter from James A Cadd, Fort James, to Mr. Teddy Le, Department of Ecology. Dated 8 February 2002.
- Fort James Camas LLC. 2002b. Letter from James A Cadd, Fort James, to Mr. Teddy Le, Department of Ecology. Dated 30 May 2002.
- Fort James Camas LLC. 2006. Letter from Michael D. Tompkins, Fort James, to Mr. Teddy Le, Department of Ecology. Dated 7 March 2006.
- Georgia-Pacific, LLC. 2002. Fort James Former Specialty Chemical Facility Supplemental Soil Investigation – Final Report. 6 November.
- Georgia-Pacific Consumer Products (Camas) LLC. 2011. Camas Mill Storm Water Monitoring: Final Report. July.
- Georgia-Pacific Consumer Operations LLC. 2016. Letter from Joe Ertolacci, Georgia-Pacific Consumer Operations LLC, to Ms. Ha Tran, Department of Ecology, RE: Summary Report for Investigation of Hydrocarbon Release. Dated 29 January 2016.
- Georgia-Pacific Consumer Operations LLC. 2017a. Letter from Shawn Wood, Georgia-Pacific Consumer Operations LLC, to Ha Tran, Department of Ecology, RE: Incident Report. Dated 20 February 2017.
- Georgia-Pacific Consumer Operations LLC. 2017b. Letter from Shawn Wood, Georgia-Pacific Consumer Operations LLC, to Ha Tran, Department of Ecology, RE: Update on the Cleanup of the Diesel Release to the Camas Slough. Dated 15 November 2017.
- Georgia-Pacific Consumer Products LLC. 2017c. Storm Water Monitoring Plan for the Camas Mill. May.
- Georgia-Pacific Consumer Operations LLC. 2018a. Letter from Shawn Wood, Georgia-Pacific Consumer Operations LLC, to Ha Tran, Department of Ecology, RE: Administrative Order Docket #115397, Completion of Phase 1 Corrective Actions in Response to Administrative Order Docket #15397. Dated 12 January 2018.
- Georgia-Pacific Consumer Operations LLC. 2018b. Letter from Shawn Wood, Georgia-Pacific Consumer Operations LLC, to Ha Tran, Department of Ecology, RE: Administrative Order Docket #115397, Completion of Phase 2 Corrective Actions in Response to Administrative Order Docket #15397. Dated 16 March 2018.
- Georgia-Pacific Consumer Operations LLC. 2018c. Letter from Shawn Wood, Georgia-Pacific Consumer Operations LLC, to Ha Tran, Department of Ecology, RE: 50% Black Liquor Spill. Dated 27 April 2018.
- Georgia-Pacific Consumer Operations LLC. 2018d. Letter from Shawn Wood, Georgia-Pacific Consumer Operations LLC, to Ha Tran, Department of Ecology, RE: Georgia-Pacific

Consumer Operations LLC, EPCRA Section 304(c) Written Follow-up Report, NRC Incident Report #1210244, ERTS Incident #680842. Dated 24 May 2018.

Georgia-Pacific Consumer Operations LLC. 2021. Letter from Shawn Wood, Georgia-Pacific Consumer Operations LLC, to Danny Phipps, Southwest Clean Air Agency. October 21.

- Georgia-Pacific. 2001. Letter from Julie B. Raming to Mr. Teddy Le, Department of Ecology, RE: Former Specialty Chemicals Facility, Georgia-Pacific Camas Mill, Camas, Washington. 17 October.
- Georgia-Pacific. 2019. Spill Prevention Control and Countermeasure (SPCC) Plan. June.
- Global Remediation & Environmental Services LLC (GRES). 2021. Email from Matt Tiller, GRES, to Shingo Yamazaki, Department of Ecology, RE: Camas Business Center (CBC) Soil and Groundwater Summary. 12 July.
- GRES. 2023. Letter from Matt Tiller, Georgia-Pacific Consumer Operations LLC, to Mady Lyon, Department of Ecology, Draft RI Work Plan – Response to Ecology Comments. 3 February.
- James River Corporation Camas Mill (James River). 1992. Letter from G. Elsbree, James River, to Mr. Teddy Lee, Department of Ecology. 14 September.
- Joner, Cami. March 14, 2010. A Time Line of Georgia-Pacific Corp.'s Central Research Division. The Columbian Newspaper. Accessed online.
- Kennedy/Jenks Consultants (Kennedy Jenks). 2018. Letter from Julia Schwarz, Kennedy Jenks, to Ms. Sunanda Chunder, Georgia-Pacific Consumer Operations LLC, RE: Investigation of Bunker C Release Discovered at Georgia-Pacific Camas Mill. 19 September.
- Kennedy Jenks. 2019. Technical Memorandum from Deonne Knill, Kennedy Jenks, to Georgia-Pacific Consumer Operations LLC, RE: Investigation of Suspected Bunker C Release at Georgia-Pacific Camas Mill. 1 February.
- Kennedy Jenks. 2020. Letter from Deonne Knill, Kennedy Jenks, to Ms. Ha Tran, Department of Ecology, RE: Investigation of Petroleum Release Discovered at Georgia-Pacific Consumer Operations LLC (Camas, Washington). 13 November.
- Kennedy Jenks. 2022. Agency Review Draft Remedial Investigation Workplan. Prepared for Georgia-Pacific Consumer Operations LLC. 3 January.
- Lacamas Magazine. Papermaker History, Part 1: Mill Interpretive Center & The Early Years. <u>https://lacamasmagazine.com/2018/02/papermaker-history-part-1-camas-mill-interpretive-center.html</u>

Lacamas Magazine. Papermaker History, Part 2: 1920s-1950s — Corporate Mergers, Newsprint Stops. <u>https://lacamasmagazine.com/2018/04/papemaker-history.html</u>

- National Council for Air and Stream Improvement, Inc. (NCASI). 2013. NCASI Handbook of Environmental Regulations and Control. Revised April 2013.
- Pacific Groundwater Group (PGWG). June 9, 2003. *Hydrogeologic Evaluation for City of Camas.*
- SECOR International Incorporated (SECOR). 2000. Preliminary Assessment Former Specialty Chemicals, Inc. 26 July.
- SECOR. 2001. 2000 Site Investigation Report Former Fort James Specialty Chemicals. 17 January.
- WDOE. 2021. Agreed Order No. DE 18201. August 12.
- United Stated Department of Agriculture (USDA) Natural Resources Conservation Service (NRC). 2021. Web Soil Survey. Accessed 24 June 2021.
- United States Environmental Protection Agency (USEPA). 1978. Screening Study on Feasibility of Standards of Performance for Two Wood Pulping Processes. EPA-450/3-78-111.

Tables

Table Notes

ASB = aerated stabilization basins BOD = Biochemical oxygen demand BTEX = Benzene, Toluene, Ethylbenzene, and Xylene CBC = Camas Business Center cis-1,2-DCE = cis-1,2-Dichloroethene COD = Chemical oxygen demand COPCs = constituents of potential concern DMSO = dimethyl sulfoxide EPA = U.S. Environmental Protection Agency LILF = Lady Island Landfill MTBE = Methyl tert-butyl ether MTCA = Washington State Model Toxics Control Act NPDES = National Pollutant Discharge Elimination System OA = Operational Area PCBs = polychlorinated biphenyls PCE = tetrachloroethylene PFAS = per- and polyfluoroalkyl substances SOU = Site Operable Unit SVOCs = semi-volatile organic compounds TCE = trichloroethylene TDS = Total dissolved solids TOC = Total organic carbon TPH = total petroleum hydrocarbons

VOCs = volatile organic carbons

Permit / Plan	Monitored Media	Monitoring Locations	Frequency	Monitored Parameters / Activities
			Daily (continuous)	Flow, pH, Temperature
		Outfall 001	3/week	BOD_5 (concentration and mass), TSS (concentration and mass)
			Annual	2,3,7,8-TCDD, 2,3,7,8-TCDF
		Outfall 002	Daily (continuous)	Flow, pH
NPDES Waste Discharge Permit No. WA0000256	Wastewater Effluent	Final offluant	First, Third, and Fifth year of the permit	Cyanide, Total Phenolic Compounds, Primary Pollutants (Total Metals, VOCs, Acid-extractable Compounds, Base-neutral Compounds, Dioxin, Pesticides/PCBs)
			Once in last winter and once in last summer prior to next application for permit renewal	Acute Toxicity Test, Chronic Toxicity Test
	Primary and Secondary Sludge	grab sample from ASB(s)	1/permit cycle	2,3,7,8-TCDD, 2,3,7,8-TCDF
	Paper	at the reel	Daily	Production
	Stormwater	Discharge point east of the River Bank (Fire) Pump House; Discharge point west of the River Bank (Fire) Pump House	Previously, as outlined in Stormwater Monitoring Plan (4/year over two years). Currently, industrial stormwater is captured and treated by the WWTP and stormwater samples are not collected routinely.	When monitored: BOD, COD, color, copper (total), flow, nitrogen, nitrate, nitrite, oil and grease, phosphorus (total), TSS, turbidity, zinc (total). Annual survey to monitor for stormwater discharges not captured by the existing conveyance system.
	Sediment	In vicinity of Outfall 001 and Outfall 002	As outlined in Sediment Sampling a	nd Analysis Plan
	Inspect Outfall 001		In fourth year of permit term	Visual inspection of integrity and continued function of outfall line and diffuser
SPCC Plan	Aboveground tanks (ASTs), totes, containing mechanical equipment	drum storage areas, oil-	Monthly	Visual inspections
(40 CI K 112)	Transformers and oil-filled electrica	al equipment	Quarterly	Visual inspections
Lady Island Landfill - Clark County Public Health Department Permit Number PT 0006096	Groundwater	Five Monitoring Wells (NE 201, E 202, SE 203, SW 107, NW 102)	Quarterly	Groundwater level; Analytes: Ammonia, barium, bicarbonate (as CaCO3), BOD, boron, calcium, COD, chloride, conductivity, iron, manganese, nitrate, pH, potassium, sodium, sulfate, temperature, TDS, TOC

Note:

(a) For a complete description of monitoring and inspection required by existing programs, refer to the permit and associated plans in question.

Operational Area and ID		Operational Feature	Chemicals of Potential Concern (COPCs)
Site Unit A - Woodyard			
		Wood Chip Piles and First Woodmill	TPH, PCBs, metals, PAHs, naphthalene
\\/a a dmill		Dock Warehouse	Metals, TPH
Woodmiii	UA-AT	Second Woodmill	TPH, metals, PAHs, naphthalene
		Former Cat Shop, Electric Shop, and USTs	TPH, VOCs, metals
Site Unit B - North Main Mill			
		Black Liquor Areas	sulfur, sodium, TPH, metals
		Kraft Mill	sulfur, sodium, TPH, metals
		Former Bag Factory	sulfur, sodium, TPH, metals
Pulpipa	OA-B1	Former Sulfite Mill	sulfur, TPH, metals
Fulping		Lime Kiln	Metals, TPH, PAHs, BTEX, naphthalene
		No. 5 Power Boiler	TPH, BTEX, PAHs, naphthalene, PCBs, metals
		No. 6 Substation	TPH, PCBs, metals
		No. 8 Substation	TPH, PCBs, metals
Power House	OA-B2	Power House	TPH, PCBs, metals, PAHs
		Kraft Pulp Bleaching	TPH, dioxins, metals (incl. chromium)
		Sulfite Pulp Bleaching	TPH, metals, dioxins
Bleaching	OA-B3	K5 Bleach plant	TPH, PCBs, metals, dioxins
		K4 Bleach plant	TPH, PCBs, metals (incl. chromium), dioxins
		No. 1 Substation	TPH, PCBs, metals
		Paper Treatment	Diphenyl, TPH, PFAS, metals (incl. copper)
Finishing/Coatings	OA-B4	Machine Shop	TPH, VOCs, PCBs, metals
r mishing/ ooddings	0/(-D-+	Fuel Oil Day Tank	TPH, metals, PAHs, naphthalene, BTEX
		No. 5 Substation	TPH, PCBs, metals
Specialty Minerals	OA-B5	Specialty Minerals	None
Warehouse/ Product Storage - North	OA-B6	Warehouse/ Product Storage - North	None

Operational Area and ID		Operational Feature	Chemicals of Potential Concern (COPCs)					
Site Unit C - South Main Mill								
		Fuel Oil Storage	TPH, metals, PAHs, naphthalene, BTEX					
Einiching/Cootings/Additives	04 01	Additives / Coatings	TPH, PCBs, metals					
Finishing/Coalings/ Additives	UA-C1	Converting	TPH, VOCs, metals					
		No. 9 Substation	TPH, PCBs, metals					
Warehouse/ Draduct Storage	04.02	Buried Material Area	TPH, VOCs (incl. 1,2-dibromoethane, 1,2-dichloroethane), SVOCs ^(c) , PCBs, dioxins, PFAS, metals, BTEX, MTBE, total lead					
Warehouse/ Product Storage	0A-02	Mill Modernization Debris Area	TPH, VOCs, SVOCs ^(c) , PCBs, dioxins, PFAS, and metals					
		No. 2 Substation	TPH, PCBs, metals					
		MERT Storage Building	PFAS, metals, TPH					
		Waste Handling Area and Fueling Station	TPH, VOCs, metals					
	OA-C3	Car Barn / Paint shop	TPH, VOCs, metals					
Operational Support		Former Sulfur Pile	sulfur, TPH, PCBs, metals					
Operational Support	04.04	Riverbank Pump House	TPH, metals, PAHs, naphthalene					
	0A-04	Effluent Pump Station	TPH, dioxin, metals					
	OA-C5	Wooded Area	TPH, metals, VOCs, PCBs					
Site Unit D - Lady Island								
		Active Landfill	No additional COPCs beyond those defined in existing landfill permit					
		Former Wastewater Ditches	TPH, dioxin, metals, PCBs, PFAS					
		North ASB	No additional COPCS beyond those defined in existing NPDES permit					
Lady Island	UA-D1	South ASB	No additional COPCS beyond those defined in existing NPDES permit					
		Primary Clarifier	No additional COPCS beyond those defined in existing NPDES permit					
		No. 10 Substation	TPH, PCBs					
	OA-D2	Dredge Spoils Area	TPH, metals, BTEX, napthalene, PAHs, PCBs					

Operational Area and ID		Operational Feature	Chemicals of Potential Concern (COPCs)				
Site Unit E - Ancillary Area							
	OA-E1	Former Gas Station	TPH, BTEX				
Ancillary Area	OA-E2	Former Laundromat and Dry Cleaner	VOCs				
	OA-E3	Former Service Station	TPH, BTEX				
Site Unit F - CBC							
CBC/ Specialty Chemical/ R&D	OA-F1	CBC Area	PCE, TCE, 1,1,1-trichloroethane, 1,1-dichloroethene, cis-1,2-DCE, lead, PFAS, DMSO				
	OA-F2	No. 7 Substation	TPH, PCBs				

Notes:

(a) COPCs are summarized as follows:

Site-wide COPCs: TPH, metals

Area-specific COPCs: VOCs, SVOCs, dioxins, PCBs, PFAS, sulfur, sodium, diphenyl

COPCs related to wastewater: TPH, dioxin, metals

(b) Unlesss otherwise specified, "metals" includes the following analytes: Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Nickel, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, and Mercury.

(c) PAHs are included in SVOC analysis.

Table 3: Previous Sampling and Clean Up Activities

		S	Sam	pling A	ctivitie	s			
Incident/ Discovery Date	Description	Soil Boring	Test Pit	Sediment Sampling	Groundwater Sampling	Soil Sampling	Cleanup Activities	Site Unit	Operational Area
11/8/1991	Three underground storage tanks were discovered at the former service station at NE 6th Street and NE Adams Street.	х				x	Soils impacted by petroleum hydrocarbons were excavated and bioremediated onsite.	E - Ancillary Area	OA-E1 - Former Service Station
4/15/1994	An underground storage tank was discovered near the No. 4 warehouse.					x	No cleanup activities were performed as samples did not indicate presence of hydrocarbons below tank.	C - South Main Mill	OA-C2 - Warehouse/Product Storage
4/21/2011	Weak black liquor was discovered in soil below filtrate tanks.	x			x	x	Released liquid was pumped and discharged to process sewer. Soil was excavated to depth of 1.5 feet below ground surface. No further excavation was completed to maintain integrity of existing structures.	B - North Mill Main	OA-B1 - Pulping
8/25/2011	Cracks in the floor of the No. 4 Swing Tank were observed which released black liquor in underlying fill material beneath tank.	х			х	X	Several feet of fill material were removed during initial investigation of potential extent of black liquor. Further cleanup activities were not completed based on sampling results.	B - North Mill Main	OA-B1 - Pulping
6/23/2014	A release to soil was observed in the basement of the Kraft Mill Building from a damaged U-drain below a 50 percent liquor tank.	x			x	x	Released liquid was pumped and sent for treatment at Mill's wastewater treatment plant. Soils that may have been affected were excavated and were sent off-site for proper disposal.	B - North Mill Main	OA-B1 - Pulping
9/3/2015	Discovery of petroleum hydrocarbons during sewer trenching activities.	x			x	х	15 cubic yards of soil were removed and disposed of offsite.	A - Woodyard	OA-A1 - Woodmill
2/15/2017	Approximately 50 gallons of diesel fuel was released to the Camas Slough from storage tank at River Bank Pump House.					х	Soil was removed for proper disposal. Corrective actions were completed at the pump house.	C - South Main Mill	OA-C4 - Operational Support
9/14/2017	Sediment grab samples collected near Outfall 001 and Outfall 002 as required by NPDES Waste Discharge Permit (No. WA0000256).			x			None.	C - South Main Mill D - Lady Island	OA-C4 - Operational Support OA-D1 - Lady Island

Table 3: Previous Sampling and Clean Up Activities

		Ę	Samj	oling A	ctivitie	s			
Incident/ Discovery Date	Description	Soil Boring	Test Pit	Sediment Sampling	Groundwater Sampling	Soil Sampling	Cleanup Activities	Site Unit	Operational Area
	Petroleum hydrocarbons were discovered during excavation for repairs of a buried value on the								
	Mill's firewater pipe. Likely source is Fuel Oil Day								
	Tank and was not an active release at the time of						Accessible petroleum-contaminated soils were	B - North Mill	OA-B4 - Finishing /
3/7/2018	discovery.		Х		Х	Х	removed for proper disposal.	Main	Coatings
							Released material was contained on the facility and		
	Approximately 151,000 gallans of black liquer						sent to Mill's wastewater treatment plant for treatment.	P. North Mill	
4/24/2018	were released from the No. 3 Black Liquor Tank						offsite	В - North Mill Main	OA-B1 - Pulping
1/21/2010									
	Petroleum hydrocarbons were discovered during a						Localized petroleum impacted soil and water were	C - South Main	OA-C3 - Operational
9/24/2018	utility pole installation near the fueling station.				Х		removed to the maximum extent practicable.	Mill	Support
							Accessible soils that did not structurally support		
	Petroleum hydrocarbons were discovered during						buildings and which contained visible petroleum	C. Couth Main	04.01
8/26/2020	excavation as part of the Package Boller #0				x	x	offsite disposal	C - South Main	UA-CT - Finishing/Costings
0/20/2020					~	^	uisposai.	IVIIII	T mishing/Coamys
	Site investigations have occurred at the Camas								
	Business Center and Fort James Specialty								
	Chemicals parcel in 2000, 2002, 2016, and 2021.								
	Soil and groundwater samples were collected								
0000 0004	from installed borings and monitoring wells.				v	v	No elegnum potivition have been norfermed to date		
2000-2021	Analytes included TPH, VOUS, PUBS, and metals.	Ň	X		X	X	no cleanup activities have been performed to date.	F - CBC	UA-F1 - CBC Area

Table 4: Summary of Proposed Activities

						Initial Data Gaps						
Operational Area and II	D	Operational Feature	Chemicals of Potential Concern (COPCs)	Accessible for RI Activities ^(e)	Rationale	Hydroge ology / Geology (a)	Presence of COPC(s) in Groundwater	pH of Groundw ater	Presence of COPC(s) in Soil	Visual Inspection	Extent of Buried Materials	Proposed Initial Scope
Site Unit A - Woodvard												
		First Woodmill and Wood Chip Piles	TPH, PCBs, metals, PAHs, naphthalene	Yes ^(b)	This area is expected to be accessible, but activities may need to be scheduled around demolition activities being considered.	х	х		х			MW proposed in area, soil sampling
Woodmill	OA-A1	Dock Warehouse	Metals, TPH	Yes ^(b)	This area is expected to be accessible, but activities may need to be scheduled around demolition activities being considered.			No	one			MWs proposed in nearby Operational Features and upgradient
	0,1,1,1	Second Woodmill	TPH, metals, PAHs, naphthalene	Yes ^(b)	This area is expected to be accessible, but activities may need to be scheduled around demolition activities being considered.	Х	х					MWs proposed in nearby Operational Features, soil sampling
		Shop, and USTs	TPH, VOCs, metals	Yes ^(b)	demolition activities being considered.	Х	Х		Х			MW proposed in area, soil sampling
Site Unit B - North Main Mill												
		Kraft Mill	sulfur, sodium, TPH, metals	No	Dense structures and above/below-grade features in this area currently prevent sampling activities.	Х	х	х				MWs upgradient and downgradient
		Black Liquor Areas	sulfur, sodium, TPH, metals	No	New MW proposed in this area. However, dense structures and above/below-grade features currently limit sampling activities.	Х	х	х	Х			MWs upgradient and downgradient; MW proposed in area, soil sampling
Pulping		Former Bag Factory	sulfur, sodium, TPH, metals	No	Dense structures and above/below grade features in this area prevent sampling activities. However, new MW proposed in existing road south of Former Bag Factory (between Former Bag Factory and Former Sulfite Mill).	х	х	х	х			MWs upgradient and downgradient; MW proposed immediately south of area, soil sampling
	OA-B1	Former Sulfite Mill	sulfur, TPH, metals	No	Dense structures and above/below grade features in this area prevent sampling activities. However, new MW proposed in existing road north of Former Sulfite Mill (between Former Bag Factory and Former Sulfite Mill).	Х	х					MWs upgradient and downgradient; MW proposed immediately north of area, soil sampling
		Lime Kiln	Metals, TPH, PAHs, BTEX, naphthalene	Yes ^(b)	This area is expected to be accessible, but activities may need to be scheduled around demolition activities being considered.	х	х		Х			MWs upgradient and downgradient
		No. 5 Power Boiler	TPH, BTEX, PAHs, naphthalene, PCBs, Metals	No	Dense structures and above/below-grade features currently limit sampling activities.	Х	х	х				MWs upgradient and downgradient
		No. 6 Substation	TPH, PCBs, metals	Yes ^(c)	This substation is active; only non-invasive activities will be proposed while the substation is active.				х	Х		Visual inspection; surface soil sampling if substation is not active
		No. 8 Substation	TPH, PCBs, metals	Yes ^(c)	This substation is active; only non-invasive activities will be proposed while the substation is active.				х	Х		Visual inspection; surface soil sampling if substation is not active
Power House	OA-B2	Power House	TPH, PCBs, metals, PAHs	No	Dense structures and above/below grade features in this area prevent sampling activities. However, new MW proposed in existing road between Former Bag Factory and Former Sulfite Mill, near the Power House, and near the Fuel Oil Day Tank, south of the Power House.	Х	х					MWs upgradient and downgradient
		Kraft Pulp Bleaching	TPH, dioxins, metals (incl. chromium)	No		Х	х					MWs upgradient and downgradient
		Sulfite Pulp Bleaching	TPH, metals, dioxins	No	Dense structures and above/below grade features as well as active operations in this area	Х	Х					MWs upgradient and downgradient
Bleaching	04-B3	K5 Bleach plant	TPH, PCBs, metals, dioxins	No	(Outside Repulper) prevent sampling activities. If demolition activities are completed and/or	Х	х					MWs upgradient and downgradient
Dicaching	04-00	K4 Bleach plant	TPH, PCBs, metals (incl. chromium), dioxins	No		Х	х	х				MWs upgradient and downgradient
		No. 1 Substation	TPH, PCBs, metals	Yes ^(c)	This substation is active; only non-invasive activities will be proposed while the substation is active.				х	Х		Visual inspection; surface soil sampling if substation is not active
		Paper Treatment	Diphenyl, TPH, PFAS, metals (incl. copper)	No	Dense structures and above/below-grade features as well as nearby active operations (Paper Machine 11) currently limit sampling activities. There is an existing roadway to access a potential new MW location between the Paper Treatment and Machine Shop areas; however,	Х	х					MWs upgradient and downgradient; if feasible, MW proposed in the vicinity, soil
Finishing/Coatings	OA-B4	Machine Shop	TPH, VOCs, PCBs, metals	No	actual access is limited by dense overhead utilities.	Х	х					oamping
		Fuel Oil Day Tank	TPH, metals, PAHs, naphthalene, BTEX	Yes	New MW proposed in this area. However, dense structures and above/below-grade features currently limit sampling activities.	Х	х		х			MWs upgradient and downgradient; MW proposed in area, soil sampling
		No. 5 Substation	TPH, PCBs, metals	Yes ^(c)	This substation is active; only non-invasive activities will be proposed while the substation is active.				Х	Х		Visual inspection; surface soil sampling if substation is not active
Specialty Minerals	OA-B5	Specialty Minerals	None	-	-			No	one			
Warehouse/ Product Storage - North	OA-B6	Warehouse/ Product Storage - North	None	-	-			No	one			-

Table 4: Summary of Proposed Activities

								Initial D	ata Gaps			
Operational Area and II	D	Operational Feature	Chemicals of Potential Concern (COPCs)	Accessible for RI Activities ^(e)	Rationale	Hydroge ology / Geology (a)	Presence of COPC(s) in Groundwater	pH of Groundw ater	Presence of COPC(s) in Soil	Visual Inspection	Extent of Buried Materials	Proposed Initial Scope
Site Unit C - South Main Mill												
		Fuel Oil Storage	TPH, metals, PAHs, naphthalene, BTEX	Yes ^(d)	The eastern portion of this area, near and at the No. 20 Paper Machine, is currently inaccessible.	х	х		х			MWs upgradient, near area, in area, and downgradient; soil sampling
Finishing/Coatings/ Additives	OA-C1	Additives / Coatings	TPH, PCBs, metals	No	Dense structures and above/below-grade features as well as active operations currently limit sampling activities in the area. However, a MW is proposed immediately north of this area, and other MWs are proposed farther upgradient as well as downgradient.	х	х		х			MWs upgradient, downgradient, and in area; soil sampling
		Converting	TPH, VOCs, metals	No	Dense structures and above/below-grade features as well as active operations currently limit sampling activities in the area. However, MWs are proposed upgradient and downgradient.	х	x					MWs upgradient and downgradient
		No. 9 Substation	TPH, PCBs, metals	Yes ^(c)	This substation is active; only non-invasive activities will be proposed while the substation is active.				х	Х		Visual inspection; surface soil sampling if substation is not active
		Buried Material Area	TPH, VOCs (incl. 1,2- dibromoethane, 1,2- dichloroethane), SVOCs (incl. PAHs), PCBs, dioxins, PFAS, metals, BTEX, MTBE, total lead	No	Active operations currently limit sampling activities in the area. However, a MW is proposed immediately upgradient and downgradient of the area. Due to suspected presence of buried materials, invasive methods are not proposed until subsurface conditions (including horizontal extent) are better understood.	х	х		×		x	MWs upgradient and downgradient; non- invasive methods within area
Warehouse/ Product Storage	OA-C2	Mill Modernization Debris Area	TPH, VOCs, SVOCs (incl. PAHs), PCBs, dioxins, PFAS, and metals	Yes	This area is accessible for investigation activities. However, due to suspected presence of buried materials, invasive methods (such as MW installation and soil sampling) are not proposed until subsurface conditions (including horizontal extent) are better understood. Demolition activities are planned in this area (South Mill Office) and therefore activities may need to accommodate planned activities.	x	x				x	MWs upgradient and downgradient; non- invasive methods within area
		No. 2 Substation	TPH, PCBs, metals	Yes ^(c)	This substation is active; only non-invasive activities will be proposed while the substation is active.				х	Х		Visual inspection; surface soil sampling if substation is not active
		MERT Storage Building	PFAS, metals, TPH	Yes ^(e)	Active area. Sampling can be completed near and downgradient of the building.	Х	Х	Х	Х			MWs upgradient and downgradient
		Waste Handling Area and Fueling Station	TPH, VOCs, metals	No	Active operations currently limit sampling activities in the area. However, MWs are proposed in the vicinity, including upgradient and downgradient.	х	х					MWs upgradient and downgradient
	OA-C3	Car Barn / Paint shop	TPH, VOCs, metals	No	Active operations currently limit sampling activities in the area. However, MWs are proposed in the vicinity, including upgradient and downgradient.	х	Х					MW upgradient, near area, and downgradient
Operational Support		Former Sulfur Pile	sulfur, TPH, PCBs, metals	Yes	Accessible.	х	х		х			MWs upgradient and downgradient, soil sampling
	OA-C4	Riverbank Pump House	TPH, metals, PAHs, naphthalene	No	The pump house is still in active operation; however, a MW is proposed in the vicinity.	х	х		х			MW in area, soil sampling
		Effluent Pump Station	TPH, dioxin, metals	No	The pump station is still in active operation; however, a MW is proposed in the vicinity.	Х	Х		Х			MW in area, soil sampling
	OA-C5	Wooded Area	TPH, metals, VOCs, PCBs	Yes	Dense vegetation, but expected to be accessible to complete test pits				Х	Х		Test Pits

Table 4: Summary of Proposed Activities

								Initial D	ata Gaps			
Operational Area and ID)	Operational Feature	Chemicals of Potential Concern (COPCs)	Accessible for RI Activities ^(e)	Rationale	Hydroge ology / Geology (a)	Presence of COPC(s) in Groundwater	pH of Groundw ater	Presence of COPC(s) in Soil	Visual Inspection	Extent of Buried Materials	Proposed Initial Scope
Site Unit D - Lady Island												
		Active Landfill	No additional COPCs beyond those defined in existing landfill permit	No	The Lady Island Landfill (LILF) is part of active, ongoing operations of the Mill. Additional analytes are proposed utilizing the existing MWs around the LILF.	Monitorir	ng covered by ex analyte	isting landi s are prop	fill permit monito osed (see Table	oring. Some a e 6).	ndditional	Monitor at existing MWs
		Former Wastewater Ditches	TPH, dioxin, metals, PCBs, PFAS	Yes	Accessible; however, the segment between the existing Primary Clarifier and the South ASB is likely where the existing pipeline was installed. Sampling in this area will be limited to avoid disrupting the active WWTP operations.				х			Shallow soil sampling
Lady Island	OA-D1	North ASB	No additional COPCS beyond those defined in existing NPDES permit	No	The North ASB is part of active WWTP operations and is therefore not part of the RI at this time.	٨	<i>Nonitoring</i> cover	ed by exist	9	-		
		South ASB	No additional COPCS beyond those defined in existing NPDES permit	No	The South ASB is part of active WWTP operations and is therefore not part of the RI at this time.	Λ	Aonitoring cover	ed by exist	ing NPDES peri	mit monitoring	9	-
		Primary Clarifier	No additional COPCS beyond those defined in existing NPDES permit	No	The Primary Clarifier is part of active WWTP operations and is therefore not part of the RI at this time.	٨	<i>Nonitoring</i> cover	ed by exist	ing NPDES peri	mit monitoring	9	-
		No. 10 Substation	TPH, PCBs	Yes ^(c)	This substation is active; only non-invasive activities will be proposed while the substation is active.				х	Х		Visual inspection; surface soil sampling if substation is not active
	OA-D2	Dredge Spoils Area	TPH, metals, BTEX, napthalene, PAHs, PCBs, dioxins, PFAS, VOCs, SVOCs	Yes	This area is accessible for investigation activities.				х			Dredged materials sampling
Site Unit E - Ancillary Area						•						
	OA-E1	Former Service Station	TPH, BTEX	Yes	This area is expected to be accessible for investigation activities. Active operations (H2Fiber Repulper) occur in this area.	х	х		х			MWs upgradient, downgradient, and in area; soil sampling
Ancillary Area	OA-E2	Former Laundromat and Dry Cleaner	VOCs	Yes	This area is expected to be accessible for investigation activities.	х	х		х			MWs upgradient, downgradient, and in area; soil sampling
	OA-E3	Former Gas Station	TPH, BTEX	Yes	This area is expected to be accessible for investigation activities.	х	х		х			MWs upgradient, downgradient, and in area; soil sampling
Site Unit F - CBC						1						
CBC Area	OA-F1	CBC Area	PCE, TCE, 1,1,1- trichloroethane, 1,1- dichloroethene, and cis-1,2-DCE, lead, PFAS, DMSO	Yes	Accessible.		х		х			Exisiting MWs; New MWs downgradient; soil sampling
	OA-F2	No. 7 Substation	TPH, PCBs	Yes	Accessible, substation inactive since 2004.				х	х		Visual inspection; surface soil sampling if substation is not active

Notes:

(a) Hydrogeology / Geology data gaps include depth to groundwater, groundwater flow direction, and geologic conditions.

(b) This area is expected to be accessible, but activities may need to be scheduled around demolition activities being considered.

(c) This substation is active; only non-invasive activities will be proposed while the substation is active.

(d) The eastern portion of this area, near and at the No. 20 Paper Machine, is currently inaccessible.

(e) Sampling locations, including monitoring wells, will not be proposed inside buildings. Sample locations upgradient and downgradient will be used to evaluate areas; if the building is demolished, the former building footprint will be considered for sampling locations if warranted. (f) Unless otherwise specified, metals includes the following analytes: Aluminum, Antimony, Arsenic, Barium, Beryllium, Cadmium, Cobalt, Copper, Iron, Lead, Magnesium, Manganese, Nickel, Selenium, Silver, Sodium, Thallium, Vanadium, Zinc, and Mercury. (g) PAHs are included in SVOC analysis.

Table 5: Proposed New Monitoring Well Location Rationale

			Operational	Potential Upgradient	Potential Downgradient
Monitoring Well	Proposed Location Justification	Site Unit	Area	Area(s)	Area(s)
MW-A1.1	Proposed location is downgradient of mill property and near the Slough. It is downgradient of the Former Cat Shop and Electric Shop, where TPH has been discovered during trenching activities.	A	OA-A1	OA-B1, OA-B6, OA-B5, OA-F1	Camas Slough
MW-A1.2	Downgradient of western portion of Main Mill Area - North and upgradient of Woodmill (OA-A1)	A	OA-A1	OA-B1, OA-B6, OA-B5, OA-F1	OA-A1
MW-A1.3	Proposed location is downgradient of mill property and near the Slough.	А	OA-A1	OA-B1, OA-B6, OA-B5, OA-F1	Camas Slough
MW-A1.4	Proposed location is downgradient of the Second Woodmill and near the Slough.	А	OA-A1	None	Camas Slough
MW-B1.1	Proposed location is upgradient of main mill property and will serve as a background well. It is also downgradient of the CBC area and can be used to monitor downgradient conditions from existing CBC monitoring wells.	В	OA-B1	OA-F1	OA-B2, OA-B4, OA-C3, OA-C1, OA-C4
MW-B1.2	Proposed location is in the Black Liquor Area.	В	OA-B1	OA-F1, OA-B6	OA-C3, OA-C1
MW-B1.3	Proposed location is in the Lime Kiln Area.	В	OA-B1	OA-F1, OA-B5, OA-B6	OA-A1, OA-C3, OA-C1
MW-B1.4	Proposed location is downgradient of the Former Bag Factory and near the K5 Bleach Plant.	В	OA-B1	OA-F1	OA-B1, OA-B2, OA-B4, OA-C1, OA-C3
MW-B1.5	Proposed location is downgradient of the Former Bag Factory and near the Kraft Mill and Power House.	В	OA-B1	OA-F1	OA-B1, OA-B2, OA-B4, OA-C1, OA-C3
MW-B3.1	Proposed location is upgradient of main mill property and will serve as a background well.	В	OA-B3	OA-E1	OA-B3, OA-B4 OA-C1 OA-C4
MW-B3.2	Proposed location is in the vicinity of the Former Sulfite Mill and may be downgradient of the K5 Bleach Plant, K4 Bleach Plant, Sulfite Pulp Bleaching, and Kraft Pulp Bleaching areas.	В	OA-B3	OA-B1, OA-B3, OA-F1, OA-E1	OA-B4, OA-C1, OA-C2, OA-C4
MW-B4.1	Proposed location is downgradient of the fuel oil day tank.	В	OA-B4	OA-B1, OA-B2, OA-B3, OA-B4	OA-C1, OA-C3, OA-C4
MW-B4.2	Proposed location is upgradient of the fuel oil day tank, and downgradient of the Power House and Kraft Mill.	В	OA-B4	OA-B1, OA-B2	OA-C1, OA-C3, OA-C4
MW-B4.3	Proposed location is downgradient of the Bleaching Area.	В	OA-B4	OA-B1, OA-B2, OA-B4	OA-C1, OA-C4
MW-B6.1	Proposed location is upgradient of mill property and will serve as a background well.	В	OA-B6	None (b)	OA-A1, OA-B1, OA-C3, OA-C1
MW-C1.1	Proposed location is downgradient of mill property, including Finishing/Coatings areas, and near the Slough. It is also in the vicinity of the former Fuel Oil tanks. Petroleum and oil have been discovered in this area.	С	OA-C1	OA-B1, OA-B2, OA-B3, OA-B4, OA-C3	Camas Slough
MW-C1.2	Proposed location is near the Finishing/Coatings area. This location may be inaccessible and may need to be moved based on conditions encountered on-site to allow for drill rig access.	С	OA-C1	OA-B1, OA-B2, OA-B3, OA-B4	OA-C1, OA-C4
MW-C1.3	Proposed location is downgradient of the existing Fuel Oil tank and the former Fuel Oil tanks and is near the Slough.	С	OA-C1	OA-B1, OA-B2, OA-B3, OA-B4, OA-C3	Camas Slough

Agency Review Draft Remedial Investigation Work Plan, Georgia-Pacific Consumer Operations LLC \\SFOCAD\Projects\IS-Proj\2018\1865004.18_GP_Camas\09-Reports\RI Work Plan\DRAFT RI Work Plan\03_Revised\Tables\Table05_MWLocationJustification.xlsx

Page 1 of 3

Table 5: Proposed New Monitoring Well Location Rationale

			Operational	Potential Upgradient	Potential Downgradient
Monitoring Well	Proposed Location Justification	Site Unit	Area	Area(s)	Area(s)
MW-C2.1	Proposed location is in the vicinity of the former burner and the buried material discovered during the construction of the Will Sheeter building. Monitoring well is proposed outside of extent of buried materials, and downgradient of buried material areas.	С	OA-C2	OA-B1, OA-B2, OA-B3, OA-B4, OA-C1	Camas Slough
MW-C2.2	Proposed location is downgradient of the area where Mill Modernization Project debris were buried, which contains soils and demolition debris from the old sulfite mill and wooden bag factory. Building materials and paints are from the 1920s and may contain heavy metals. Monitoring well is proposed outside of extent of buried materials.	С	OA-C2	OA-B1, OA-B2, OA-B3, OA-B4, OA-C1	OA-C2, OA-C4
MW-C2.3	Proposed location is downgradient of the area where Mill Modernization Project debris were buried, which contains soils and demolition debris from the old sulfite mill and wooden bag factory. Building materials and paints are from the 1920s and may contain heavy metals. Monitoring well is proposed outside of extent of buried materials.	С	OA-C2	OA-B1, OA-B2, OA-B3, OA-B4, OA-C1	OA-C2, OA-C4
MW-C2.4	Proposed location is downgradient of the City of Camas downtown area and upgradient of the main mill area - south, and will serve as a background well.	С	OA-C2	None (c)	OA-C2, OA-C4
MW-C2.5	Proposed location is upgradient of the area where Mill Modernization Project debris were buried, and downgradient of the MERT Storage building.	С	OA-C2	OA-C2, OA-B4	OA-C2, OA-C4
MW-C3.1	Proposed location is near Dangerous Waste Staging Area and Former Car Barn / Paint Shop. Also downgradient of area with multiple known black liquor releases.	С	OA-C3	OA-B1, OA-B6, OA-B2, OA-B4	OA-C1, OA-C4
MW-C3.2	Proposed location is downgradient of Dangerous Waste Staging Area.	С	OA-C3	OA-B1, OA-B6, OA-B2, OA-B4, OA-C3	Camas Slough
MW-C4.1	Proposed location is downgradient of mill property and near the Slough. It is also in the vicinity of the Riverbank Pump House, where a previous TPH investigation occurred. May be downgradient of the area where Mill Modernization Project debris were buried.	С	OA-C4	OA-B1, OA-B2, OA-B3, OA-B4, OA-C1, OA-C2, OA-E1	Camas Slough
MW-C4.2	Proposed location is downgradient of mill property, including Finishing/Coatings areas, and near the Slough. It is also in the vicinity of the effluent pump station.	С	OA-C4	OA-B1, OA-B2, OA-B3, OA-B4, OA-C1, OA-C2, OA-E1	Camas Slough
MW-C4.3	Proposed location is downgradient of mill property, including Finishing/Coatings areas and Converting Building, and near the Slough.	С	OA-C4	OA-B1, OA-B2, OA-B3, OA-B4, OA-C1, OA-C2, OA-E1	Camas Slough
MW-E1.1	Proposed location is upgradient of the former service station and dry cleaner, and will serve as a background well.	E	OA-E1	None	OA-B1, OA-B3, OA-B4, OA-C1, OA-C2, OA-C4
MW-E1.2	Proposed location is in the vicinity of the former service station.	E	OA-E1	None	OA-B1, OA-B3, OA-B4, OA-C1, OA-C2, OA-C4
MW-E1.3	Proposed location is in the former service station area.	E	OA-E1	None	OA-B1, OA-B3, OA-B4, OA-C1, OA-C2, OA-C4

Agency Review Draft Remedial Investigation Work Plan, Georgia-Pacific Consumer Operations LLC \\SFOCAD\Projects\\IS-Proj\2018\1865004.18_GP_Camas\09-Reports\RI Work Plan\DRAFT RI Work Plan\03_Revised\Table05_MWLocationJustification.xlsx

Table 5: Proposed New Monitoring Well Location Rationale

				Potential	Potential
			Operational	Upgradient	Downgradient
Monitoring Well	Proposed Location Justification	Site Unit	Area	Area(s)	Area(s)
					OA-B1,
					OA-B3,
	Proposed location is in the former dry cleaner area	F		None	OA-B4,
		L	OALZ		OA-C1,
					OA-C2,
				OA-C4	
					OA-B1,
					ОА-В3, ОА-В4
MW-E1.5	Proposed location is in the former dry cleaner area.	Е	OA-E2	None	ОА-B4, ОА-C1
				OA-CZ,	
			OA-E2	None	OA-04 OA-B1.
					OA-B3.
	Proposed location is upgradient of the former service station, former gas station,	_			OA-B4,
MVV-E1.6	and former dry cleaner areas, and will serve as a background well.	E		None	OA-C1,
					OA-C2,
				OA-C4	
			OA-E3		OA-B1,
					OA-B3,
MW-E1.7	Proposed location is in the former gas station area.	Е		None	OA-B4,
					OA-C1,
					OA-C2,
					OA-C4
					OA-B1, OA-B3
					OA-B3, OA-B4
MW-E1.8	Proposed location is in the former gas station area.	E	OA-E3	None	0A-C1
					0A-C2
					OA-C4
					OA-B1,
MW-E1.9					OA-B3,
	Proposed location is downgradient of the former gas station area and former dry	F		None	OA-B4,
	cleaner area.	Ľ	07-20	NOTE	OA-C1,
					OA-C2,
					OA-C4

Notes:

(a) Groundwater flow direction is assumed to be towards the Camas Slough. Groundwater flow direction is a data gap to be resolved through proposed RI field activities.

(b) Depending on final field location and groundwater flow direction, CBC may be upgradient of this location.

(c) Depending on final field location and groundwater flow direction, the Ancillary Area (OA-E1) may be upgradient of this location.

Agency Review Draft Remedial Investigation Work Plan, Georgia-Pacific Consumer Operations LLC \\SFOCAD\Projects\\IS-Proj\2018\1865004.18_GP_Camas\09-Reports\RI Work Plan\DRAFT RI Work Plan\03_Revised\Table05_MWLocationJustification.xlsx

Page 3 of 3

Table 6: Proposed Groundwater Monitoring (a,b)

				Potential		Proposed Sampling Matrix														
Monitoring Well	New or Existing	Site Unit	Operational Area	Upgradient Operational Area	Potential Downgradient Area(s)	Dioxins	PFAS	ТРН	BTEX	Naphtha lene	Metals ^(d, e)	Total Lead	VOCs	SVOCs ^(g)	PCBs	Diphenyl	Sulfur	pH ^(h)	DMSO	LILF Permit Parameters ⁽ⁱ⁾
MW-A1.1	New	A	OA-A1	OA-B1, OA-B6, OA-B5, OA-F1	Camas Slough	x	х	х	x	x	х		x	x	x	x	x	x		
MW-A1.2	New	A	OA-A1	OA-B1, OA-B6, OA-B5, OA-F1	OA-A1	x	х	х	х	х	x		x	x	x	x	x	x		
MW-A1.3	New	А	OA-A1	OA-B1, OA-B6, OA-B5, OA-F1	Camas Slough	x	x	х	x	x	x		x	x	х	x	x	x		
MW-A1.4	New	A	OA-A1	None	Camas Slough	x	x	х	x	x	x		x	x	х	x	x	x		
MW-B1.1	New	в	OA-B1	OA-F1	OA-B2, OA-B4, OA-C3, OA-C1, OA-C4	x	x	х	x	x	x		x	x	x	x	x	x		
MW-B1.2	New	В	OA-B1	OA-F1, OA-B6	OA-C3, OA-C1	x	х	х	x	x	x		x	x	х	x	x	x		
MW-B1.3	New	В	OA-B1	OA-F1, OA-B5, OA-B6	OA-A1, OA-C3, OA-C1	x	x	х	x	x	x		x	x	х	x	x	x		
MW-B1.4	New	В	OA-B1	OA-F1	OA-B1, OA-B2, OA-B4, OA-C1, OA-C3	x	x	х	x	x	x		x	x	x	x	x	x		
MW-B1.5	New	В	OA-B1	OA-F1	OA-B1, OA-B2, OA-B4, OA-C1, OA-C3	x	×	x	x	x	x		x	x	x	x	x	x		
MW-B3.1	New	В	OA-B1	OA-E1	OA-B3, OA-B4 OA-C1 OA-C4	x	x	х	x	x	x		x	x	x	x	x	x		
MW-B3.2	New	В	OA-B3	OA-B1, OA-B3, OA-F1, OA-E1	OA-B4, OA-C1, OA-C2, OA-C4	x	x	х	x	x	x		x	x	х	x	x	x		
MW-B4.1	New	В	OA-B4	OA-B1, OA-B2, OA-B3, OA-B4	OA-C1, OA-C3, OA-C4	x	х	х	x	x	x		x	x	х	x	x	x		
MW-B4.2	New	В	OA-B4	OA-B1, OA-B2	OA-C1, OA-C3, OA-C4	x	х	х	х	х	х		х	x	х	x	x	x		
MW-B4.3	New	В	OA-B4	OA-B1, OA-B2, OA-B4	OA-C1, OA-C4	x	x	х	x	x	x		x	x	x	x	x	x		
MW-B6.1	New	В	OA-B6	None (b)	OA-A1, OA-B1, OA-C3, OA-C1	х	х	х	x	x	x		x	x	х	x	x	х		

Agency Review Draft Remedial Investigation Work Plan, Georgia-Pacific Consumer Operations LLC \\SFOCAD\Projects\IS-Proj\2018\1865004.18_GP_Camas\09-Reports\RI Work Plan\DRAFT RI Work Plan\03_Revised\Tables\Table06_Analytical Methods_GW.xlsx

Table 6: Proposed Groundwater Monitoring (a,b)

				Potential	Proposed Sampling Matrix															
Monitoring Well	New or Existing	Site Unit	Operational Area	Upgradient Operational Area	Potential Downgradient Area(s)	Dioxins	PFAS	ТРН	BTEX	Naphtha lene	Metals ^(d, e)	Total Lead	VOCs	SVOCs ^(g)	PCBs	Diphenyl	Sulfur	pH ^(h)	DMSO	LILF Permit Parameters ⁽ⁱ⁾
MW-C1.1	New	с	OA-C1	OA-B1, OA-B2, OA-B3, OA-B4, OA-C3	Camas Slough	x	x	x	x	x	x		x	x	x	x	x	х		
MW-C1.2	New	С	OA-C1	OA-B1, OA-B2, OA-B3, OA-B4	OA-C1, OA-C4	x	x	x	х	x	x		x	x	x	x	x	х		
MW-C1.3	New	с	OA-C1	OA-B1, OA-B2, OA-B3, OA-B4, OA-C3	Camas Slough	x	x	x	x	x	x		x	x	x	x	x	х		
MW-C2.1	New	с	OA-C2	OA-B1, OA-B2, OA-B3, OA-B4, OA-C1	Camas Slough	x	x	x	x	x	x	x	x	x	x	x	x	х		
MW-C2.2	New	с	OA-C2	OA-B1, OA-B2, OA-B3, OA-B4, OA-C1	OA-C2, OA-C4	x	x	x	x	×	x	x	×	x	x	x	x	х		
MW-C2.3	New	с	OA-C2	OA-B1, OA-B2, OA-B3, OA-B4, OA-C1	OA-C2, OA-C4	x	x	x	x	x	x	x	x	x	x	x	x	x		
MW-C2.4	New	С	OA-C2	None	OA-C2, OA-C4	х	х	х	х	х	х	x	х	х	х	x	x	х		
MW-C2.5	New	С	OA-C2	OA-C2, OA-B4	OA-C2, OA-C4	х	x	х	х	х	х	x	х	х	x	x	x	х		
MW-C3.1	New	С	OA-C3	OA-B1, OA-B6, OA-B2, OA-B4	OA-C1, OA-C4	x	х	х	x	x	x		x	x	x	х	x	Х		
MW-C3.2	New	с	OA-C3	OA-B1, OA-B6, OA-B2, OA-B4, OA-C3	Camas Slough	x	x	x	x	x	x		x	x	x	х	х	х		
MW-C4.1	New	с	OA-C4	OA-B1, OA-B2, OA-B3, OA-B4, OA-C1, OA-C2	Camas Slough	x	x	x	x	x	x	x	x	x	x	x	x	х		
MW-C4.2	New	с	OA-C4	OA-B1, OA-B2, OA-B3, OA-B4, OA-C1, OA-C2	Camas Slough	x	x	x	x	x	x		x	x	x	x	x	x		

Agency Review Draft Remedial Investigation Work Plan, Georgia-Pacific Consumer Operations LLC \\SFOCAD\Projects\IS-Proj\2018\1865004.18_GP_Camas\09-Reports\RI Work Plan\DRAFT RI Work Plan\03_Revised\Tables\Table06_Analytical Methods_GW.xlsx

Table 6: Proposed Groundwater Monitoring (a,b)

				Potential		Proposed Sampling Matrix														
Monitoring Well	New or Existing	Site Unit	Operational Area	Upgradient Operational Area	Potential Downgradient Area(s)	Dioxins	PFAS	ТРН	BTEX	Naphtha lene	Metals ^(d, e)	Total Lead	VOCs	SVOCs ^(g)	PCBs	Diphenyl	Sulfur	pH ^(h)	DMSO	LILF Permit Parameters ⁽ⁱ⁾
MW-C4.3	New	с	OA-C4	OA-B1, OA-B2, OA-B3, OA-B4, OA-C1, OA-C2, OA-E1	Camas Slough	x	x	x	x	x	x		x	x	х	x	x	x		
MW-E1.1	New	E	OA-E1	None	OA-B1, OA-B3, OA-B4, OA-C1, OA-C2, OA-C4		х	х	x	x	x		x	x	х			х		
MW-E1.2	New	E	OA-E1	None	OA-B1, OA-B3, OA-B4, OA-C1, OA-C2, OA-C4		х	х	x	x	x		x	x	x			х		
MW-E1.3	New	E	OA-E1	None	OA-B1, OA-B3, OA-B4, OA-C1, OA-C2, OA-C4		x	x	x	x	x		x	x	х			x		
MW-E1.4	New	E	OA-E2	None	OA-B1, OA-B3, OA-B4, OA-C1, OA-C2, OA-C4		x	x	x	x	x		x	x	x			x		
MW-E1.5	New	E	OA-E2	None	OA-B1, OA-B3, OA-B4, OA-C1, OA-C2, OA-C4		х	х	x	x	x		x	x	x			х		
MW-E1.6	New	E	OA-E2	None	OA-B1, OA-B3, OA-B4, OA-C1, OA-C2, OA-C4		х	х	x	x	x		x	x	х			х		
MW-E1.7	New	E	OA-E3	None	OA-B1, OA-B3, OA-B4, OA-C1, OA-C2, OA-C4		Х	х	x	x	x		x	x	x			Х		
MW-E1.8	New	E	OA-E3	None	OA-B1, OA-B3, OA-B4, OA-C1, OA-C2, OA-C4		х	х	x	х	x		x	x	x			х		

Agency Review Draft Remedial Investigation Work Plan, Georgia-Pacific Consumer Operations LLC \\SFOCAD\Projects\IS-Proj\2018\1865004.18_GP_Camas\09-Reports\RI Work Plan\DRAFT RI Work Plan\03_Revised\Tables\Table06_Analytical Methods_GW.xlsx

Table 6: Proposed Groundwater Monitoring

				Potential								Prop	osed Sar	npling Mat	rix					
Monitoring Well	New or Existing	Site Unit	Operational Area	Upgradient Operational Area	Potential Downgradient Area(s)	Dioxins	PFAS	ТРН	BTEX	Naphtha lene	Metals ^(d, e)	Total Lead (f)	VOCs	SVOCs ^(g)	PCBs	Diphenyl	Sulfur	pH ^(h)	DMSO	LILF Permit Parameters ⁽ⁱ⁾
MW-E1.9	New	E	OA-E3	None	OA-B1, OA-B3, OA-B4, OA-C1, OA-C2, OA-C4		х	х	x	х	x		х	x	Х			х		
Lady Island La	andfill - Existi	ng Monit	toring Wells (S	SOU-D)																
NE 201	Existing	D	OA-D1	None			Х				Х							Х		X
NW 102	Existing	D	OA-D1	None			Х				Х							Х		X
E 202	Existing	D	OA-D1	None	Camas Slough		Х				Х							Х		X
SE 203	Existing	D	OA-D1	None			Х				Х							Х		Х
SW 107	Existing	D	OA-D1	None			Х				Х							Х		Х
Camas Busine	ess Center - E	xisting N	Monitoring We	lls																
MW-1 (CBC)	Existing	F	OA-F1	None			Х						X ^(j)					Х	Х	
MW-2 (CBC)	Existing	F	OA-F1	None			Х						X ^(j)					Х	Х	
MW-3 (CBC)	Existing	F	OA-F1	None	SOU-A, SOU-B,		Х						X ^(j)					Х	Х	
MW-4 (CBC)	Existing	F	OA-F1	None	300-0		Х						X ^(j)					Х	Х	
MW-5 (CBC)	Existing	F	OA-F1	None	1		Х						X ^(j)					Х	Х	

Notes:

X = Groundwater sample collected from this MW will be analyzed for this parameter(s)

(a) Groundwater flow direction is assumed to be towards the Camas Slough. Groundwater flow direction is a data gap to be resolved through proposed RI field activities.

(b) Depending on final field location and groundwater flow direction, CBC may be upgradient of this location.

(c) Initial COPCs include the following: metals, dioxins/furans, PFAS, petroleum hydrocarbons, BTEX, VOCs, SVOCs (including PAHs), naphthalene, PCBs, diphenyl, and sulfur.

(d) Metals include aluminum, antimony, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, nickel, selenium, silver, sodium, thallium, vanadium, and zinc.

(e) Groundwater samples analyzed for metals will be field filtered and analyzed for dissolved metals.

(f) A groundwater sample will be collected and analyzed for total lead. This sample will not be field filtered.

(g) SVOCs include PAHs.

(h) A pH measurement will be collected for all groundwater samples.

(i) LILF permit parameters also includes alkalinity, ammonia, BOD, bicarbonate, carbonate, COD, chloride, conductivity, nitrate, sulfate, TDS, TOC, and dissolved metals. (j) Samples will be analyzed for the following VOCs only: PCE, TCE, 1,1,1-trichloroethane, 1,1-dichloroethene, and cis-1,2-DCE.

Table 7: Proposed Soil Sampling

								Proposed Sampling Matrix											
Site Unit	Operational Area	Operational Feature ^(a)	Rationale	Type of Sample	Monitoring Well	Number of Proposed Samples ^(b)	Dioxins ^(c)	PFAS	TPH ^(e)	BTEX ^(e)	Naphthal ene	Metals ^(f)	VOCs ^(g)	SVOCs	PCBs ^(k)	MTBE	Sulfur ^(h)	рН ⁽ⁱ⁾	Total Organic Carbon
	00.01	Wood Chip Piles and First Woodmill	Two out-of-service hydraulic fluid ASTs and documented lube oil releases. Analyze soil	Shallow	ΝΔ	2	×	Y	Y	×	Y	×	Y	Y	v			×	
			Documented diesel spill. Analyze soil samples for	Shallow		2	~	X					Λ	~					
A	OA-A1	Second Woodmill	TPH.	Shallow	NA	2	Х	Х	X	Х	X	Х	Х	Х	Х			X	
A	OA-A1	Former Cat Shop, Electric Shop, and USTs	Sample during soil boring for MW installation ^(I)	MW Install	MW-A1.1	2	x	Х	x	x	x	x	Х	Х	x			X	X
Α	OA-A1	Wood Chip Piles and First Woodmill	Sample during soil boring for MW installation ^(I)	MW Install	MW-A1.2	2	Х	Х	х	Х	х	х	х	Х	x			Х	Х
A	OA-A1	Wood Chip Piles and First Woodmill	Sample during soil boring for MW installation ^(I)	MW Install	MW-A1.3	2	x	Х	x	x	x	x	х	Х	x			X	
А	OA-A1	Second Woodmill	Sample during soil boring for MW installation ^(I)	MW Install	MW-A1.4	2	х	Х	x	х	x	х	х	х	x			х	
В	OA-B1	Background	Sample during soil boring for MW installation ^(I)	MW Install	MW-B1.1	2	х	Х	х	х	x	х	Х	Х	x	х	x	x	х
В	OA-B1	No. 6 Substation ^(d)	Substation with transformers and/or other OFEE.	Surface	NA	2			x	х		х	х		x			х	
В	OA-B1	No. 8 Substation ^(d)	Substation with transformers and/or other OFEE.	Surface	NA	2			x	x		x	Х		x			X	
В	OA-B1	Black Liquor Area	Sample during soil boring for MW installation ^(I)	MW Install	MW-B1.2	2	х	Х	x	х	x	х	х	х	x		x	х	
В	OA-B1	Lime Kiln	Sample during soil boring for MW installation ^(I)	MW Install	MW-B1.3	2	x	Х	х	x	x	x	х	Х	x		x	X	
В	OA-B1	Former Bag Factory; K5 Bleach Plant	Sample during soil boring for MW installation ^(I)	MW Install	MW-B1.4	2	х	Х	x	x	x	х	х	х	x		x	х	
В	OA-B1	Former Bag Factory	Sample during soil boring for MW installation ^(I)	MW Install	MW-B1.5	2	x	Х	х	x	x	x	Х	Х	x		x	x	
В	OA-B3	No. 1 Substation ^(d)	Substation with transformers and/or other OFEE.	Surface	NA	2			x	х		х	х		x			х	
В	OA-B3	Background	Sample during soil boring for MW installation ^(I)	MW Install	MW-B3.1	2	x	Х	х	x	x	x	х	Х	x	х	x	x	x
В	OA-B3	Former Sulfite Mill	Sample during soil boring for MW installation ^(I)	MW Install	MW-B3.2	2	x	х	x	x	x	x	х	Х	x		x	X	
В	OA-B4	Fuel Oil Day Tank	Sample during soil boring for MW installation ^(I)	MW Install	MW-B4.1	2	х	Х	x	х	х	х	х	х	х		x	x	
В	OA-B4	Fuel Oil Day Tank	Sample during soil boring for MW installation ^(I)	MW Install	MW-B4.2	2	x	Х	x	x	x	x	х	Х	x		x	X	
В	OA-B4	Paper Treatment	Sample during soil boring for MW installation ^(I)	MW Install	MW-B4.3	2	х	Х	x	x	x	х	х	х	x		х	х	
В	OA-B4	No. 5 Substation ^(d)	Substation with transformers and/or other OFEE.	Surface	NA	2			х	х		х	х		x			x	
В	OA-B6	Background	Sample during soil boring for MW installation ^(I)	MW Install	MW-B6.1	2	x	х	х	x	x	х	х	х	x		x	x	х
С	OA-C1	No. 9 Substation ^(d)	Substation with transformers and/or other OFEE.	Surface	NA	2			x	х		х	х		x			x	
C	OA-C1	Fuel Oil Storage	Sample during soil boring for MW installation ^(I)	MW Install	MW-C1.1	2	х	Х	х	x	х	х	х	Х	x		х	x	Х
С	OA-C1	Additives/Coatings	Sample during soil boring for MW installation ^(I)	MW Install	MW-C1.2	2	x	х	x	x	x	x	х	Х	x		х	X	X
С	OA-C1	Fuel Oil Storage	Sample during soil boring for MW installation ^(I)	MW Install	MW-C1.3	2	Х	х	х	x	Х	x	х	Х	x			X	
C	OA-C2	No. 2 Substation ^(d)	Substation with transformers and/or other OFEE.	Surface	NA	2			x	X		x	Х		x			x	
С	OA-C2	Buried Material Area	Sample during soil boring for MW installation ^(I)	MW Install	MW-C2.1	2	x	Х	x	x	x	х	Х	Х	x	х	x	х	x
C	OA-C2	Mill Modernization Debris Area	Sample during soil boring for MW installation ^(I)	MW Install	MW-C2.2	2	X	Х	X	Х	Х	X	X	X	X	Х	X	X	Х

Agency Review Draft Remedial Investigation Work Plan, Georgia-Pacific Consumer Operations LLC \\SFOCAD\Projects\\S-Proj\2018\1865004.18_GP_Camas\\09-Reports\RI Work Plan\DRAFT RI Work Plan\03_Revised\Tables\Table07_Analytical Methods_Soil.xlsx

Table 7: Proposed Soil Sampling

										Proposed Sampling Matrix									
Site Unit	Operational Area	Operational Feature ^(a)	Rationale	Type of Sample	Monitoring Well	Number of Proposed Samples ^(b)	Dioxins ^(c)	PFAS	TPH ^(e)	BTEX ^(e)	Naphthal ene	Metals ^(f)	VOCs ^(g)	SVOCs (j)	PCBs ^(k)	MTBE	Sulfur ^(h)	pH ⁽ⁱ⁾	Total Organic Carbon
С	OA-C2	Buried Material Area	Sample during soil boring for MW installation ^(I)	MW Install	MW-C2.3	2	x	х	x	x	x	x	x	х	x	Х	х	х	х
С	OA-C2	Background	Sample during soil boring for MW installation ^(I)	MW Install	MW-C2.4	2	х	Х	x	х	x	х	x	Х	x	Х	х	Х	х
С	OA-C2	MERT Storage Building	Sample during soil boring for MW installation ^(I)	MW Install	MW-C2.5	2	х	х	Х	х	х	х	х	Х	х	Х	x	х	х
С	OA-C2	Mill Modernization Debris Area	Test Pit	Test Pit	NA	1	Х	Х	х	х	х	х	x	Х	Х	Х	х	х	Х
С	OA-C2	Mill Modernization Debris Area	Test Pit	Test Pit	NA	1	Х	Х	Х	х	х	Х	Х	Х	Х	Х	Х	Х	Х
С	OA-C2	Mill Modernization Debris Area	Test Pit	Test Pit	NA	1	Х	Х	Х	х	Х	х	Х	Х	Х	Х	Х	Х	Х
С	OA-C2	Buried Material Area	Test Pit	Test Pit	NA	1	Х	Х	Х	х	х	Х	Х	Х	Х	Х	Х	Х	Х
С	OA-C2	Buried Material Area	Test Pit	Test Pit	NA	1	Х	Х	Х	х	х	х	х	х	Х	Х	Х	Х	Х
С	OA-C2	Buried Material Area	Test Pit	Test Pit	NA	1	Х	Х	Х	х	Х	х	х	х	Х	Х	Х	Х	Х
C	OA-C2	Buried Material Area	Test Pit	Test Pit	NA	1	Х	Х	Х	х	х	х	х	х	Х	Х	Х	х	Х
С	OA-C2	Buried Material Area	Test Pit	Test Pit	NA	1	Х	Х	Х	х	х	х	х	Х	Х	Х	Х	х	Х
C	OA-C2	Buried Material Area	Test Pit	Test Pit	NA	1	X	X	X	x	X	X	X	X	X	X	X	X	X
C	OA-C3	Waste Handling Area and Fueling Station; Car Barn, Paint Shop, and UST Area	Sample during soil boring for MW installation ^(I)	MW Install	MW-C3.1	2	x	х	x	x	x	x	x	х			х	x	x
0	0.1.00					0		Ň	X	X		Ň	Ň	Ň			X	Ň	N/
C	0A-C3	Former Sultur Plie	Documented diesel release from former diesel	ivivv instali	MW-C3.2	2		Χ	X	X		X	X	X			X	X	<u>X</u>
C	OA-C4	Riverbank Pump House	AST. Analyze soil samples for TPH.	Shallow	NA	2		Х	Х	Х	Х	Х	Х	Х				Х	
С	OA-C4	Riverbank Pump House	Sample during soil boring for MW installation ^(I)	MW Install	MW-C4.1	2		Х	x	х	x	x	x	Х			x	x	X
С	OA-C4	Effluent Pump Station	Sample during soil boring for MW installation ^(I)	MW Install	MW-C4.2	2	х	Х	x	Х		Х	Х	Х			x	Х	х
С	OA-C4	Converting Area	Sample during soil boring for MW installation ^(I)	MW Install	MW-C4.3	2	x	х	x	х	x	х	x	Х	x			х	
С	OA-C5	Wooded Area	Test Pit	Test Pit	NA	1	Х	Х	Х	Х	Х	Х	X	Х	X	Х		X	
<u> </u>	OA-C5	Wooded Area	Test Pit	Test Pit	NA NA	1	X	X X	X	X	X	X	X	X	X	X X		<u> </u>	
				105(11)		•		<u></u>						X		Λ			
D	OA-D1	No. 10 Substation ^(d)	Substation with transformers and/or other OFEE.	Surface Below transition to	NA	2			X	X			X		X			X	
П		Former Wastewater Ditches	Former ditches used to convey process wastewater. Analyze soil for dioxins, TPH, metals	ditch floor material (identified in the field)	NA	6	x	x	x	x	×	x	×	x	x		x	x	
			Stockpiled dredged materials from the Camas																
D	OA-D2	Dredge Spoils Area	Slough	Shallow	NA	4	Х	Х	Х	Х	Х	Х	Х	Х	Х				
E	OA-E1	Background	Sample during soil boring for MW installation ^(I)	MW Install	MW-E1.1	2		Х	x	x	x	х	x	Х	х			x	
E	OA-E1	Former Service Station	Sample during soil boring for MW installation ^(I)	MW Install	MW-E1.2	2		Х	х	x	х	х	х	х	х			х	
E	OA-E1	Former Service Station	Sample during soil boring for MW installation ^(I)	MW Install	MW-E1.3	2		Х	x	x	x	x	x	х	x			x	
E	OA-E2	Former Dry Cleaner	Sample during soil boring for MW installation ^(I)	MW Install	MW-E1.4	2		Х	х	х	x	x	x	Х	x			х	
E	OA-E2	Former Dry Cleaner	Sample during soil boring for MW installation ^(I)	MW Install	MW-E1.5	2		Х	x	x	x	x	x	х	x			х	
E	OA-E2	Background	Sample during soil boring for MW installation ^(I)	MW Install	MW-E1.6	2		х	x	x	x	x	x	х	x			х	
E	<u>OA-E</u> 3	Former Gas Station	Sample during soil boring for MW installation ^(I)	MW Install	<u>MW-E1</u> .7	2		X	x	х	x	х	x	Х	x			x	

Agency Review Draft Remedial Investigation Work Plan, Georgia-Pacific Consumer Operations LLC \\SFOCAD\Projects\\S-Proj\2018\1865004.18_GP_Camas\\09-Reports\RI Work Plan\DRAFT RI Work Plan\03_Revised\Tables\Table07_Analytical Methods_Soil.xlsx

Table 7: Proposed Soil Sampling

							Proposed Sampling Matrix												
Site Unit	Operational Area	Operational Feature ^(a)	Rationale	Type of Sample	Monitoring Well	Number of Proposed Samples ^(b)	Dioxins ^(c)	PFAS	TPH ^(e)	BTEX ^(e)	Naphthal ene	Metals ^(f)	VOCs ^(g)	SVOCs	PCBs ^(k)	MTBE	Sulfur ^(h)	pH ⁽ⁱ⁾	Total Organic Carbon
																		-	
Е	OA-E3	Former Gas Station	Sample during soil boring for MW installation ^(I)	MW Install	MW-E1.8	2		х	Х	х	Х	х	Х	Х	Х			Х	
E	OA-E3	Former Gas Station	Sample during soil boring for MW installation ^(I)	MW Install	MW-E1.9	2		х	x	x	x	x	Х	х	x			Х	
F	OA-F1	CBC Area	Additional lead soil sampling in vicinity of the previous soil sample that exceeded MTCA lead cleanup level (LS-1, north of Building 402).	Shallow	NA	4						X (lead only)						х	
F	OA-F2	No. 7 Substation ^(d)	Substation with transformers and/or other OFEE.	Surface	NA	2			х	х		х	х		х			Х	

Notes:

 \overline{X} = Soil sample(s) collected within this operational feature will be analyzed for this parameter(s)

NA = not applicable

AST = aboveground storage tank

OFEE = oil-filled electrical equipment

Surface = a soil sample will be collected from surface soils using non-intrusive methods.

Shallow = a shallow soil sample is proposed. Invasive sampling methods will be used to collect a sample from soils within 0-1 feet below ground surface.

MW Install = soil samples will be collected during monitoring well installation activities

Background = located upgradient and intended to represent background conditions

(a) Some monitoring wells may be located outside of the associated operational feature due to site constraints, including concern for invasive activities or density of structures. (b) A minimum of two soil samples will be analyzed from each monitoring well installation and proposed sample location. Additional samples may be collected and analyzed based on field observations.

(c) Soil samples proposed in areas where there are documented spills of process wastewater from bleaching operations will be analyzed for dioxin.

(d) Invasive activities (e.g., soil sampling) will not be completed at active substations.

(e) Petroleum hydrocarbons were used and stored in many areas of the Site. Therefore, all soil samples proposed in this work plan will be analyzed for TPH. Where TPH analysis is proposed in this work plan, BTEX analysis will also be proposed.
 (f) Soil samples proposed in areas where there are suspected buried materials or where process wastewater contacted bare ground (e.g., at the effluent pump station or former wastewater ditches) will be analyzed for metals. Metals analysis will include at least aluminum, antimony, arsenic, barium, beryllium, cadmium, cobalt, copper, iron, lead, magnesium, manganese, nickel, selenium, silver, sodium, thallium, vanadium, and zinc.

(g) Soil samples proposed in areas where fuel oil or solvents were used or stored will be analyzed for VOCs.

(h) Soil samples proposed in areas where black liquor spills occurred will be analyzed for sulfur and metals.

(i) A pH measurement will be collected for all soil samples.

(j) Soil samples proposed in areas where there are suspected buried materials will be analyzed for SVOCs. SVOCs include PAHs; however, some locations are proposed for PAH analysis without full SVOC analysis.

(k) Soil samples proposed at transformer substations and where hydraulic oil or lube oil was stored will be analyzed for PCBs.

(I) Proposed sampling matrix for soil samples collected during MW installations generally align with the proposed sampling matrix for groundwater; however, there may be additional matrices included in groundwater to monitor conditions upgradient and/or downgradient of a chemical use or spill.

Georgia-Pacific Consumer Operations LLC Camas, Washington

February 2023

World Imagery (Clarity): Source: Esri, Maxar, Earthstar Geographics, IGN, and the GIS User Community

Legend

— Contours (10 ft)

1. Contour data is based on NAVD88 Vertical Datum.

Scale: Fee

Georgia-Pacific Consumer Operations LLC Camas, Washington

DRAFT

Topography

February 2023

World Imagery (Clarity): Source: Esri, Maxar, Earthstar Geographics, IGN, and the GIS User Community

Legend

Notes:

Site Operable Unit

1. All locations are approximate.

Georgia-Pacific Consumer Operations LLC Camas, Washington

DRAFT

Site Operable Units

February 2023

6 **-** - 6 Areas inaccessible due to density of structures and below-grade features Notes:

1. All locations are approximate.

Mill Operational Areas

Areas inaccessible due to ongoing operations

Georgia-Pacific Consumer Operations LLC Camas, Washington

February 2023

Area Served By K7 Sewer

Area Served By K6 Sewer

Area Served By Fuel Oil Pipelines

Area Served By Process Sewer (Directly)

Area Served By Wood Processing Collections (Grit Sump)

- Acid Sewer Pipeline
- Acid Sewer Pipeline (abandoned)

Notes:

- All locations are approximate.
 K6 sewer, K7 sewer, and Grit Sump are conveyed to the Process Sewer.
- Coverage areas represent underground sewer pipelines.
 Above-ground acid sewer pipelines served the Pulping and Bleaching Operational Areas.

5. Stormwater within the Mill property is captured and conveyed by the sewer systems to the WWTP.

Georgia-Pacific Consumer Operations LLC Camas, Washington

DRAFT Main Mill Area -**Current Sewer System Areas**

February 2023

1. All locations are approximate.

Areas inaccessible due to density of
 structures and below-grade features

Operational Features

Mill Operational Areas

Areas inaccessible due to ongoing operations

Georgia-Pacific Consumer Operations LLC Camas, Washington

DRAFT

Operational Features

February 2023

World Imagery: Maxar, Microsoft World Hillshade: Esri, NASA, NGA, USGS, FEMA

Notes:

K7 Sewer

Water

_

Sanitary Sewer

- All locations are approximate.
 For utilities: dashed lines
- For utilities: dashed lines represent underground utilities. Solid lines represent above ground utilities.
 Utility locations are approximate. Monitoring well and other sampling locations may change based on utility locates completed in the field.

GP Camas Mill Camas, Washington

> Utility Map Woodmill

N 175 87.5 Scale: Feet

World Imagery: Maxar, Microsoft World Hillshade: Esri, NASA, NGA, USGS, FEMA

- Mobile/Portable
- Tank \mathbf{A}
- Out of Service
- Removed From Site

 \bullet

Well

RI Operational Area Blue Creek Communication Cable Electrica

Acid Sewer

- Fire Main - Fuel Oil Grit Sump Collection
- K6 Sewer
- K7 Sewer
- ---- Natural Gas

Sanitary Sewer

Storm Drain

---- Water

- - represent underground utilities.
 - Solid lines represent above ground utilities.3. Utility locations are approximate. Monitoring well and other sampling locations may change based on utility locates completed in the field.

Camas, Washington

Utility Map Pulping, Power House, Specialty Minerals, and Warehouse/Product Storage - North

200

100

Scale: Feet

- Removed From Site

locates completed in the field.

 \bigcirc

Outfalls

- Proposed Monitoring \blacklozenge Well Approximate Maintenance **Dredging Areas RI** Operational Area
 - Acid Sewer Blue Creek Communication Cable Electrical
- Fire Main - Fuel Oil Process Sewer Grit Sump Collection K6 Sewer ----- Storm Drain ---- Water K7 Sewer
- Mill Air

Sanitary Sewer

- 2. For utilities: dashed lines represent underground utilities. Solid lines represent above ground utilities.
- Utility locations are approximate. Monitoring well and other sampling locations may change based on utility locates completed in the field.

200

Utility Map Finishing/Coatings/Additives - South, Pump Houses

Notes:

Process Sewer

Storm Drain

---- Water

Sanitary Sewer

- All locations are approximate.
 For utilities: dashed lines
- represent underground utilities.
- Solid lines represent above ground utilities.3. Utility locations are approximate. Monitoring well and other sampling locations may change based on utility locates completed in the field.

Kennedy Jenks

GP Camas Mill Camas, Washington

Utility Map **Operational Support**

- Equipment
- Mobile/Portable

 \bullet

World Imagery: Maxar, Microsoft World Hillshade: Esri, NASA, NGA, USGS, FEMA

- Tank \mathbf{A}
- Out of Service
- Removed From Site
- Proposed Monitoring Well Deep Well RI Operational Area — Fire Main

Utility Type

— Mill Air — Natural Gas

- Storm Drain
- ---- Water

Notes:

- All locations are approximate.
 For utilities: dashed lines represent underground utilities.
- Solid lines represent above ground utilities.
 3. Utility locations are approximate. Monitoring well and other sampling locations may change based on utility locations locates completed in the field.

Kennedy Jenks GP Camas Mill Camas, Washington

> Utility Map Wooded Area

200 100 Scale: Feet

World Imagery: Maxar, Microsoft World Hillshade: Esri, NASA, NGA, USGS, FEMA

- Equipment
- Mobile/Portable
- Tank \mathbf{A}
- - Out of Service
 - Dredging Areas **RI** Operational Area

 \blacklozenge

Well

Proposed Monitoring

Existing Monitoring Well

Approximate

Maintenance

Utility Type Acid Sewer Communication Cable Electrical

— Fire Main

- **Grit Sump Collection** Natural Gas
- Process Sewer
- ---- Water

Notes:

- All locations are approximate.
 For utilities: dashed lines
- For utilities: dashed lines represent underground utilities. Solid lines represent above ground utilities.
 Utility locations are approximate. Monitoring well and other sampling locations may change based on utility locates completed in the field.

Kennedy Jenks GP Camas Mill Camas, Washington

> Utility Map Lady Island

N 250 500 Scale: Feet

World Hillshade: Esri, NASA, NGA, USGS, FEMA World Imagery: Maxar

- RI Operational Area

World Imagery: Maxar, Microsoft World Hillshade: Esri, NASA, NGA, USGS, FEMA

🔺 Equipment

- Proposed Monitoring Well Utility Type \blacklozenge
- **RI** Operational Area
- Natural Gas

Fire Main

- Sanitary Sewer _ Storm Drain
- Water
- ---- Process Sewer

Notes:

- All locations are approximate.
 For utilities: dashed lines
- For utilities: dashed lines represent underground utilities. Solid lines represent above ground utilities.
 Utility locations are approximate. Monitoring well and other sampling locations may change based on utility locates completed in the field.

GP Camas Mill Camas, Washington

> Utility Map Ancillary Area

125 62.5 Scale: Feet

World Imagery: Maxar, Microsoft World Hillshade: Esri, NASA, NGA, USGS, FEMA

¢	Proposed Monitoring Well	
•	Existing Monitoring Well	

- Fire Main

---- Natural Gas

- locates completed in the field.

Scale: Feet

•

Previous Boring; Geoprobe

Sampling Location

April 2011 Surface Water 0 Monitoring Location

0

- Previous Sediment Sampling 0 Location
 - Previous Soil Sampling Location
- Previous Test Pit

Notes:

1. All locations are approximate.

- 2. Additional information about previous investigations and cleanups is summarized in Table 2.

3. There are monitoring programs for compliance with existing permits and programs that pre-date the Agreed Order and continue to occur in parallel with RI activities (see Table 3).

Georgia-Pacific Consumer Operations LLC Camas, Washington

Previous Investigations

World Imagery (Clarity): Source: Esri, Maxar, Earthstar Geographics, IGN, and the GIS User Community

✓* Potentially complete but likely insignificant pathway

ft bgs = feet below ground surface

VOC = volatile organic compounds

- 1. Where depth of groundwater is shallow, exposure depths will be limited to 2 feet below the groundwater table.
- 2. Stormwater includes overland flow.

Kennedy/Jenks Consultants

GP Camas Mill Camas, Washington

DRAFT **Preliminary Conceptual Site Model**

Two paired monitoring wells proposed at this location: one screened at the water table and one screened below the water table.

Existing Monitoring Well •

- **Operational Features**

Areas inaccessible due to ongoing operations

and other sampling locations may change based on field observations and findings from utility locates completed in the field. 2. Proposed monitoring wells will be screened at the water table unless otherwise indicated.

Scale: Fee

Proposed Monitoring Well Locations

- Proposed Monitoring Wells \bullet
- Proposed Shallow Soil Samples (2 samples near this location)
- Proposed Surface Soil Samples (2 samples near this location) Proposed Test Pit Location
- (1 soil sample collected from bottom of test pit)
- Areas inaccessible due to density of **F** = **•** structures and below-grade features
 - **Operational Features**
 - Mill Operational Areas
 - Areas inaccessible due to ongoing operations
 - Approximate Extent of Inert Solid Waste Landfill

Notes:

1. All locations are approximate. Monitoring well and other sampling locations may change based on field observations and findings from utility locates completed in the field.

2. A minimum of 2 soil samples will be collected and analyzed during boring activities associated with each monitoring well installation.

3. "Surface" indicates a soil sample at a Substation, where a sample will be collected from exposed surface soils using non-intrusive methods if the Substation is inactive. If soil is not exposed or the Substation is active, sample collection will be postponed until the substation is inactive.

4. "Shallow" indicates a shallow soil sample is proposed. Invasive sampling methods will be used to collect a sample from soils within 0-1 feet below ground surface.

Georgia-Pacific Consumer Operations LLC Camas, Washington

DRAFT **Proposed Soil Sampling Locations**

- samples near this location)

associated with the Mill

6. Outfall 001 is the historical clarifier outfall and is the current treated effluent outfall.

Appendix A

Sampling and Analysis Plan/Quality Assurance Project Plan

421 SW 6th Avenue, Suite 1000 Portland, Oregon 97204 503-423-4000

Sampling and Analysis Plan/Quality Assurance Project Plan

31 March 2023

Prepared for

Georgia-Pacific Consumer Operations LLC

401 NE Adams Street Camas, Washington 98607

KJ Project No. 1865004*23

Quality Assurance Project Plan Signature Page

Site: Georgia-Pacific Consumer Operations LLC

Address: 401 NE Adams Street Camas, Washington 98607

Document Name: Camas Mill – Sampling and Analysis Plan/Quality Assurance Project Plan/Work Plan (SAP/QAPP)

Document Date: 31 March 2023

Signature below indicates review and approval of the Quality Assurance Project Plan and agreement that the anticipated sampling and analytical methods are sufficient to meet the quality objectives of the Georgia-Pacific Consumer Operations LLC Site.

Washington State Department of Ecology:

Mady Lyon Date Ecology Project Coordinator

Georgia-Pacific Project Manager:

Matt Tiller Date Project Coordinator

Table of Contents

List of Tables			ii
List of Append	ices		ii
List of Acronyn	ns		. <i>iii</i>
Section 1:	Intro	duction	.1
	1.1 1.2 1.3 1.4	Background Purpose and Objective of the Data Collection Health and Safety Plan Document Organization	2 2 3 3
Section 2:	Proje	ect Organization	.4
	2.1 2.2	Special Training/Certification	4 5
Section 3:	Data	Quality Objectives	.6
	3.1 3.2 3.3 3.4 3.5 3.6	Precision Bias and Accuracy Representativeness Completeness Comparability Sensitivity	6 7 8 8
Section 4:	Field	Sampling Activities	.9
	4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10	Utility Locating Sampling Locations	10 10 10 11 12 13 14 14 15

Table of Contents (cont'd)

Section 5:	Field	d Documentation	17
	5.1 5.2	Documentation of Field Activities Field Forms	17 18
	5.3 5.4	Analytical Laboratory COC Procedures	
Section 6:	Labo	oratory Requirements	21
Section 7:	Qua	lity Control	22
	7.1	Field QC Requirements Samples 7.1.1 Duplicate Samples	
		7.1.2Equipment-Rinsate Blanks/Field Blanks7.1.3Temperature Blanks	23 23
Section 8:	Data	a Management, Review, and Reporting	24
	8.1	Laboratory Data Reporting	24
	8.2	Data Management	25
	8.3	Data Review and Validation	25
	8.4	Data Reporting	26
	8.5	Data Usability	27
References			

List of Tables

- 1 Key Personnel Roles, Responsibilities, and Qualifications
- 2 Analytical Methods, Sample Containers, Preservation, and Holding Times
- 3 Field Instruments Preventive Maintenance Table
- 4 Sample Identification
- 5 Speciated Analytes, Method Reporting Limits, Applicable Screening Levels

List of Appendices

- A Health and Safety Plan (HASP)
- B Kennedy Jenks Standard Operating Guidelines (SOGs)

List of Acronyms

°C	degree Celsius
AO	Agreed Order
ARAR	applicable, relevant, and appropriate requirement
ASTM	ASTM International
BTEX	benzene/toluene/ethylbenzene/xylene
CFR	Code of Federal Regulations
COC	chain-of-custody
COPC	chemical of potential concern
DI	distilled/deionized
DOT	Department of Transportation
DQO	data quality objective
Ecology	Washington State Department of Ecology
EDD	electronic data deliverables
EIM	Environmental Information Management System
EPA	U.S. Environmental Protection Agency
GP	Georgia-Pacific, Consumer Operations LLC
HASP	Health and Safety Plan
HAZWOPER	Hazardous Waste Operations and Emergency Response
IDW	investigation-derived waste
MDL	method detection limit
mL/min	milliliters per minute
MRL	method reporting limit
MS	matrix spike
MSD	matrix spike duplicate
MTCA	Model Toxics Control Act
NWTPH-Dx	Northwest Total Petroleum Hydrocarbons as Diesel and Oil Extended
NWTPH-Gx	Northwest Total Petroleum Hydrocarbons as Gasoline Extended
OSHA	Occupational Safety and Health Administration
PCB	Polychlorinated biphenyl
PDB	Passive Diffusion Bag
PFAS	Per- & Polyfluoroalkyl Substances
PID	photoionization detector
PM	Project Manager
PPE	personal protective equipment
PQL	practical quantitation limit
PVC	polyvinyl chloride
QA	quality assurance
QAPP	Quality Assurance Project Plan
QC	quality control

remedial investigation
relative percent difference
Sampling and Analysis Plan
Standard Operating Guideline
Standard Operating Procedure
semi-volatile organic compound
total organic carbon
total petroleum hydrocarbon
United States Geological Survey
volatile organic compound
Washington Administrative Code
Washington Industrial Safety and Health Act

Section 1: Introduction

This Sampling and Analysis Plan/Quality Assurance Project Plan (SAP/QAPP) documents the sampling procedures and protocols for the remedial investigation (RI) at the Georgia-Pacific Consumer Operations LLC (GP) Site located at 401 NE Adams Street, Camas, Washington ("the Site"). This SAP/QAPP is also intended to satisfy the technical requirements of the Washington Administrative Code (WAC) 173-340-820, Ecology's Guidelines for Preparing Quality Assurance Project Plans for Environmental Studies (Ecology 2004), and other Washington State Department of Ecology (Ecology) policies and/or procedures. This work is being performed pursuant to an Agreed Order (AO, No. DE 18201) between Ecology and GP dated 12 August 2021. This SAP/QAPP is Appendix A of the Draft RI Work Plan¹.

The purpose of the SAP/QAPP is to describe sample collection, handling, and analysis procedures, including quality assurance and quality control (QA/QC) requirements. This SAP/QAPP is intended to be used in conjunction with other site-specific project documents, including the RI Work Plan, which has been prepared separately and describes detailed background information, sampling locations, and analyses.

Specific information required by WAC 173-340-820 includes:

- Purpose and objectives of the data collection including QA/QC. The purpose and objective for data collection is presented in more detail in the RI Work Plan.
- Organization and responsibilities for sampling and analysis activities. In accordance with the AO, project management details are presented in the RI Work Plan.
- Requirements for sampling activities:
 - Project schedule. This is presented in the RI Work Plan.
 - Rationale for location and frequency of sampling and parameters to be analyzed. This is presented in the RI Work Plan.
 - Procedures for sample collection and handling including cleaning for equipment and personnel.
 - Procedures for management of waste materials generated by sampling activities.
 - Description of QA/QC samples.
 - Sample labeling, packaging, and chain-of-custody (COC) protocols.

¹ The Agency Review Draft RI WP was submitted to Ecology on 3 January 2022 (Kennedy Jenks 2022). Ecology provided comments on the Agency Review Draft RI WP on 4 November 2022 (Ecology 2022b). GP provided responses in a response to comment (RTC) letter dated 3 February 2023 (GRES 2023). The SAP/QAPP was revised to incorporate changes consistent with the RTC letter.

Sampling and Analysis Plan/Quality Assurance Project Plan \\sfocad\projects\is-proj\2018\1865004.18_gp_camas\09-reports\ri wp_sap-qapp\02_revised\camas_sap_qapp_20230331.dox

• Procedures for sample analyses and reporting including analytical laboratory detection/reporting limits, analytical methods, QA/QC procedures, data reporting, and data validation.

This SAP/QAPP and the attached Health and Safety Plan (HASP) may be amended if additional activities not covered in this SAP/QAPP are necessary in the future.

1.1 Background

The Site is in southwestern Washington along the banks of the Camas Slough and Columbia River in the City of Camas, Washington. The Site occupies approximately 661 total acres, of which 476 acres is on Lady Island and 185 acres is on the upland side of the Slough. Washington State Route 14 travels east-west through Lady Island.

Operation of the mill began in 1883 under the Columbia River Paper Company. Site ownership and use has changed over time; currently, the mill property is owned and operated by GP. Additional background information of the Site including operational history and previous investigations is presented in more detail in the RI Work Plan.

In November 2017, GP announced that it planned to shut down multiple mill operations at the Site, including the communication paper machine, fine paper converting assets, pulping operations, and related equipment. The shutdown of these areas was officially complete in mid-2019. The mill continues to produce paper products, including tissue paper and paper towels, from purchased pulp (Brynelson 2017).

1.2 Purpose and Objective of the Data Collection

The purpose of the RI is to collect and evaluate data of known quality which are sufficient to understand Site conditions and address initial data gaps. The data will be used to select a cleanup under WAC 173-340-360 through 173-340-390. The purpose and objectives of the data collection are described in the RI Work Plan.

As acknowledged in the AO, there are areas of the Site with ongoing operations that may be inaccessible and will not allow complete investigation, characterization, or cleanup actions at this time. Investigation, characterization, and cleanup of these areas will be deferred until they become accessible. At that time, a separate RI Work Plan will be submitted to Ecology, and the SAP/QAPP will be amended as necessary.

The types of field activities addressed by this SAP/QAPP generally include:

- Utility survey
- Drilling
- Soil sampling
- Monitoring well installation

- Groundwater sampling and water level measurements
- Documentation of field activities
- Analysis of environmental samples.

Field activities are described in more detail in the RI Work Plan. Sampling tasks should follow the QA/QC requirements set forth in this SAP/QAPP, unless otherwise specified.

1.3 Health and Safety Plan

Kennedy Jenks has prepared a HASP (Appendix A) which describes health and safety measures to be followed by Kennedy Jenks' employees for the site investigation. Subcontractors providing support during sampling will be required to maintain their own HASP documenting their health and safety procedures.

Personnel, including subcontractors, must obtain the proper training to recognize and protect themselves from hazardous chemicals known or suspected to be present at the Site. Field personnel are required to have appropriate Occupational Safety and Health Administration (OSHA) health and safety training for hazardous waste sites per 29 Code of Federal Regulations (CFR) 1910.120, supplemented by annual refresher courses. Environmental consultants are responsible for confirming that their personnel are informed about and trained on relevant OSHA and Washington Industrial Safety and Health Act (WISHA) guidelines.

All Site visitors are required to complete Camas Mill Contractor Orientation training prior to commencing work on the Site. Copies of training certificates are to be presented to the Clock Room at the first Site visit and emailed to the GP Project Manager in advance of field work.

1.4 Document Organization

The remainder of this document is organized as follows:

- Section 2: Project Organization
- Section 3: Data Quality Objectives
- Section 4: Field Sampling Activities
- Section 5: Field Documentation
- Section 6: Laboratory Analytical Method Requirements
- Section 7: Quality Control
- Section 8: Data Management Review and Reporting

Section 2: Project Organization

This section identifies the project team members and other key personnel participating in the project and describes their specific roles, responsibilities, and qualifications.

On behalf of GP, Kennedy Jenks will serve as the prime consultant for this RI. The key project personnel and responsibilities are listed in Table 1. Anticipated subcontractors include drillers and laboratory services at a minimum. The analytical laboratory(s) selected to analyze samples for this project will meet the accreditation standards in chapter 173-50 WAC.

The field team is responsible for conducting field activities according to the SAP and for communicating with the Field Team Leader, who will communicate with the Project Manager. The Field Team Leader will coordinate with a Washington-licensed well driller.

The analytical laboratory is responsible for conducting activities according to the accreditation standards established in chapter 173-50 WAC, the SAP, and the RI Work Plan. Laboratories are responsible for maintaining sample custody records throughout processing and analysis, conducting analyses according to specified standard operating guidelines (SOGs), reviewing QC data and implementing corrective action, as appropriate, and contacting the Project Laboratory Manager to communicate issues that could affect sample integrity, data quality, or schedule. The laboratory is responsible for appointing an independent QA Officer who will monitor the study, conduct laboratory inspections and data audits, and report findings to management. Laboratory certifications will be acquired prior to initiating specific scopes of work.

2.1 Special Training/Certification

Most of the activities included in this RI involve routine sampling and analyses with no special training requirements and certifications needed. Staff working on Site will have completed the OSHA's required Hazardous Waste Operations and Emergency Response (HAZWOPER) 40-hour training and will also have currently (within the past year) completed the OSHA/HAZWOPER 8-hour annual refresher health and safety training. All Site visitors are required to complete Camas Mill Contractor Orientation training prior to commencing work on the Site. Health and safety training records for Kennedy Jenks personnel are maintained in the project files. Prior to the start of the investigation, field personnel will be given instruction specific to the project, covering the following areas:

- Organization and lines of communication and authority;
- Overview of the SAP (i.e., sample collection, handling, and labeling procedures);
- QA/QC requirements;
- Documentation requirements; and
- Health and safety requirements.

Instructions will be provided by the Kennedy Jenks Project Manager (PM) or Field Team Leader.

2.2 Schedule

The project schedule, including milestones such as field sampling and reporting, is documented in the RI Work Plan.

Section 3: Data Quality Objectives

The data quality objectives (DQOs) for this project are to describe and implement field and laboratory procedures to provide data that are: 1) representative of actual environmental conditions, and 2) of known and acceptable quality. Measurements will be made to yield accurate and precise results representative of the media and conditions measured. Data will be calculated and reported in units consistent with those used by regulatory agencies to allow for comparability of data.

Accuracy, precision, completeness, representativeness, comparability, and sensitivity are terms used to describe the quality of analytical data. Routine procedures for measuring precision and accuracy include use of quality control samples (i.e., replicate analyses, check or laboratory control samples, matrix spikes, and procedural blanks). These indicators of data quality are discussed below.

3.1 Precision

Precision is an appraisal of the reproducibility of a set of measurements. Precision can be better defined as the variability of a group of measurements compared to their average value. Variability for environmental monitoring programs contains both an analytical component and a field component.

Analytical precision will be evaluated by the analyses of matrix spike duplicate and laboratory duplicate samples, which can be mathematically expressed as the relative percent difference (RPD) between duplicate sample analyses. RPD is calculated using the following equation:

$$RPD = \frac{C_1 - C_2}{\overline{C}} x \, 100$$

where:

 C_1 = First concentration value or recovery value measured for a variable

C₂ = Second concentration value or recovery value measured for a variable

The frequency of the performance of matrix spike duplicate and laboratory duplicate samples, where applicable, is usually one per batch (which typically consists of up to 20 samples) for each sample matrix received.

Field duplicate samples will be submitted blind to the laboratory to assess field variability. Frequency of field duplicate samples is discussed in Section 7.1.1.

Precision quantities will be calculated for analyses with method reporting limits of the same order of magnitude and with detected concentrations greater than or equal to five times the method reporting limits. In instances where no criteria have been established (e.g., field duplicates), RPD project goals will be 50 percent for well-homogenized soil samples and 30 percent for water samples.
3.2 Bias and Accuracy

Bias is the systematic or persistent distortion of a measurement process that causes error in one direction. Accuracy refers to how close a measurement is to the true value. Bias and accuracy will be evaluated by the analysis of matrix spike samples and laboratory control samples and can be mathematically expressed as the percent recovery of an analyte that has been used to fortify a field sample or clean laboratory matrix sample at a known concentration prior to analysis. The percent recovery (R) for a matrix spike sample is calculated as follows:

$$R = \frac{(\text{SSR} - \text{SR})}{\text{SA}} * 100$$

Where:

SSR = Spiked sample result

SR = Sample result

SA = Spike added.

The following is used to calculate R for a laboratory control sample or reference material:

$$R = \frac{RM}{RC} * 100$$

Where:

RM = Reference material result

RC = Known reference concentration

Results of matrix spike and laboratory control samples will be evaluated to the laboratory's control limits. Control limits will be provided by the laboratory. The laboratory will review the QC samples and surrogate standard recoveries for each analysis to confirm that internal QC data lie within the limits of acceptability. The laboratory will investigate suspect trends and take appropriate corrective actions.

Field blank samples and method blank samples will also be used to evaluate bias of the data. Results for field and method blanks can reflect systematic bias that results from contamination of samples during collection or analysis. Analytes detected in field or method blank samples will be evaluated as potential indicators of bias.

3.3 Representativeness

Representativeness is the degree to which sample data accurately and precisely represent a characteristic of a population, parameter variations at a sampling point, or an environmental condition. This is a qualitative assessment and is addressed primarily in the sample design, through the selection of sampling sites, and procedures that reflect the project goals and

environment being sampled. Sampling locations and methods for selection of those sampling locations are described in the RI Work Plan. Representativeness is accomplished in the laboratory through (1) the proper handling, homogenizing, compositing, and storage of samples and (2) analysis within the specified holding times so that the material analyzed reflects the material collected as accurately as possible.

3.4 Completeness

Completeness is defined as a measure of the amount (percentage) of valid data obtained from a measurement system, field or laboratory, compared to the amount expected from the system. A target of 90 percent completeness for field and laboratory data is the expected minimum for this project. Less than 100 percent may be a result of sample matrix issues, loss of sample, data rejected via validation, or inability to collect all planned sample points.

3.5 Comparability

Comparability is a qualitative QA criterion that expresses confidence in the ability to compare one data set with another. Comparability among data sets is achieved using similar sampling procedures and analytical methods. Sampling procedures will be performed as specified in the SAP. Analytical procedures will be conducted according to the methods discussed in this QAPP, and comparability will be assessed through analytical performance (QC samples).

3.6 Sensitivity

Sensitivity is the capability of a method or instrument to discriminate between measurement responses representing different levels of the variable of interest. The method detection limit (MDL) is defined as the statistically calculated minimum amount that can be measured with 99 percent confidence that the reported value is greater than zero. MDLs are specified in the individual methods and are developed by the laboratory for each analyte of interest representing the aqueous and solid matrices within the capability of an analytical method.

The method reporting limit (MRL) or practical quantitation limit (PQL) is the lowest value to which the laboratory will report an unqualified quantitative result for an analyte. The PQL is always greater than the statistically calculated MDL. The PQLs required for this project are such that data can be compared to the lowest possible applicable, relevant, and appropriate requirements (ARARs) suitable for the site.

Section 4: Field Sampling Activities

This section of the SAP/QAPP describes anticipated field activities pertaining to the site investigation, including sampling procedures, sample identification, cleaning, and waste disposal. Specific sampling methodologies for various sample types are described in detail in the SOGs provided in Appendix B and referenced below where applicable². The following SOGs will guide sampling activities:

- SOG-1: Environmental Data Collection
- SOG-2: Surface and Shallow Subsurface Soil Sampling (applies for utility clearance)
- SOG-3: Procedures for Using a Photoionization Detector (PID)
- SOG-4: Borehole Logging
- SOG-5: Boring and Subsurface Soil Sampling
- SOG-6: Well Construction and Development
- SOG-7: Measuring Groundwater Levels
- SOG-8: Groundwater Sampling (applies to opportunistic groundwater sampling if performed)
- SOG-9: Measurement of Field Parameters: pH, Dissolved Oxygen, Specific Conductance, Turbidity, Oxidation Reduction Potential, and Temperature
- SOG-10: Collecting Field Duplicates
- SOG-11: Sample Packing and Shipping (Soil and Water)
- SOG-12: Equipment Cleaning
- SOG-13: Personnel Cleaning
- SOG-14: Handling and Disposal of Investigation-Derived Waste
- SOG-PFAS-01: Sampling for Per- & Polyfluoroalkyl Substances (PFAS)

The SOGs identified above are generic and intended to be suitable for a variety of site conditions. There may be additional requirements for specific chemicals (e.g., PFAS). These

² As described in the RI Work Plan, sediment sample collection is not proposed at this time. If sediment sampling is proposed, this SAP/QAPP will be amended to include sediment sampling methodologies and follow Ecology's Sediment Sampling and Analysis Plan Appendix (Ecology 2008).

Sampling and Analysis Plan/Quality Assurance Project Plan \\sfocad\projects\is-proj2018\1865004.18_gp_camas\09-reports\ri wp_sap-qapp\02_revised\camas_sap_qapp_20230331.docx

specific additional requirements will be covered in an SOG, in this SAP/QAPP, and/or in the RI Work Plan. It is anticipated the specific procedures in the SOG will be modified in the field as needed to address site-specific conditions, and as described below. Deviations from the SOGs identified above will be documented in the field notes.

4.1 Utility Locating

Prior to subsurface investigation, Kennedy Jenks will coordinate the location of underground utilities adjacent to the Site sampling locations. The appropriate service (Northwest Utility Notification Center) will be contacted to locate publicly owned underground utilities before intrusive activities occur. In addition, underground utilities will be evaluated by reviewing as-built drawings of underground site utilities provided by GP and by hiring a private utility location company to locate possible underground utilities and features at subsurface investigation locations. Additional procedures for underground utility location are described in the HASP and in SOG-2: Surface and Shallow Subsurface Soil Sampling.

4.2 Sampling Locations

Soil and groundwater samples will be collected for laboratory analysis from groundwater monitoring wells and/or soil sampling locations. Sampling depths will vary across the Site based on depth to observed impacts and groundwater. Additional information on sample locations and rationale is presented in the RI Work Plan.

4.3 Sampling Frequency

Soil samples will be collected for laboratory analysis at a frequency defined in the RI Work Plan. Some soil samples retained for analysis may not be analyzed and some borings may be sampled at alternate frequency as described in the RI Work Plan.

Groundwater samples will be collected from monitoring wells at least 1 week following development. After the initial sampling event, groundwater samples will be collected using the same methods at a frequency defined in the RI Work Plan or subsequent document describing the purpose of the well and associated data collection.

4.4 Sampling Procedures

Samples will be collected in a manner consistent with the media being sampled and the analytes of interest. Sampling procedures will be carried out following the SOGs listed at the beginning of this Section. Some sources for the appropriate sampling methods include, but are not limited to:

• ASTM International. 1999. Designation: D 6452 - 99. Standard Guide for Purging Methods for Wells Used for Ground-Water Quality Investigations. Copyright ASTM, West Conshocken, PA.

- ASTM International. 2002. Designation D 6771 02. Standard Practice for Low-Flow Purging and Sampling for Wells and Devices Used for Ground-Water Quality Investigations. Copyright ASTM International, West Conshocken, PA.
- ASTM International. 2015. Standard Practice for Collection and Handling of Soils Obtained in Core Barrel Samplers for Environmental Investigations, D6640-01.
- ASTM International. 2009. Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), D2488-09a.
- U.S. Environmental Protection Agency (EPA). 2001. *Environmental Investigations Standard Operating Procedures and Quality Assurance Manual (EISOPQAM)*. Dated November 2001. U.S. EPA Region 4.
- Vroblesky, Dan A. 2001. U.S. Geological Survey, User's Guide for Polyethylene Based Passive Diffusion Bag Samplers to Obtain Volatile Organic Compound Concentrations in Wells. Part 1: Deployment, Recovery, Data Interpretation, and Quality Control and Assurance. Water-Resources Investigations Report 01-4060. Columbia, South Carolina.

The use of proper sample containers and appropriate preservation techniques when collecting samples is important. Samples will be collected in containers supplied by the analytical laboratory. Laboratory-provided containers will have been properly cleaned and of a suitable size and material to provide the analytical laboratory with sufficient sample material to conduct the requested test. Samples will also be properly preserved, or they may be rejected.

Table 2 summarizes common sample containers, preservation techniques, and holding times for the requested analytes. Sampling containers, analytical methods, preservatives and holding times may be modified as required by the selected analytical laboratory. Specific sampling methods for media of interest are discussed in greater detail in the following sections.

4.4.1 Soil Sampling

Soil sample collection is described in the RI Work Plan. Field screening and logging of soils from boring activities will be conducted by a Kennedy Jenks geologist. Field screening of soil materials will include the following:

- Visual observation of staining and other discoloration.
- Olfactory observation of petroleum hydrocarbons and other odors.
- Water-sheen testing for the presence of hydrocarbon or other sheen/film.
- Headspace analysis for organic vapors using a portable PID and headspace technique.

Field screening methodologies for soil are described in the SOG-3: Procedures for Using a Photoionization Detector (Appendix B). In addition, soils will be logged in general accordance with the United Soil Classification System and as described in SOG--4: Borehole Logging (Appendix B).

Soil samples will be collected from borings at target intervals, as described in the RI Work Plan. Soil samples will be collected as discrete samples by standard grab methods as described in the referenced SOGs and should contain as few cobbles or stones as possible. Samples will be collected in laboratory-provided sample containers as specified in Table 2. Soil samples will be packaged and handled in accordance with SOGs provided in Appendix B.

4.4.2 Water Level Monitoring

At the beginning of groundwater sample collection events, a water level measurement will be collected from each monitoring well. Water levels will be measured in accordance with SOG-7: Measuring Groundwater Levels (Appendix B).

Due to the site's proximity to the Columbia River, site groundwater may be influenced by the river. Water level measurements from monitoring wells will be compared to the Columbia River stage to monitor for impacts, if any. The following river stations will be used:

- United States Geological Survey (USGS) Station 14144700 at Vancouver³, which is approximately 13 miles downstream of the Site, and
- USGS Station 14128870 at Bonneville Dam⁴, which is approximately 24 miles upstream of the Site (on downstream side of Bonneville Dam).

4.4.3 Groundwater Sampling

Groundwater sample collection is described in the RI Work Plan. Grab groundwater samples will be collected from monitoring wells and may be collected from borings, if encountered. Grab groundwater sampling from borings will consist of collecting a groundwater sample from the uppermost saturated zone without installing a permanent monitoring well and without purging. It is expected that grab groundwater samples may be collected using clean disposable tubing connected to a peristaltic pump. After a grab groundwater sample is collected, it will be transferred to the appropriate sample containers in accordance with groundwater sampling SOG--8 in Appendix B.

Prior to collecting samples, field measurements for specific conductivity, oxidation-reduction potential, temperature, and dissolved oxygen will be obtained using a Yellow Springs Instrument (YSI meter) or equivalent. Additionally, a turbidity meter or equivalent will be used to collect turbidity measurements and a pH meter or equivalent will be used to collect pH measurements. Meter readings will be recorded at regular intervals (typically 5- to 10-minute intervals) during the purging process, including a final reading taken at the completion of purging for each well location. Purging will continue until stabilization criteria (listed in SOG-8: Groundwater Sampling and SOG--9: Measurement of Field Parameters: pH, Dissolved Oxygen, Specific Conductance, Turbidity, Oxidation -Reduction Potential, and Temperature) for each parameter have been met.

Following field measurements, groundwater samples will be collected via low-flow purging and sampling procedures and in accordance with SOG-8: Groundwater Sampling. Purge rates

Sampling and Analysis Plan/Quality Assurance Project Plan \lsfocad\projects\is-proj2018\1865004.18_gp_camas\09-reports\ri wp_sap-qapp\02_revised\camas_sap_qapp_20230331.docx

³ <u>https://waterdata.usgs.gov/monitoring-location/14144700/#parameterCode=00065&period=P7D</u>

⁴ https://waterdata.usgs.gov/monitoring-location/14128870/#parameterCode=00065&period=P7D

during groundwater sampling will be kept at or below approximately 200 milliliters per minute (mL/min) (i.e., low-flow) to reduce potential influence of turbidity on samples. Samples will be collected in laboratory-provided sample containers as specified in Table 2.

Samples may also be collected using no-purge methods [e.g., Passive Diffusion Bags (PDBs)] or HydraSleeves. Sampling procedures for no-purge methods are described in SOG-8: Groundwater Sampling.

4.5 Parameters

Soil and groundwater samples will be analyzed for chemicals of potential concern (COPCs) regardless of their solubility in water. Although there is no EPA-approved method of analyzing PFAS in media other than drinking water, the Ecology-recommended methods of the analytical [Liquid Chromatography Tandem Mass Spectrometry (LC/MS/MS) with Isotope Dilution] and QA/QC performance criteria set forth in Table B-15 of the Department of Defense's (DoD's) Quality Systems Manual (QSM) 5.4 will be used for analyzing PFAS in nondrinking water media (soil and groundwater). Samples at selected locations will be analyzed for the following compounds: polychlorinated dibenzo-*p*-dioxins/polychlorinated dibenzofurans (PCDDs/PCDFs or dioxins/furans), metals, PFAS, benzene/toluene/ethylbenzene/xylene (BTEX), volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), total petroleum hydrocarbons (TPH), polychlorinated biphenyls (PCBs), sulfur (sulfate and sulfide), total organic carbon (TOC), and general chemistry parameters outlined in Table 2. Speciated compounds to be analyzed and their respective method reporting limits and applicable screening levels are listed in Table 5⁵. Additional information on COPCs in each operational area are found in Section 3 of the RI Work Plan.

The order of sample collection, regardless of the matrix, will generally start with analytes most sensitive to bias (e.g., PFAS) and then from the most volatile to the least volatile, as shown below.

- PFAS
- VOCs⁶
- BTEX
- SVOCs
- Northwest Total Petroleum Hydrocarbons as Gasoline Extended (NWTPH-Gx), and as Diesel and Oil Extended (NWTPH-Dx)
- Pesticides (dimethyl sulfoxide [DMSO])

⁵ Reporting limits provided in Table 5 were provided by Eurofins in March 2023. If a different laboratory is used, reporting limits will be requested from that laboratory.

⁶ Ecology Draft PFAS Guidance recommends collecting VOC samples before PFAS samples if collecting solids samples (Ecology 2022c).

Sampling and Analysis Plan/Quality Assurance Project Plan \lsfocad\projects\is-proj2018\1865004.18_gp_camas\09-reports\ri wp_sap-qapp\02_revised\camas_sap_qapp_20230331.docx

- PCBs
- PCDDs/PCDFs
- Metals
- TOC
- Sulfur (sulfide and sulfate)

4.6 Sample Identification

To clearly associate a sample with sampling location and date, samples will be identified with a unique sample location identification. Sample names will generally include location code, sample depth (as appropriate), sample date, and matrix. Naming convention for groundwater samples, soil samples, field duplicates, equipment-rinsate blanks, and field blanks is outlined in Table 4.

4.7 Sample Handling and Custody

To verify the integrity of field samples, specific steps will be taken to avoid cross-contamination from containers in which the samples are stored. Sample containers will be compatible with the analyte(s) of interest. Sample containers required for collection of analytical samples for the RI are summarized in Table 2.

The purpose of sample preservation is to avoid or retard the degradation or transformation of target analytes in the field samples during transport and storage. Preservation efforts for sample integrity will be initiated at the time of sampling and will continue until the analyses are performed. Samples for chemical analysis will be packaged and stored in an appropriate manner consistent with preservation requirements for each test method. Samples will be transported directly or shipped to the analytical laboratory within a timeframe appropriate for the sample media and selected analysis under COC protocol in accordance with SOG-11: Sample Packaging and Shipping (Soil and Water) provided in Appendix B.

4.8 Equipment Cleaning

To the greatest extent possible, disposable and/or dedicated personal protective and sampling equipment will be used to avoid cross-contamination. All non-disposable sampling equipment will be cleaned between sample locations to avoid cross-contamination in accordance with procedures described in SOG-12: Equipment Cleaning. To the extent possible, sampling using non-disposable sampling equipment will begin at locations suspected to be least affected by target chemicals, progressing to the locations suspected of being most affected.

All fieldwork will be conducted according to the site-specific HASP using Level "D" personal protective equipment (PPE). In accordance with the cleaning procedures described in SOG-13: Personnel Cleaning, disposable PPE and equipment will be placed in appropriate disposal containers.

The following cleaning procedures will be used as the minimum requirements for all nondisposable equipment used to collect routine samples undergoing organic or inorganic constituent analyses:

- Clean with tap water and non-phosphate detergent using a brush if necessary to remove particulate matter and surface films. Equipment may be steam cleaned (using high-pressure hot water) as an alternative to brushing. Polyvinyl chloride (PVC) or plastic items will not be steam cleaned.
- Rinse with tap water. Repeat cleaning and tap water rinse as needed to remove particulate matter and surface films.

[NOTE: If tap water is suspected to contain target compounds, use containerized drinking water or distilled/deionized (DI) water]

- Final rinse with tap water.
- Additional final rinse with distilled/DI water.

[NOTE: Each rinse may be performed with distilled/DI water if desired, but only the final rinse needs to be performed with distilled/DI water.]

- Air-dry the equipment completely.
- Store the clean equipment in a clean container.

Cleaning will be conducted in a central location, upwind and away from suspected sources of target compounds.

4.9 Investigation-Derived Waste Management

Investigation-derived waste (IDW) may be generated during the Camas Mill Site investigation. Generally, due to the relatively small quantities generated, generated IDW such as disposable sampling equipment and protective clothing (e.g., gloves) can be disposed of at a state-permitted, licensed, or registered municipal or industrial solid waste landfill. Otherwise, IDW may include contaminated soil, water, used PPE, and cleaning water that remains after sampling. IDW will be stored in new or reconditioned, Department of Transportation (DOT)-approved, 55- or 30-gallon drums pending characterization and offsite disposal. They will be stored within a secured location on the Property.

The environmental consultant will be responsible for waste management at the Site, which includes containerizing and securing the IDW, and labeling, staging, and profiling the IDW for ultimate disposal within a timely manner and in accordance with SOG-14: Handling and Disposal of Investigation-Derived Waste. IDW drums will be placed in a configuration that allows room for inspections, operations and maintenance, and handling. Each drum will be labeled with a label that includes the following information: contents, name of generator, and date.

IDW will be characterized using the results of the investigation samples. Each IDW container will be referenced to a set of analytical (sample) data that is representative of the IDW. Before receipt of analytical data, IDW will be preliminarily characterized based on site knowledge, field observations, and field analytical data (typically hazardous vs. non-hazardous) or marked "pending analysis". Final IDW classification/characterization will be based on analytical data for investigation and/or waste characterization samples.

IDW will be disposed of promptly after characterization is performed. The IDW characterization process is outlined in EPA's (1991) *Management of Investigation-Derived Wastes During Site Inspections* and EPA's (1992) *Guide to Management of Investigation-Derived Wastes*. Classification of IDW will also follow the regulations as published in Dangerous Waste Regulations (WAC 173-303) and/or Water Quality Regulations on the basis of the laboratory analyses. IDW will also be evaluated as required by WAC 173-303-100 State Only Dangerous Waste. Once the IDW is characterized, the environmental consultant will document the proper management and/or disposal. IDW will be disposed of no more than 60 days from the end of the field work activities.

4.10 Field Equipment Calibration and Maintenance

Non-analytical instruments will be maintained in accordance with manufacturer's specifications and calibration information will be recorded on field calibration sheets on a daily basis.

Examples of field equipment subject to calibration include:

- Air-monitoring equipment PIDs
- Water quality meter (e.g., YSI or equivalent)
- Turbidity meter
- pH meter
- Water-level monitoring meter
- Field scale.

Calibration of the equipment will be in accordance with the equipment operations manual and as presented in Table 3.

Field instruments and equipment used for sample analysis will be serviced and maintained only by qualified personnel. For rented equipment, repairs, adjustments, routine maintenance, and calibrations will be documented in an appropriate logbook or data sheet that will be kept on file. The instrument maintenance and calibration records will clearly document the date; the description of the maintenance; corrective actions, if taken; the result; and who performed the work.

Section 5: Field Documentation

To correctly identify and track samples, careful sample documentation and custody procedures will be used to maintain sample integrity during collection, transport, storage, and analysis.

Field sampling personnel will be responsible for maintaining proper documentation and custody procedures from sample collection until samples are transferred to the analytical laboratory or a commercial freight carrier. The environmental consultant will review and approve field documentation. The analytical laboratory will be responsible for maintaining sample custody and documentation from the time the analytical laboratory receives the samples until final sample disposal. Field documentation and sample COC requirements are discussed below.

5.1 Documentation of Field Activities

A field logbook will be maintained by the sampling team. Field logbooks will be waterproof pages in bound notebooks, unless waterproof materials are inconsistent with the planned analysis (i.e., PFAS), or electronic files created using electronic field data collection tools. Entries to field logbooks, and other field documentation, will be made using indelible ink. Errors will be corrected by drawing a single line through the incorrect entry, entering the correct information, and dating and initialing the change. After project completion, field logbooks will be stored in the final project file.

Daily entries into the logbook or electronic files will generally include the information listed below; information recorded on field forms (i.e., boring logs, purge forms, sample data sheets, etc.) need not be duplicated in the field logbook. Where practical, photographs will be taken to document field activities.

- Date
- Sampler name
- Personnel onsite (including visitors)
- Weather conditions
- Type(s) of field equipment used
- Field equipment calibration methods (if applicable)
- Sample location and depth (locations to be logged using GPS), including description of sample location
- Sample collection method, including any deviations from SAP/QAPP
- Date and time of sample collection
- Field observations and field measurements made

- Sample identification number(s)
- Sample type (e.g., duplicates)
- Sample preservation
- Photographs (including general field activities, soil borings, and sample locations)
- Documentation for IDW (e.g., contents and approximate volume of waste, disposal method)
- Issues encountered and/or corrective actions
- Deviations from the SAP/QAPP
- Other observations that may be relevant to the specific field program or activities that may affect the resulting analytical data.

5.2 Field Forms

Field sampling personnel may complete field sample forms for soil and groundwater. As previously noted, data entered on field forms does not need to be duplicated in the field notebook.

5.3 Field Chain-of-Custody Procedures

Each sample collected will be given a unique sample number that appears on labels that are affixed to the appropriate sample containers. Sample identification numbers will also be included on the COC form to accompany each sample shipment submitted for laboratory analysis. Field sampling personnel will be responsible for uniquely identifying, labeling, and packaging samples to preclude breakage during shipment.

Samples will be placed immediately in appropriate containers with appropriate preservatives per the analytical method requirements (see Table 1). The filled containers will be tightly sealed, the outer surface wiped to remove any loose particulates, and stored in a dedicated cooler with ice (or ice packs) pending transport to the analytical laboratory.

Samples will be labeled with the following information:

- Consultant's name
- Project name/location
- Sample identification number
- Date and time of sample collection
- Preservative (if applicable)

- Analyses to be performed
- Sample matrix (i.e., water)
- Sampler's name or initials.

COC records provide documentation of the handling of each sample from the time of its collection to its destruction. Environmental consultant will initiate custody of the samples in the field and, in-turn, transfer custody of the samples to the courier (as needed), and lastly to the laboratory. COC forms will be used for recording pertinent information about the types and numbers of samples collected and shipped for analysis.

Each COC form will be completed properly to document sample custody, confirm samples have been collected, and assign intended analyses. Entries will be made using indelible ink. Errors will be corrected by drawing a single line through the incorrect entry, entering the correct information, and then initialing and dating the change. Analytical laboratories typically provide a COC form that they prefer. At a minimum, these forms will contain the following information:

- Sample identification
- Date and time of sample collection
- Sample matrix (i.e., soil, water)
- Number and type of containers per sample
- Preservative (if applicable)
- Analyses to be performed
- Sampler's name and initials
- Release and acceptance information, including date, location, and sampler's signature.

Custody seals will be used when samples are shipped to the analytical laboratory, or when they are delivered to the analytical laboratory after hours. The seals will be signed by the field personnel and be affixed to the sample cooler in a way that would necessitate breaking the seal in order to open the cooler. If the samples are delivered directly to the analytical laboratory by the sampler, sample seals are not necessary.

If the samples are shipped via a commercial carrier, the carrier will relinquish samples to the analytical laboratory upon arrival, and the analytical laboratory personnel will complete the COC form. The COC forms will be sealed in self-sealing plastic bags (or similar) and secured to the top of the lid inside the cooler with tape.

5.4 Analytical Laboratory COC Procedures

A signed COC form will be obtained from the analytical laboratory custodian after the samples have been received and sample condition recorded. Upon receipt by the analytical laboratory,

samples will be checked carefully to confirm that sample containers are not broken or leaking, proper preservation methods have been followed [including receipt at less than 4 degrees Celsius (°C) $\pm 2^{\circ}$ C for aqueous samples and less than or equal to 6°C but not frozen for organics when applicable], and labels and custody seals are intact. Each COC form will be verified for accuracy and completeness, and discrepancies will be brought to the attention of the environmental consultant. From the time of receipt, the analytical laboratory will use its standard internal COC procedures to track samples through completion of the analytical process.

Sample custody will be maintained within the analytical laboratory's secure facility until disposal. Following sample analysis and throughout the holding time, the analytical laboratory will archive remaining sample material for all samples (100 percent). The analytical laboratory will be responsible for sample disposal, which will be conducted in accordance with applicable local, state, and federal regulations.

Section 6: Laboratory Requirements

Sampling for this project includes analysis of groundwater and/or soil for dioxins/furans, metals, PFAS, TPH, VOCs, SVOCs, BTEX, PCBs, TOC, and general chemistry parameters. Analytical methods are summarized in Table 2. Laboratory analysis will occur at a laboratory that meets the accreditation standards in WAC 173-50 and in accordance with the laboratory's SOGs. The laboratory will be responsible for necessary equipment calibration procedures and laboratory instrument and equipment maintenance, testing, and inspection.

Prior to field work, Kennedy Jenks will submit a request for supplies and sample containers from vendors and laboratories. These supplies will be free of contaminants and interferences. The laboratories will provide bottles that have been certified clean. Certificates will be maintained in the project files.

Section 7: Quality Control

QC is the implementation, monitoring, and documentation of the quality processes and procedures. Procedural aspects, from project planning, sample collection, laboratory analysis, to data assessment, imparts a significant and often critical bearing on environmental decisions.

QC samples that may be used to evaluate analytical data in terms of the quality criteria parameters include duplicate samples, equipment-rinsate blanks, temperature blanks, method blanks, and matrix spike/matrix spike duplicate (MS/MSD). These include QC samples prepared in the field and by the analytical laboratory. Method-specific QC procedures are detailed in the analytical laboratory's Standard Operating Procedures (SOPs) and will be available upon request. The minimum requirements of the analytical laboratory's QA/QC plan include the frequency of QC sample analysis, acceptance criteria (control limits), and corrective actions and description of the holding time criteria to be used to assess data quality.

7.1 Field QC Requirements Samples

For field sampling, QC samples are used to assess sample collection techniques and environmental conditions during sample collection and transport. For this project, field QC samples include duplicate samples and temperature blanks. Equipment rinsate blanks may be collected if appropriate reusable field equipment is used. QC samples and frequency of collection are discussed in the following sections. A summary of specifications for containers, holding times, preservation, and handling for each matrix and analysis group is shown in Table 1.

7.1.1 Duplicate Samples

Duplicate samples may be used to assess variability in sampling techniques. Duplicate samples will be collected in accordance with SOG-10. A duplicate sample pair is typically a single grab sample that is split into two samples during collection. For each duplicate sample pair, one sample is labeled with the sample identification and the other is labeled with a blind duplicate sample identification. This sample pair is then submitted to the same analytical laboratory as two separate samples. Precision will be evaluated by calculating the RPD between the field duplicate samples. The RPD will be calculated for field duplicate pairs for each analyte whose measured values are greater than twice the MRL.

The frequency for duplicate samples shall typically be one per 20 investigative samples, with a minimum of one duplicate within each media per sampling event. If insufficient groundwater is present in the intended well to collect a duplicate for all analytes, an attempt will be made to collect a duplicate at an alternate well. When recurring sampling provides information about the likely range of results, duplicate samples will be collected from locations where concentrations are likely to be above five times the detection limit for the analyzed compounds to allow RPD calculations.

7.1.2 Equipment-Rinsate Blanks/Field Blanks

Equipment-rinsate blanks consist of analyte- and reagent-free water (preferably provided by the analytical laboratory) that is poured over reusable sampling equipment after standard cleaning has been performed. The runoff (rinsate) is collected in clean sample containers appropriate for the analyses being performed. Typically, equipment-rinsate blanks are analyzed for the same parameters as the associated environmental samples that were collected using the sampling equipment.

Equipment blanks are commonly used to evaluate the effectiveness of cleaning of sampling equipment, and data validation protocols include steps for evaluating equipment-rinsate blank results and application of appropriate data qualifiers when blank results indicate the potential for cross-contamination of field samples. Potential sources of bias or cross-contamination include sampling gloves and sampling equipment that may incidentally come into contact with the sample.

Equipment-rinsate blanks are analyzed as regular field samples for the same suite of analytical parameters as the associated samples. Equipment-rinsate blanks will not be designated for analytical laboratory use in preparation of MS or analytical duplicate samples. Equipment-rinsate blanks may be collected at a minimum frequency of one per every 20 field samples when non-dedicated sampling equipment is used and will only be collected for aqueous samples.

If no reusable sampling equipment is used, a field blank may be collected in lieu of an equipment-rinsate blank. A field blank is collected by pouring analyte- and reagent-free water directly into sample containers at a location that is within the boundaries of the work area at the Site.

7.1.3 Temperature Blanks

A temperature blank is used to monitor temperature preservation of samples transported to the contract analytical laboratory. The temperature blank is distilled water stored in a glass/plastic vial or jar and is typically provided by the analytical laboratory. A temperature blank will be included with each sample cooler submitted for chemical analysis. Upon receipt by the analytical laboratory, the sample custodian will measure and record the temperature of the blank sample.

Temperature blanks are commonly used to evaluate the effectiveness of preservation requirements (e.g., chilling samples on ice during shipment to the analytical laboratory) and application of appropriate data qualifiers when blank results indicate the potential for elevated temperatures to affect field samples during transport to the analytical laboratory. Typically, the temperature blank must be within the criteria of $4\pm 2^{\circ}C$ ($2^{\circ}C$ to $6^{\circ}C$).

Section 8: Data Management, Review, and Reporting

8.1 Laboratory Data Reporting

The analytical laboratory is responsible for providing sufficient laboratory documentation such that the sample results are traceable to the field samples, and the analytical data can be verified and validated by an independent third-party reviewer, if applicable. Analytical laboratory data packages will contain the following information:

- Cover letter
- COC forms
- Summary of sample results
- Summary of QC results.

The minimum information to be presented for each sample for each parameter or parameters group:

- Client sample number and analytical laboratory sample number
- Sample matrix
- Date of extraction/preparation and date/time of analysis
- Dilution factors
- Sample weights/volumes used in sample preparation/analysis
- Identification of analytical instrument
- Analytical method
- Detection/quantitation and reporting limits
- Definitions of any data qualifiers used.

The minimum QC summary information to be presented for each sample for each parameter or parameter group will include:

- Surrogate standard recovery results
- Matrix QC results (MS/MSD, duplicate)

- Method blank results
- Laboratory duplicate results and control limits.

Electronic data deliverables (EDDs) from the laboratory will be provided in an EQuIS EQEDD format. Analytical data collected as part of this program will be incorporated into a database system maintained by the environmental consultant.

8.2 Data Management

Collection and recording of field observations, field measurements, analytical data, and other data management activities will be performed and documented such that project team members can use the information. Field and analytical data typically will be summarized in a tabular or other appropriate format. Information and data will be reported as required by Ecology in the AO. For analytical data, units designated by the analytical method will be reported. Analytical data will be verified with the original sources of laboratory data whenever transcription is required.

Deviation(s) from the SAP and QAPP will be communicated to Ecology when results are reported. As required by the AO, new site data and information will be provided to Ecology in the quarterly Progress Reports as it is available, and laboratory analysis will be provided in electronic format when it has been validated. It is understood that Ecology will be responsible for entering sampling data in the Environmental Information Management System (EIM) in accordance with WAC 173-340-840(5) and Ecology's Toxics Cleanup Program Policy 840: Data Submittal Requirements. Electronic survey data for monitoring locations, electronic lab data, and GIS maps will be provided to Ecology in the RI Report.

8.3 Data Review and Validation

This section discusses data review and verification procedures and requirements.

Field and analytical laboratory data generated from sampling activities will be reviewed and verified. Field data entered into databases will be verified. Errors identified during the verification of data will be corrected prior to release of the final data.

The analytical laboratory is responsible for verifying analytical results prior to the submittal of the final laboratory data report. Initially, all analytical data generated by the analytical laboratory are verified by the laboratory. During the analysis process, the analyst and the laboratory QA Manager verify that the results have met various performance-based control limits (e.g., surrogate recoveries and continuing calibration). Nonconformance of various method QC requirements and control limits warrants the re-analysis and/or re-extraction of a sample.

Data validation will be conducted in general accordance with applicable sections of EPA's National Functional Guidelines for Organic and Inorganic Data Review (EPA 2020a, 2020b). Other versions of the National Functional Guidelines may be used as released in the future by EPA. In addition to the National Functional Guidelines, other EPA guidance, and project specific considerations may be used to conduct validation. For each data package, the environmental consultant's QA Officer will conduct a review of the QC results. Validation will be completed as

appropriate for each data set and consistent with the planned use. If data do not meet required criteria, they will be flagged with data qualifiers as specified in the national functional guidelines (EPA 2020a, 2020b). Data validation procedures will entail evaluating the following:

- Preservation and holding times (check to see whether samples were properly preserved and analyzed within the specified holding time)
- Method blank results [check to see whether analytes were present in method blank samples and that a blank was analyzed every 20 samples (or more often) for each matrix]
- Surrogate recovery results for organic analyses (check to see whether surrogate recoveries met control limits)
- Laboratory control sample results (check to see whether laboratory control samples met control limits)
- Field duplicate results
- Field blank results, where appropriate
- Laboratory duplicate results (check to see whether duplicate analyses were conducted every 20 samples for each matrix or at least for each batch of samples, where applicable, and that control limits were met)
- MS/MSD results for all relevant analyses (check to see whether matrix spike and matrix spike duplicates were analyzed every 20 samples for each matrix or at least for each batch of samples, where applicable, and that control limits were met)
- Reported detection limits for analyses (check to see if the detection/reporting limits were adequate for comparison to appropriate regulatory criteria).

The QA Officer will prepare a QA evaluation for each data package describing the decisions and the qualifiers assigned to results as a result of the validation. Limitations to the usability of the data will also be discussed and presented with the report of the data.

8.4 Data Reporting

Data collected during this site investigation will be incorporated into the RI Report, to be submitted to Ecology as described in the RI Work Plan and the AO. The report will include the following:

- A description of the sampling activities and procedures used during sampling.
- A description of the analysis performed on the samples.
- Tabulated analytical results.

- A summary of deviations from the procedures described in this SAP/QAPP, if applicable.
- COC records.
- Laboratory reports.
- Data validation reports.

Deliverables will be provided to Ecology electronically in Adobe (.pdf) format for all documents. Deliverables may be provided in Word (.docx) format as appropriate and required by the AO.

8.5 Data Usability

Laboratory data generated in accordance with this SAP/QAPP will be considered usable for site characterization and to direct future remedial actions unless the data validation process described herein results in rejection of data. Rejected data will not be used to support site characterization or any other project objective.

After environmental data have been reviewed, verified, and validated in accordance with the procedures described in this SAP/QAPP, the data must further be evaluated to assess whether project data quality objectives have been achieved. DQOs may be evaluated by a review of the sampling design and methods to verify that these were implemented as planned and are adequate to support project objectives, a review of issues brought up during data review and validation, and an evaluation of the limitations of the collected data.

Reports or technical memorandum in which data for this project are reported will discuss potential impacts of data usability and will clearly define limitations associated with the data.

References

- Brynelson, Troy and Littman, Adam. 2017. As Paper Mill's Presence Fades, Camas Grapples with Identity, Its Future. The Columbian Newspaper. 26 November. Accessed online.
- Washington State Department of Ecology (Ecology). 2004. Guidelines for Preparing Quality Assurance Project Plans for Environmental Studies. July. <u>https://apps.ecology.wa.gov/publications/documents/0403030.pdf</u>
- Ecology. 2008. Sediment Sampling and Analysis Plan Appendix. February. <u>https://clu-in.org/download/contaminantfocus/sediments/WA-state-characterization-guidance.pdf</u>
- Ecology. 2022a. Focus on: PFAS Cleanup Levels. Publication No. 22-09-075. July. https://apps.ecology.wa.gov/publications/documents/2209075.pdf
- Ecology. 2022b. Letter from Mady Lyon, Ecology, to Sean Thomas Wood, Georgia-Pacific Consumer Operations LLC, RE: Georgia Pacific Camas Draft Remedial Investigation Work Plan Review. November 4.
- Ecology. 2022c. Draft Guidance for Investigating and Remediating PFAS Contamination in Washington State. Publication No. 22-09-058. December. https://apps.ecology.wa.gov/publications/documents/2209058.pdf
- GRES. 2023. Letter from Matt Tiller, Georgia-Pacific Consumer Operations LLC, to Mady Lyon, Department of Ecology, Draft RI Work Plan – Response to Ecology Comments. 3 February.
- Kennedy Jenks. 2022. Agency Review Draft Remedial Investigation Workplan. Prepared for Georgia-Pacific Consumer Operations LLC. 3 January.
- U.S. Environmental Protection Agency. 1991. Management of Investigation-Derived Wastes During Site Inspections. Office of Emergency and Remedial Response. EPA/540/G-91/009. May.
- U.S. Environmental Protection Agency. 1992. Guide to Management of Investigation-Derived Wastes. Office of Solid Waste and Emergency Response. 9345.3-03F3. January.
- U.S. Environmental Protection Agency. 2020a. National Functional Guidelines for Inorganic Superfund Methods Data Review.
- U.S. Environmental Protection Agency. 2020b. National Functional Guidelines for Organic Superfund Methods Data Review.

Tables

Table 1: Key Personnel Roles, Responsibilities and Qualifications

Name/Role	Organization	Responsibilities	Qualifications / Years of Experience
Matt Tiller Georgia-Pacific Project Coordinator	Georgia-Pacific	Manages RI activities for Georgia-Pacific Consumer Products LLC, with assistance of other Georgia-Pacific personnel and Kennedy Jenks.	NA
Jeremie Maehr Technical Expert	Kennedy Jenks	Assists Georgia-Pacific with managing the RI program, reviews project deliverables for Quality Assurance/Quality Control (QA/QC), and participates in communications by Georgia-Pacific to Ecology.	B.S. Civil Engineering 26 years
Rachel Morgan Project Manager	Kennedy Jenks	Manages RI activities on behalf of Georgia-Pacific. Monitors RI activities for compliance with Agreed Order, Statement of Work, and schedule.	B.S. Environmental Engineering 10 years
John Jindra Corporate Health and Safety Officer	Kennedy Jenks	Oversees company-wide health and safety program for Kennedy Jenks.	NA
Ella Gyerko Project Health and Safety and Field Team Leader	Kennedy Jenks	Serves as Site Health and Safety Officer for on-site activities. Coordinates and oversees sampling events and analytical data assessment activities, verifies adherence to sampling and analytical procedures, implements sample chain-of-custody protocols and performs sample shipments. Prepares or coordinates project report deliverables required by Statement of Work.	M.S., Civil & Environmental Engineering 2 years
Janice Sloan QA Officer and Laboratory Coordinator	Kennedy Jenks	Functions as point of contact for analytical laboratories; oversees analytical, sampling, and data assessment activities; verifies adherence to sampling and analytical procedures; reviews data validation and sampling and analysis plans; verifies data validation completion and deliverables submittal to Ecology; and monitors schedule for field, analytical, and data validation activities. Prepares or coordinates project report deliverables required by Statement of Work.	B.S. Biology M.S. Environmental Science 17 years

Notes:

NA = not applicable Resumes available upon request.

Table 2: Sample Containers

Analyte	Method	Soil Samples								
· · · · · · · · · · · · · · · · · · ·		Containers	Preservatives	Holding Time						
Polychlorinated Dibenzo-p-dioxins and Polychlorinated Dibenzofurans	EPA SW8290	1 x 4 oz amber glass jar	Unpreserved	30 days						
Perfluoroalkyl Substances (PFAS)	EPA SW537M	1 x 4oz teflon free plastic	Unpreserved	14 days						
Gasoline-range TPH	NWTPH-Gx (gasoline)	1 x 40 mL Voa vial	Methanol	14 days						
Diesel- and Heavy Oil-range Petroleum Hydrocarbons	NWTPH-Dx (diesel extended)	1 x 4 oz glass jar	Unpreserved	14 days						
Benzene, Toluene, Ethylbenzene, Xylene (BTEX)	EPA SW8260	1 x 40 mL Terracore	Methanol	14 days						
Methyl tert-butyl ether (MTBE)	EPA SW8260	1 x 40 mL Terracore	Methanol	14 days						
Metals	EPA SW6010 EPA SW7470 (Hg)	1 x 4 oz glass jar	Unpreserved	6 months; 28 days for Hg; 18 days for Cr						
Volatile Organic Compounds (VOCs)	EPA SW8260	1 x 40 mL Voa vial	Methanol	14 days						
Semi-Volatile Organic Compounds (SVOCs)	EPA SW8270E SIM	1 x 4 oz amber glass jar	Unpreserved	14 days						
Total Organic Carbon (TOC)	SM9060M	1 x 4 oz glass jar	Unpreserved	28 days						
Pesticides (e.g., DMSO)	EPA 8081	1 x 4 oz amber glass jar	Unpreserved	14 days						
Sulfide	EPA 9030M	1 x 4 oz amber glass jar	zinc acetate	7 days						
Sulfate	300	1 x 4 oz glass jar	Unpreserved	28 days						
Moisture	Percent Moisture	1 x 4 oz glass jar	Unpreserved	6 months						
Polychlorinated Biphenyls (PCBs)	EPA SW8082	1 x 8 oz jar	Unpreserved	14 days						

Note:

(a) Sampling containers, analytical methods, preservatives, and holding times may be modified as required by the selected analytical laboratory. Abbreviations:

EPA = United States Environmental Protection Agency

HCI = hydrochloric acid

HDPE = high density polypropylene

Cr = chromium

Hg = mercury

mL = milliliters NA = Not applicable (no analyses for analyte/media) oz = ounce TPH = total petroleum hydrocarbons

Table 2: Sample Containers

Analyte	Method	Groundwater Samples								
,, , .		Containers	Preservatives	Holding Time						
Polychlorinated Dibenzo-p-dioxins and Polychlorinated Dibenzofurans	EPA SW8290	2 x 1 liter amber glass bottles	Unpreserved	1 year						
Perfluoroalkyl Substances (PFAS)	EPA SW537M	2 x 250 mL plastic (Teflon free)	Unpreserved	14 days						
Gasoline-range TPH	NWTPH-Gx (gasoline)	3 x 40 mL glass Voa vials	HCI	14 days						
Diesel- and Heavy Oil-range Petroleum Hydrocarbons	NWTPH-Dx (diesel extended)	2 x 250 mL amber glass	HCI	14 days						
Benzene, Toluene, Ethylbenzene, Xylene (BTEX)	EPA SW8260	3 x 40 mL glass vials	HCI	14 days						
Methyl tert-butyl ether (MTBE)	EPA SW8260	3 x 40 mL glass vials	HCI	14 days						
Metals	EPA SW6010 EPA SW7470 (Hg)	1 x 250 mL HDPE	HNO3	6 months; 28 days for Hg; 18 days for Cr						
Volatile Organic Compounds (VOCs)	EPA SW8260	3 x 40 mL glass vials	HCI	14 days						
Semi-Volatile Organic Compounds (SVOCs)	EPA SW8270E SIM	2 x 250 mL amber glass	Unpreserved	7 days						
Total Organic Carbon (TOC)	EPA SW5310	40 mL amber glass	H2SO4	28 days						
Pesticides (e.g., DMSO)	EPA 8081	2 x 250 mL amber glass	Unpreserved	7 days						
Sulfide	SM4500-S2-D	250 mL glass	zinc acetate/NaOH preserved	7 days						
Sulfate	300	250 mL plastic unpreserved	Unpreserved	28 days						
Moisture										
Polychlorinated Biphenyls (PCBs)	EPA SW8082	2 x 250 mL amber glass	Unpreserved	7 days						

Note:

(a) Sampling containers, analytical methods, preservatives, and holding times may be modified as required by the selected analytical laboratory. Abbreviations:

EPA = United States Environmental Protection Agency

HCI = hydrochloric acid

HDPE = high density polypropylene

Cr = chromium

Hg = mercury

mL = milliliters NA = Not applicable (no analyses for analyte/media) oz = ounce TPH = total petroleum hydrocarbons

Table 3: Field Instruments – Preventative Maintenance Table

Instrument	Activity	Frequency		
	Calibration and Calibration Check – pre-sampling event	Once Prior to Sampling Event		
	Battery check			
Multi-Parameter Water Quality Meter	Calibration – beginning of day			
	Calibration check – beginning of the day	Daily		
	Possible mid-day calibration check			
	Calibration check – end of day			
	Calibration and Calibration Check – pre-sampling event	Once Prior to Sampling Event		
	Battery check			
Turbidity Meter	Calibration – beginning of day			
	Calibration check – beginning of the day	Daily		
	Possible mid-day calibration check			
	Calibration check – end of day			
	Calibration and Calibration Check – pre-sampling event	Once Prior to Sampling Event		
	Battery check			
Photoionization Detector (PID)	Calibration – beginning of day			
	Calibration check – beginning of the day	Daily		
	Possible mid-day calibration check			
	Calibration check – end of day			
Electronic Water Level Indicator	Battery check	Daily		

Table 4: Sample Identification

Sample Type	Format	Example
Subsurface soil boring sample	BB-ID(LD-UPft)(yyyymmdd)(SO)	MW-B3.1(09.5-10.0ft)(20220810)(SO)
Groundwater grab sample	BB-ID(yyyymmdd)(GW)	MW-B3.1(20220810)(GW)
Groundwater PDB sample	BB-ID(LD-UP)(yyyymmdd)(GW)	MW-B3.1(25-27)(20220810)(GW)
Soil sample	SS-###(LD-UPft)(yyyymmdd)(SO)	SS-024(09.5-10.0ft)(20220810)(SO)
Field duplicate	DUP-##(yyyymmdd)(ME)	DUP-02(20220810)(GW)
Equipment-rinsate blank	EB-##(yyyymmdd)	EB-02(20220810)
Field blank	FB-##(yyyymmdd)	FB-02(20220810)
Trip blank	TB-##(yyyymmdd)	TB-02(20220810)

Abbreviations:

BB = type of boring location (e.g., "SB" for soil boring, "MW" for monitoring well)

 ID = location identification (e.g., "BB-ID" for a monitoring well MW-B3.1 would be

"MW-B3.1", "BB-ID" for a soil boring at location 4 would be "SB-04")

MW = Monitoring Well

SB = soil boring

DUP = duplicate

EB = equipment blank

FB = field blank

TB = trip blank

SO = sample media is soil

GW = sample media is groundwater

Sampling and Analysis Plan Georgia-Pacific LLC Camas Mill Camas, Washington ME = media type (e.g., soil or groundwater)

= sample number

LD = lower depth of sample, with two digits and one decimal point (e.g., 05.5 for 5.5 feet)

UD = upper depth of sample, with two digits and one decimal point (e.g., 05.5 for 5.5 feet)

yyyymmdd = four-digit year, two-digit month, two-digit date (e.g., 20220810 for 10 August 2022)

							MTCA Cleanup Level (a)						
							Method A	Method B (Cancer)	Method B (Noncancer)	Method C (Cancer)	Method C (Noncancer)	Protective of Groundwater Vadose @ 13 degrees C	Protective of Groundwater Saturated
METHOD	ANALYTE	CAS No.	MATRIX	MDL (b)	MRL (b)	UNITS	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
8260D	Dichlorodifluoromethane	75-71-8	Soil	0.0459	0.25	mg/Kg			16000		700000	0.53	38
8260D	Chloromethane	74-87-3	Soil	0.0101	0.06	mg/Kg							
8260D	Vinyl chloride	75-01-4	Soil	0.0187	0.1	mg/Kg		0.67	240	88	11000	0.000090	0.0017
8260D	Bromomethane	74-83-9	Soil	0.0378	0.1	mg/Kg			110		4900	0.0033	0.051
8260D	Chloroethane	75-00-3	Soil	0.0209	0.08	mg/Kg							
8260D	Trichlorofluoromethane	75-69-4	Soil	0.026	0.08	mg/Kg			24000		1100000	0.79	23
8260D	1,1-Dichloroethene	75-35-4	Soil	0.0123	0.04	mg/Kg			4000		180000	0.0025	0.046
8260D	Methylene Chloride	75-09-2	Soil	0.026	0.25	mg/Kg	0.020	94	480	66000	21000	0.0015	0.022
8260D	trans-1,2-Dichloroethene	156-60-5	Soil	0.0146	0.06	mg/Kg			1600		70000	0.032	0.52
8260D	1,1-Dichloroethane	75-34-3	Soil	0.0092	0.04	mg/Kg		180	16000	23000	700000	0.0026	0.041
8260D	cis-1,2-Dichloroethene	156-59-2	Soil	0.0126	0.06	mg/Kg			160		7000	0.0052	0.079
8260D	Bromochloromethane	74-97-5	Soil	0.0062	0.04	mg/Kg							
8260D	Chloroform	67-66-3	Soil	0.0042	0.02	mg/Kg		32	800	4200	35000	0.0048	0.074
8260D	1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	Soil	0.0153	0.06	mg/Kg			2400000		110000000	120	7600
8260D	1,1,1-Trichloroethane	71-55-6	Soil	0.0046	0.04	mg/Kg	2.0		160000		700000	0.084	1.5
8260D	Carbon tetrachloride	56-23-5	Soil	0.0044	0.02	mg/Kg		14	320	1900	14000	0.0022	0.041
8260D	Carbon disulfide	75-15-0	Soil	0.0121	0.06	mg/Kg			8000		350000	0.25	4.1
8260D	1,1-Dichloropropene	563-58-6	Soil	0.0053	0.04	mg/Kg							
8260D	Benzene	71-43-2	Soil	0.0038	0.02	mg/Kg	0.030	18	320	2400	14000	0.0017	0.027
8260D	Acetone	67-64-1	Soil	0.174	0.8	mg/Kg			72000		3200000	2.1	29
8260D	Methyl acetate	79-20-9	Soil	0.0268	0.1	mg/Kg			80000		3500000	2.3	33
8260D	1,2-Dichloroethane	107-06-2	Soil	0.0055	0.02	mg/Kg		11	480	1400	21000	0.0016	0.023
8260D	Trichloroethene	79-01-6	Soil	0.0103	0.04	mg/Kg	0.030	12	40	2900	1800	0.0015	0.025
8260D	1,2-Dichloropropane	78-87-5	Soil	0.0066	0.02	mg/Kg		27	3200	3500	140000	0.0017	0.025
8260D	Bromodichloromethane	75-27-4	Soil	0.0055	0.04	mg/Kg		16	1600	2100	70000	0.0022	0.033
8260D	cis-1,3-Dichloropropene	10061-01-5	Soil	0.004	0.02	mg/Kg							
8260D	Toluene	108-88-3	Soil	0.0135	0.06	mg/Kg	7.0		6400		280000	0.27	4.5
8260D	trans-1,3-Dichloropropene	10061-02-6	Soil	0.007	0.04	mg/Kg							
8260D	1,1,2-Trichloroethane	79-00-5	Soil	0.0074	0.02	mg/Kg		18	320	2300	14000	0.0011	0.017
8260D	Tetrachloroethene	127-18-4	Soil	0.0053	0.04	mg/Kg	0.050	480	480	63000	21000	0.0028	0.050
8260D	Dibromochloromethane	124-48-1	Soil	0.0049	0.02	mg/Kg		12	1600	1600	70000	0.0017	0.024
8260D	1,2-Dibromoethane	106-93-4	Soil	0.0038	0.02	mg/Kg	0.0050	0.50	720	66	32000	0.000018	0.00027
8260D	Chlorobenzene	108-90-7	Soil	0.0048	0.04	mg/Kg			1600		70000	0.051	0.86
8260D	Ethylbenzene	100-41-4	Soil	0.0091	0.04	mg/Kg	6.0		8000		350000	0.34	5.9
8260D	2-Butanone (MEK)	78-93-3	Soil	0.0825	0.4	mg/Kg			48000		2100000	1.4	20
8260D	1,1,2,2-Tetrachloroethane	79-34-5	Soil	0.0076	0.02	mg/Kg		5.0	1600	660	70000	0.000080	0.0012
8260D	m-Xylene & p-Xylene	179601-23-1	Soil	0.0071	0.04	mg/Kg							
8260D	o-Xylene	95-47-6	Soil	0.005	0.04	mg/Kg			16000		700000	0.84	14
8260D	Styrene	100-42-5	Soil	0.0127	0.04	mg/Kg			16000		700000	0.12	2.2
8260D	Bromotorm	/5-25-2	Soil	0.0045	0.04	mg/Kg		130	1600	17000	70000	0.023	0.36
8260D	Isopropylbenzene	98-82-8	Soil	0.0086	0.04	mg/Kg			8000		350000	0.79	15
8260D	Cyclohexane	110-82-7	Soil	0.0097	0.04	mg/Kg							
8260D	1,2,3-Trichloropropane	96-18-4	Soil	0.0115	0.04	mg/Kg		0.0063	320	4.4	14000	0.00000015	0.0000024
8260D	1,3,5-Trimethylbenzene	108-67-8	Soil	0.0076	0.04	mg/Kg			800		35000	0.071	1.3

Sampling and Analysis Plan Georgia-Pacific Consumer Products LLC Camas, Washington

							MTCA Cleanup Level (a)						
								Method B	Method B	Method C	Method C	Protective of Groundwater Vadose @ 13	Protective of Groundwater
							Method A	(Cancer)	(Noncancer)	(Cancer)	(Noncancer)	degrees C	Saturated
METHOD	ANALYTE	CAS No.	MATRIX	MDL (b)	MRL (b)	UNITS	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
8260D	1,2,4-Trimethylbenzene	95-63-6	Soil	0.0135	0.04	mg/Kg			800		35000	0.072	1.3
8260D	Methylcyclohexane	108-87-2	Soil	0.0124	0.06	mg/Kg							
8260D	1,3-Dichlorobenzene	541-73-1	Soil	0.0133	0.06	mg/Kg							
8260D	1,4-Dichlorobenzene	106-46-7	Soil	0.0108	0.06	mg/Kg		190	5600	24000	250000	0.068	1.2
8260D	1,2-Dichlorobenzene	95-50-1	Soil	0.0087	0.04	mg/Kg			7200		320000	0.40	7.0
8260D	1,2-Dibromo-3-Chloropropane	96-12-8	Soil	0.0152	0.06	mg/Kg		0.23	16	160	700	0.000058	0.00091
8260D	4-Methyl-2-pentanone (MIBK)	108-10-1	Soil	0.0188	0.1	mg/Kg			6400		280000	0.19	2.7
8260D	1,2,4-Trichlorobenzene	120-82-1	Soil	0.0426	0.08	mg/Kg		34	800	4500	35000	0.029	0.56
8260D	1,2,3-Trichlorobenzene	87-61-6	Soil	0.0397	0.08	mg/Kg			64		2800	0.011	0.20
8260D	2-Hexanone	591-78-6	Soil	0.0289	0.1	mg/Kg			400		18000	0.012	0.17
8260D	Methyl tert-butyl ether	1634-04-4	Soil	0.006	0.04	mg/Kg	0.10	560		73000		0.0072	0.10
8270E_SIM_ID_D5	1,4-Dioxane	123-91-1	Soil	0.00461	0.02	mg/Kg		10	2400	1300	110000	0.00013	0.0018
NWTPH_Gx_MS	Gasoline	STL00228	Soil	0.57	4	mg/Kg							
NWTPH_Dx	#2 Diesel (C10-C24)	STL00163	Soil	12.3	50	mg/Kg							
NWTPH_Dx	Motor Oil (>C24-C36)	STL00299	Soil	17.5	50	mg/Kg							
8270E_LL	Phenol	108-95-2	Soil	0.0111	0.05	mg/Kg			24000		1100000	2.3	37
8270E_LL	Bis(2-chloroethyl)ether	111-44-4	Soil	0.000354	0.005	mg/Kg		0.91		120		0.000014	0.00022
8270E_LL	2-Chlorophenol	95-57-8	Soil	0.0011	0.005	mg/Kg			400		18000	0.027	0.47
8270E_LL		95-48-7	Soll	0.00751	0.03	mg/Kg			4000		180000	0.47	8.1
82/0E_LL		15831-10-4	Soll	0.0107	0.04	mg/Kg							
82/0E_LL	N-Nitrosodi-n-propylamine	621-64-7	Soll	0.00725	0.03	mg/Kg		0.14		19		0.000070	0.00012
82/UE_LL	Hexachioroethane	07-72-1	Soll	0.00122	0.005	mg/Kg		25	50	3300	2500	0.00053	0.0088
02/UE_LL		90-90-3	Soil	0.00302	0.01	mg/Kg		1100	16000	140000	7000	0.0000	0.10
02/UE_LL	2 Nitrophonol	70-09-1	Soll	0.0290	0.15	mg/Kg		1100	10000	140000	700000	0.032	0.49
8270E LL	2.4 Dimethylphonel	105 67 0	Soil	0.00419	0.02	mg/Kg			1600		70000	0.25	
8270E_LL	Bis(2 chloroethoxy)methane	111 01 1	Soil	0.0139	0.05	mg/Kg			240		11000	0.23	4.4
8270E_LL		120-83-2	Soil	0.000033	0.003	mg/Kg			240		11000	0.014	0.21
8270E_LL	Nanhthalene	01_20_3	Soil	0.0015	0.01	mg/Kg	5.0		1600		70000	0.021	4.5
8270E_LL	4-Chloroaniline	106-47-8	Soil	0.0100	0.00	mg/Kg	5.0	5.0	320	660	14000	0.24	0.0027
8270E LL	Hexachlorobutadiene	87-68-3	Soil	0.000000	0.02	mg/Kg		13	80	1700	3500	0.00063	0.0027
8270E LL	4-Chloro-3-methylphenol	59-50-7	Soil	0.00216	0.02	mg/Kg			8000		350000	1 2	22
8270E LL	2-Methylnaphthalene	91-57-6	Soil	0.0127	0.05	mg/Kg			320		14000	0.088	1 7
8270E LL	Hexachlorocyclopentadiene	77-47-4	Soil	0.000562	0.005	ma/Ka			480		21000	0.081	1.5
8270E LL	2.4.6-Trichlorophenol	88-06-2	Soil	0.00352	0.02	ma/Ka		91	80	12000	3500	0.0053	0.092
8270E LL	2.4.5-Trichlorophenol	95-95-4	Soil	0.00192	0.01	ma/Ka			8000		350000	3.0	58
8270E LL	2-Chloronaphthalene	91-58-7	Soil	0.00422	0.02	ma/Ka			6400		280000	1.8	34
8270E LL	2-Nitroaniline	88-74-4	Soil	0.00143	0.01	mg/Kg			800		35000	0.064	1.0
8270E LL	Dimethyl phthalate	131-11-3	Soil	0.000692	0.005	mg/Kg							
8270E_LL	Acenaphthylene	208-96-8	Soil	0.000593	0.005	mg/Kg							
8270E_LL	2,6-Dinitrotoluene	606-20-2	Soil	0.000565	0.005	mg/Kg		0.67	24	88	1100	0.000051	0.00092
8270E_LL	3-Nitroaniline	99-09-2	Soil	0.00728	0.03	mg/Kg							
8270E_LL	Acenaphthene	83-32-9	Soil	0.0026	0.01	mg/Kg			4800		210000	2.5	49
8270E_LL	2,4-Dinitrophenol	51-28-5	Soil	0.0644	0.25	mg/Kg			160		7000	0.0092	0.13

Sampling and Analysis Plan Georgia-Pacific Consumer Products LLC Camas, Washington

							MTCA Cleanup Level (a)						
							Method A	Method B (Cancer)	Method B (Noncancer)	Method C (Cancer)	Method C (Noncancer)	Protective of Groundwater Vadose @ 13 degrees C	Protective of Groundwater Saturated
METHOD	ANALYTE	CAS No.	MATRIX	MDL (b)	MRL (b)	UNITS	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
8270E_LL	4-Nitrophenol	100-02-7	Soil	0.0199	0.07	mg/Kg							
8270E_LL	Dibenzofuran	132-64-9	Soil	0.00508	0.02	mg/Kg			80		3500	0.076	1.5
8270E_LL	2,4-Dinitrotoluene	121-14-2	Soil	0.0027	0.02	mg/Kg		3.2	160	420	7000	0.00024	0.0044
8270E_LL	Diethyl phthalate	84-66-2	Soil	0.00465	0.02	mg/Kg			64000		2800000	4.7	72
8270E_LL	4-Chlorophenyl phenyl ether	7005-72-3	Soil	0.00156	0.01	mg/Kg							
8270E_LL	Fluorene	86-73-7	Soil	0.00283	0.01	mg/Kg			3200		140000	2.6	51
8270E_LL	4-Nitroaniline	100-01-6	Soil	0.00492	0.02	mg/Kg		50	320	6600	14000	0.0017	0.027
8270E_LL	4,6-Dinitro-2-methylphenol	534-52-1	Soil	0.0106	0.05	mg/Kg			6.4		280	0.0013	0.024
8270E_LL	N-Nitrosodiphenylamine	86-30-6	Soil	0.00858	0.03	mg/Kg		200		27000		0.052	1.0
8270E_LL	4-Bromophenyl phenyl ether	101-55-3	Soil	0.00159	0.01	mg/Kg							
8270E_LL	Hexachlorobenzene	118-74-1	Soil	0.00305	0.01	mg/Kg		0.63	64	82	2800	0.022	0.44
8270E_LL	Pentachlorophenol	87-86-5	Soil	0.00316	0.02	mg/Kg		2.5	400	330	18000	0.00088	0.016
8270E_LL	Phenanthrene	85-01-8	Soil	0.00398	0.02	mg/Kg							
8270E_LL	Anthracene	120-12-7	Soll	0.00529	0.02	mg/Kg			24000		1100000	57	1100
8270E_LL		84-74-2	Soll	0.00669	0.03	mg/Kg			8000		350000	3.0	57
8270E_LL	Fluoranthene	206-44-0	Soil	0.00233	0.01	mg/Kg			3200		140000	32	630
8270E_LL	Pyrene Database	129-00-0	Soil	0.00153	0.01	mg/Kg			2400		110000	16	330
8270E_LL	Butyl benzyl phthalate	85-68-7	Soll	0.0143	0.05	mg/Kg		530	16000	69000	700000	0.65	13
8270E_LL	3,3'-Dichlorobenzidine	91-94-1	Soll	0.0112	0.05	mg/Kg		2.2		290		0.00068	0.013
82/UE_LL	Benzolajanthracene	50-55-3	Soll	0.000983	0.005	mg/Kg							
8270E_LL	Chrysene	218-01-9	Soll	0.00153	0.01	mg/Kg							
82/UE_LL	Bis(2-ethylnexyl) phthalate	117-81-7	Soll	0.0116	0.05	mg/Kg		Γ	1600	9400	70000	0.67	13
82/UE_LL	Di-n-octyl phthalate	50.22.0	Soll	0.00268	0.02	mg/Kg			800		35000	23	450
8270E_LL	Benzolajpyrene	50-32-8	Soll	0.000885	0.005	mg/Kg	0.10	0.19	24	130	1100	0.19	3.9
82/UE_LL	Dihana(1,2,3-ca)pyrene	193-39-5	Soll	0.000851	0.005	mg/Kg							
8270E_LL	Dipenz(a,n)anthracene	53-70-3	Soll	0.000413	0.005	mg/Kg							
82/UE_LL	Benzolg,n,ijperviene	191-24-2	Soll	0.000914	0.005	mg/Kg							
8270E_LL		80-74-8	Soll	0.000781	0.005	mg/Kg							
82/UE_LL	I-Methylnaphthalene	90-12-0	Soll	0.0081	0.03	mg/Kg		34	0000	4500	250000	0.0042	0.082
82/UE_LL	Benzo[k]fluerenthene	203-99-2	Soll	0.00237	0.01	mg/Kg							
0270E_LL	bio(obloroicopropul) other	207-00-9	Soil	0.000725	0.005	mg/Kg		14	2200	1000	140000	0.00022	0.0025
0270E_LL	Dis(chiloroisopropyr) ether	110 96 1	Soil	0.00007	0.03	mg/Kg		14	<u> </u>	1900	2500	0.00023	0.0035
8270E II		08 96 2	Soil	0.0200	0.02	mg/Kg			8000		35000	0.0029	0.043
8270E LL	2.3.4.6 Totrachlorophonol	58 00 2	Soil	0.00378	0.05	mg/Kg			2400		110000	0.27	4.0
0270E_LL		12674 11 2	Soil	0.01	0.00	mg/Kg		1/	5.6	1000	250	0.27	4.0
8082A	PCB 1221	11104 28 2	Soil	0.00740	0.0200	mg/Kg		14	5.0	1900	250	0.000	1.2
8082A	PCB 1221	111/1 16 5	Soil	0.0120	0.0200	mg/Kg							
8082A	PCB-1232	53/60 21 0	Soil	0.00490	0.0200	mg/Kg							
80824	PCB-1242	12672 20 6	Soil	0.00000	0.0200	mg/Kg							
80824	PCB-1254	11007_60_1	Soil	0.00700	0.0200	ma/Ka		0.50	1.6	66	70	0.0020	0.057
80824	PCB-1260	11006 82 5	Soil	0.00300	0.0200	mg/Kg		0.50	1.0	<u> </u>	10	0.0029	0.007
82904	2 3 7 8-TCDD	1746_01_6	Soil	1 61F_07	0.0200	ma/ka		0.00	0 00003	0.0017	0.00/1	0.010	0.00
8290A	2 3 7 8-TCDF	51207-31-0	Soil	3 68E-07	0.000001	ma/ka							
02000	2,0,1,0-1001	01201-01-0	001	0.000-07	0.000001	iiig/ky							

Sampling and Analysis Plan Georgia-Pacific Consumer Products LLC Camas, Washington

							MTCA Cleanup Level (a)						
							Method A	Method B (Cancer)	Method B (Noncancer)	Method C (Cancer)	Method C (Noncancer)	Protective of Groundwater Vadose @ 13 degrees C	Protective of Groundwater Saturated
METHOD		CAS No.		MDL (b)	MRL (b)		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
8290A	1,2,3,7,8-PeCDD	40321-76-4	Soll	6.28E-07	0.000005	mg/kg							
8290A	1,2,3,7,8-PeCDF	5/11/-41-6	Soli	1.39E-06	0.000005	mg/kg							
8290A		20227.29.6	Soll	1.11E-06	0.000005	mg/kg							
8290A		39221-28-0	Soll	1.04E-06	0.000005	mg/kg							
8290A		2/023-82-7	Soll	1.08E-07	0.000005	mg/kg							
0290A		70649.26.0	Soil	1.03E-00	0.000005	mg/kg							
0290A		70040-20-9 57117 44 0	Soll	1.30E-00	0.000005	mg/kg							
0290A		72019 21 0	Soil	1.30E-00	0.000005	mg/kg							
8200A		60951 34 5	Soil	1.32E-00	0.000005	mg/kg							
8200A		25822 46 0	Soil	9.53E.07	0.000005	mg/kg							
0290A		67562 20 4	Soil	0.55E-07	0.000005	mg/kg							
8200A		55673 90 7	Soil	0.55E.07	0.000005	mg/kg							
8200A		3269 97 0	Soil	9.55E-07	0.000003	mg/kg							
8290A		30001 02 0	Soil	2.47E.06	0.00001	mg/kg							
8200A		41003 57 5	Soil	1.61E.07	0.00001	mg/kg							
8290A		30/02 1/ 3	Soil	3.68E.07	0.000001	mg/kg							
8290A		36088 22 0	Soil	6 28E 07	0.000001	mg/kg							
8290A		30/02-15-/	Soil	1 39E-06	0.000005	mg/kg							
8200A		31165-16-8	Soil	1.05E-06	0.000005	mg/kg		0.00016		0.021		0.000008	0.00020
8290A		55681_01_1	Soil	1.00E-00	0.000005	mg/kg		0.00010		0.021		0.0000030	0.00020
8200A		37871_00_/	Soil	8.53E-07	0.000005	mg/kg							
8290A		38998-75-3	Soil	1 15E-06	0.000005	ma/ka							
8290A	2 3 7 8-TCDD	85508-50-5	Soil	1.132-00	0.000000	ma/ka							
	Perfluorobutanesulfonic acid (PEBS)	375-73-5	Soil	0.000038	0.0002	mg/Kg			24		1100	0.0018	0.00012
	Perfluorobevanesulfonic acid (PEHxS)	355-46-4	Soil	0.000000	0.0002	mg/Kg			0.78		34	0.0010	0.00012
	Perfluorooctanoic acid (PEOA)	335-67-1	Soil	0.000023	0.0002	ma/Ka			0.70		11	0.00041	0.000020
	Perfluorooctanesulfonic acid (PEOS)	1763-23-1	Soil	0.000043	0.0002	mg/Kg			0.24		11	0.00017	0.000009
	Perfluorononanoic acid (PENA)	375-95-1	Soil	0.000022	0.0002	ma/Ka			0.2		8.8	0.00008	0.0000048
PFC IDA	HEPO-DA (GenX)	13252-13-6	Soil	0.000022	0.0002	mg/Kg			0.2		11	0.0001	0.0000040
6020B 11	Arsenic	7440-38-2	Soil	0.05	0.25	ma/Ka	20	0.67	24	88	1100	0.15	2.9
6020B_LL	Aluminum	7429-90-5	Soil	3.3	15	ma/Ka			80000		3500000	24000	480000
6020B_LL	Antimony	7440-36-0	Soil	0.034	0.3	ma/Ka			32		1400	0.27	5.4
6020B LL	Barium	7440-39-3	Soil	0 114	0.5	mg/Kg			16000		700000	83	1600
6020B_LL	Bervllium	7440-41-7	Soil	0.024	0.0	ma/Ka			160		7000	32	63
6020B_LL	Cadmium	7440-43-9	Soil	0.0385	0.1	ma/Ka	20		80		3500	0.035	0.69
6020B LL	Chromium	7440-47-3	Soil	0.0315	0.5	mg/Kg							
6020B LL	Cobalt	7440-48-4	Soil	0.005	0.1	mg/Ka			24		1100	0.22	4.3
6020B LL	Copper	7440-50-8	Soil	0.11	0.5	ma/Ka			3200		140000	14	280
6020B LL	Iron	7439-89-6	Soil	5.77	20	mg/Kg			56000		2500000	280	5600
6020B LL	Lead	7439-92-1	Soil	0.024	0.25	ma/Ka	250					150	3000
6020B LL	Manganese	7439-96-5	Soil	0.227	0.55	mg/Kg			3700		160000	49	970
6020B LL	Nickel	7440-02-0	Soil	0.0965	0.25	ma/Ka			1600		70000	6.5	130
6020B LL	Selenium	7782-49-2	Soil	0,143	0.55	mg/Ka			400		18000	0.26	5.2
						0			••				=

Sampling and Analysis Plan Georgia-Pacific Consumer Products LLC Camas, Washington

		-
I	2	۱.
l	a	
-		-

							MTCA Cleanup Level (a)						
							Mothod A	Method B	Method B	Method C	Method C	Protective of Groundwater Vadose @ 13	Protective of Groundwater
METHOD							wiethou A	(Caller)		(cancer)	(Noncancer)	uegrees c	Saturateu
	Silver	CAS NO.		0.01			mg/ kg	mg/ kg	<u>тв/к</u> д	mg/ ĸg	<u>19000</u>	ту/ку 0.60	тд/кд
6020B_LL		7440-22-4	Soll	0.01	0.1	mg/Kg			400		18000	0.09	14
6020B_LL	Vanadium	7440-20-0	Soil	0.0275	0.25	mg/Kg			0.80		19000	0.011	1600
6020B_LL		7440-02-2	Soil	0.130	2 55	mg/Kg			24000		110000	300	6000
6010D		7440-00-0	Soil	10	2.33	mg/Kg			24000		1100000	300	0000
6010D	Magnesium	7440-70-2	Soil	7 92	55	ma/Ka							
6010D	Potassium	7433-33-4	Soil	18.6	165	mg/Kg							
6010D	Sodium	7440-23-5	Soil	18.8	100	mg/Kg							
7471Δ	Mercury	7430-07-6	Soil	0.00	0.03	mg/Kg	2.0					0.10	21
Moisture	Percent Solids	STI 00234	Soil	0.000	0.00	<u>%</u>	2.0						
Moisture	Percent Moisture	STI 00177	Soil	0.1	0.1	%							
9060A	TOC Result 1	STI 00338	Soil	96.7	2000	ma/Ka							
9060A	TOC Result 2	STI 00339	Soil	96.7	2000	mg/Kg							
9060A	Total Organic Carbon - Average Dup	7440-44-0	Soil	96.7	2000	ma/Ka							
300.0 28D	Sulfate	14808-79-8	Soil	7.75	20	ma/Ka							
SM4500 S2 D	Sulfide	18496-25-8	Soil	0.100	0.300	ma/L							
8260D	Dichlorodifluoromethane	75-71-8	Soil	0.0006	0.005	ma/Ka			16000		700000	0.53	38
8260D	Chloromethane	74-87-3	Soil	0.0006	0.005	ma/Ka							
8260D	Vinvl chloride	75-01-4	Soil	0.0006	0.005	ma/Ka		0.67	240	88	11000	0.000090	0.0017
8260D	Bromomethane	74-83-9	Soil	0.0007	0.005	ma/Ka			110		4900	0.0033	0.051
8260D	Chloroethane	75-00-3	Soil	0.001	0.005	ma/Ka							
8260D	Trichlorofluoromethane	75-69-4	Soil	0.0007	0.005	ma/Ka			24000		1100000	0.79	23
8260D	1.1-Dichloroethene	75-35-4	Soil	0.0005	0.005	ma/Ka			4000		180000	0.0025	0.046
8260D	1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	Soil	0.0006	0.01	mg/Kg			2400000		11000000	120	7600
8260D	Carbon disulfide	75-15-0	Soil	0.0006	0.005	mg/Kg			8000		350000	0.25	4.1
8260D	Acetone	67-64-1	Soil	0.006	0.02	mg/Kg			72000		3200000	2.1	29
8260D	Methyl acetate	79-20-9	Soil	0.001	0.005	mg/Kg			80000		3500000	2.3	33
8260D	Methylene Chloride	75-09-2	Soil	0.002	0.005	mg/Kg	0.020	94	480	66000	21000	0.0015	0.022
8260D	Methyl tert-butyl ether	1634-04-4	Soil	0.0005	0.005	mg/Kg	0.10	560		73000		0.0072	0.10
8260D	trans-1,2-Dichloroethene	156-60-5	Soil	0.0005	0.005	mg/Kg			1600		70000	0.032	0.52
8260D	1,1-Dichloroethane	75-34-3	Soil	0.0005	0.005	mg/Kg		180	16000	23000	700000	0.0026	0.041
8260D	cis-1,2-Dichloroethene	156-59-2	Soil	0.0005	0.005	mg/Kg			160		7000	0.0052	0.079
8260D	2-Butanone (MEK)	78-93-3	Soil	0.002	0.01	mg/Kg			48000		2100000	1.4	20
8260D	Bromochloromethane	74-97-5	Soil	0.0006	0.005	mg/Kg							
8260D	Chloroform	67-66-3	Soil	0.0006	0.005	mg/Kg		32	800	4200	35000	0.0048	0.074
8260D	1,1,1-Trichloroethane	71-55-6	Soil	0.0006	0.005	mg/Kg	2.0		160000		700000	0.084	1.5
8260D	Cyclohexane	110-82-7	Soil	0.0005	0.005	mg/Kg							
8260D	Carbon tetrachloride	56-23-5	Soil	0.0005	0.005	mg/Kg		14	320	1900	14000	0.0022	0.041
8260D	1,1-Dichloropropene	563-58-6	Soil	0.0005	0.005	mg/Kg							
8260D	Benzene	71-43-2	Soil	0.0005	0.005	mg/Kg	0.030	18	320	2400	14000	0.0017	0.027
8260D	1,2-Dichloroethane	107-06-2	Soil	0.0006	0.005	mg/Kg		11	480	1400	21000	0.0016	0.023
8260D	Trichloroethene	79-01-6	Soil	0.0005	0.005	mg/Kg	0.030	12	40	2900	1800	0.0015	0.025
8260D	Methylcyclohexane	108-87-2	Soil	0.0006	0.005	mg/Kg							
8260D	1,2-Dichloropropane	78-87-5	Soil	0.0005	0.005	mg/Kg		27	3200	3500	140000	0.0017	0.025

Sampling and Analysis Plan Georgia-Pacific Consumer Products LLC Camas, Washington

							MTCA Cleanup Level (a)						
												Protective of	
												Groundwater	Protective of
								Method B	Method B	Method C	Method C	Vadose @ 13	Groundwater
							Method A	(Cancer)	(Noncancer)	(Cancer)	(Noncancer)	degrees C	Saturated
METHOD	ANALYTE	CAS No.	MATRIX	MDL (b)	MRL (b)	UNITS	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
8260D	Bromodichloromethane	75-27-4	Soil	0.0004	0.005	mg/Kg		16	1600	2100	70000	0.0022	0.033
8260D	cis-1,3-Dichloropropene	10061-01-5	Soil	0.0004	0.005	mg/Kg							
8260D	4-Methyl-2-pentanone (MIBK)	108-10-1	Soil	0.001	0.01	mg/Kg			6400		280000	0.19	2.7
8260D	Toluene	108-88-3	Soil	0.0006	0.005	mg/Kg	7.0		6400		280000	0.27	4.5
8260D	trans-1,3-Dichloropropene	10061-02-6	Soil	0.0005	0.005	mg/Kg							
8260D	1,1,2-Trichloroethane	79-00-5	Soil	0.0005	0.005	mg/Kg		18	320	2300	14000	0.0011	0.017
8260D	Tetrachloroethene	127-18-4	Soil	0.0005	0.005	mg/Kg	0.050	480	480	63000	21000	0.0028	0.050
8260D	2-Hexanone	591-78-6	Soil	0.001	0.01	mg/Kg			400		18000	0.012	0.17
8260D	Dibromochloromethane	124-48-1	Soil	0.0005	0.005	mg/Kg		12	1600	1600	70000	0.0017	0.024
8260D	1,2-Dibromoethane	106-93-4	Soil	0.0004	0.005	mg/Kg	0.0050	0.50	720	66	32000	0.000018	0.00027
8260D	Chlorobenzene	108-90-7	Soil	0.0005	0.005	mg/Kg			1600		70000	0.051	0.86
8260D	Ethylbenzene	100-41-4	Soil	0.0004	0.005	mg/Kg	6.0		8000		350000	0.34	5.9
8260D	m-Xylene & p-Xylene	179601-23-1	Soil	0.001	0.005	mg/Kg							
8260D	o-Xylene	95-47-6	Soil	0.0004	0.005	mg/Kg			16000		700000	0.84	14
8260D	Styrene	100-42-5	Soil	0.0004	0.005	mg/Kg			16000		700000	0.12	2.2
8260D	Bromoform	75-25-2	Soil	0.005	0.01	mg/Kg		130	1600	17000	70000	0.023	0.36
8260D	Isopropylbenzene	98-82-8	Soil	0.0004	0.005	mg/Kg			8000		350000	0.79	15
8260D	1,1,2,2-Tetrachloroethane	79-34-5	Soil	0.0004	0.005	mg/Kg		5.0	1600	660	70000	0.000080	0.0012
8260D	1,2,3-Trichloropropane	96-18-4	Soil	0.0006	0.005	mg/Kg		0.0063	320	4.4	14000	0.00000015	0.0000024
8260D	1,2,4-Trimethylbenzene	95-63-6	Soil	0.0005	0.005	mg/Kg			800		35000	0.072	1.3
8260D	1,3-Dichlorobenzene	541-73-1	Soil	0.0005	0.005	mg/Kg							
8260D	1,4-Dichlorobenzene	106-46-7	Soil	0.0004	0.005	mg/Kg		190	5600	24000	250000	0.068	1.2
8260D	1,2-Dichlorobenzene	95-50-1	Soil	0.0005	0.005	mg/Kg			7200		320000	0.40	7.0
8260D	1,2-Dibromo-3-Chloropropane	96-12-8	Soil	0.0005	0.005	mg/Kg		0.23	16	160	700	0.000058	0.00091
8260D	1,2,4-Trichlorobenzene	120-82-1	Soil	0.005	0.01	mg/Kg		34	800	4500	35000	0.029	0.56
8260D	1,2,3-Trichlorobenzene	87-61-6	Soil	0.005	0.01	mg/Kg			64		2800	0.011	0.20
8260D	1,3,5-Trimethylbenzene	108-67-8	Soil	0.0005	0.005	mg/Kg			800		35000	0.071	1.3

Notes

-- = not established

NA = not available

MDL = method detection limit

MRL - method reporting limit µg/L = micrograms per liter

orange shading = preliminary cleanup levels (d)

(a) Ecology's Cleanup Levels and Risk Calculations (CLARC) accessed in February 2023.

(b) MDLs and reporting limits provided by Eurofins in March 2023. If a different laboratory is used, reporting limits will be requested from that laboratory.

(c) Method 1613B, Dioxins and Furans: MDL column values are EDLs (estimated detection limits).

(d) MTCA cleanup levels have not been established for PFAS. Preliminary soil and groundwater cleanup levels for select PFAS compounds were published in July 2022 and are included in this table. https://apps.ecology.wa.gov/publications/documents/2209075.pdf

							MTCA Cleanup Level (a) Pr							
							Method A	Method B	Method B	Method C	Method C	Target for Soil to	Ecology Cleanup	
								(Cancer)	(Noncancer)	(Cancer)	(Noncancer)	Groundwater Pathway	Level (d)	
METHOD	ANALYTE	CAS No.	MATRIX	MDL (b)	MRL (b)	UNITS	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	
8260D LL	Dichlorodifluoromethane	75-71-8	Groundwater	0.128	0.4	ua/L			1600		3500	1600	- 10-1	
8260D LL	Chloromethane	74-87-3	Groundwater	0.14	0.5	µg/L								
8260D LL	Vinyl chloride	75-01-4	Groundwater	0.04	0.1	µg/L	0.2	0.029	24	0.29	53	0.29		
8260D LL	Bromomethane	74-83-9	Groundwater	0.126	0.5	µg/L			11		25	11		
8260D LL	Chloroethane	75-00-3	Groundwater	0.096	0.5	µg/L								
8260D LL	Trichlorofluoromethane	75-69-4	Groundwater	0.124	0.5	µg/L			2400		5300	2400		
8260D LL	1,1-Dichloroethene	75-35-4	Groundwater	0.035	0.2	µg/L			400		880	7		
8260D LL	1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	Groundwater	0.088	0.5	µg/L			240000		530000	240000		
8260D_LL	Carbon disulfide	75-15-0	Groundwater	0.083	0.3	µg/L			800		1800	800		
8260D_LL	Acetone	67-64-1	Groundwater	3.1	10	µg/L			7200		16000	7200		
8260D_LL	Methyl acetate	79-20-9	Groundwater		1	µg/L			8000		18000	8000		
8260D_LL	Methylene Chloride	75-09-2	Groundwater	1.2	5	µg/L	5	5.8	48	220	110	5		
8260D_LL	Methyl tert-butyl ether	1634-04-4	Groundwater	0.07	0.3	µg/L	20	24		240		24		
8260D_LL	trans-1,2-Dichloroethene	156-60-5	Groundwater	0.033	0.2	µg/L			160		350	100		
8260D_LL	1,1-Dichloroethane	75-34-3	Groundwater	0.025	0.2	µg/L		7.7	1600	77	3500	7.7		
8260D_LL	cis-1,2-Dichloroethene	156-59-2	Groundwater	0.055	0.2	µg/L			16		35	16		
8260D_LL	2-Butanone (MEK)	78-93-3	Groundwater	2.5	10	µg/L			4800		11000	4800		
8260D_LL	Bromochloromethane	74-97-5	Groundwater	0.05	0.2	µg/L								
8260D_LL	Chloroform	67-66-3	Groundwater	0.03	0.2	µg/L		1.4	80	14	180	14		
8260D_LL	1,1,1-Trichloroethane	71-55-6	Groundwater	0.025	0.2	µg/L	200		16000		35000	200		
8260D_LL	Cyclohexane	110-82-7	Groundwater		0.2	µg/L								
8260D_LL	Carbon tetrachloride	56-23-5	Groundwater	0.025	0.2	µg/L		0.63	32	6.3	70	5		
8260D_LL	1,1-Dichloropropene	563-58-6	Groundwater	0.084	0.2	µg/L								
8260D_LL	Benzene	71-43-2	Groundwater	0.03	0.2	µg/L	5	0.8	32	8	70	5		
8260D_LL	1,2-Dichloroethane	107-06-2	Groundwater	0.043	0.2	µg/L	5	0.48	48	4.8	110	4.8		
8260D_LL	Trichloroethene	79-01-6	Groundwater	0.066	0.2	µg/L	5	0.54	4	9.5	8.8	4		
8260D_LL	Methylcyclohexane	108-87-2	Groundwater		0.2	µg/L								
8260D_LL	1,2-Dichloropropane	78-87-5	Groundwater	0.06	0.2	µg/L		1.2	320	12	700	5		
8260D_LL	Bromodichloromethane	75-27-4	Groundwater	0.06	0.2	µg/L		0.71	160	7.1	350	7.1		
8260D_LL	cis-1,3-Dichloropropene	10061-01-5	Groundwater	0.09	0.2	µg/L								
8260D_LL	4-Methyl-2-pentanone (MIBK)	108-10-1	Groundwater	1.7	10	µg/L			640		1400	640		
8260D_LL	Toluene	108-88-3	Groundwater	0.05	0.2	µg/L	1000		640		1400	640		
8260D_LL	trans-1,3-Dichloropropene	10061-02-6	Groundwater	0.092	0.2	µg/L								
8260D_LL	1,1,2-Trichloroethane	79-00-5	Groundwater	0.07	0.2	µg/L		0.77	32	7.7	70	3		
8260D_LL	Tetrachloroethene	127-18-4	Groundwater	0.084	0.5	µg/L	5	21	48	210	110	5		
8260D_LL	2-Hexanone	591-78-6	Groundwater	0.944	3	µg/L			40		88	40		
8260D_LL	Dibromochloromethane	124-48-1	Groundwater	0.055	0.2	µg/L		0.52	160	5.2	350	5.2		
8260D_LL	1,2-Dibromoethane	106-93-4	Groundwater	0.025	0.1	µg/L	0.01	0.022	72	0.22	160	0.05		
8260D_LL	Chlorobenzene	108-90-7	Groundwater	0.06	0.2	µg/L			160		350	100		
8260D_LL	Ethylbenzene	100-41-4	Groundwater	0.03	0.2	µg/L	700		800		1800	700		
8260D_LL	m-Xylene & p-Xylene	179601-23-1	Groundwater	0.115	0.5	µg/L								
8260D_LL	o-Xylene	95-47-6	Groundwater	0.147	0.5	µg/L			1600		3500	1600		
8260D_LL	Styrene	100-42-5	Groundwater	0.192	1	µg/L			1600		3500	100		
8260D_LL	Bromoform	75-25-2	Groundwater	0.157	0.5	µg/L		5.5	160	55	350	55		
8260D_LL	Isopropylbenzene	98-82-8	Groundwater	0.187	1	µg/L			800		1800	800		
8260D_LL	1,1,2,2-Tetrachloroethane	79-34-5	Groundwater	0.056	0.2	µg/L		0.22	160	2.2	350	0.22		
8260D_LL	1,2,3-Trichloropropane	96-18-4	Groundwater	0.05	0.2	µg/L		0.00038	32	0.015	70	0.00038		
8260D_LL	1,2,4-Trimethylbenzene	95-63-6	Groundwater	0.203	0.5	µg/L			80		180	80		
8260D_LL	1,3-Dichlorobenzene	541-73-1	Groundwater	0.05	0.3	µg/L								
8260D_LL	1,4-Dichlorobenzene	106-46-7	Groundwater	0.05	0.3	µg/L		8.1	560	81	1200	75		
8260D_LL	1,2-Dichlorobenzene	95-50-1	Groundwater	0.038	0.3	µg/L			720		1600	600		
8260D_LL	1,2-Dibromo-3-Chloropropane	96-12-8	Groundwater	0.167	2	µg/L		0.055	1.6	0.55	3.5	0.14		

							MTCA Cleanup Level (a) Pr							
							Method A	Method B	Method B	Method C	Method C	Target for Soil to	Ecology Cleanup	
								(Cancer)	(Noncancer)	(Cancer)	(Noncancer)	Groundwater Pathway	Level (d)	
METHOD	ANALYTE	CAS No.	MATRIX	MDL (b)	MRL (b)	UNITS	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	
8260D LL	1.2.4-Trichlorobenzene	120-82-1	Groundwater	0.172	0.5	ua/L		1.5	<u> </u>	15	180	15	P-0/ -	
8260D LL	1.2.3-Trichlorobenzene	87-61-6	Groundwater	0.149	0.5	ua/L			6.4		14	6.4		
8260D LL	1.3.5-Trimethylbenzene	108-67-8	Groundwater	0.152	0.5	ua/L			80		180	80		
8260D SIM AK	Vinvl chloride	75-01-4	Groundwater	0.003	0.02	ua/L	0.2	0.029	24	0.29	53	0.29		
8270E SIM MS ID	1.4-Dioxane	123-91-1	Groundwater	0.036	0.2	ua/L		0.44	240	4.4	530	0.44		
NWTPH Gx MS	Gasoline	STL00228	Groundwater	14	50	ua/L								
NWTPH Dx	#2 Diesel (C10-C24)	STL00163	Groundwater	65	110	ua/L								
NWTPH Dx	Motor Oil (>C24-C36)	STL00299	Groundwater	96	350	ua/L								
8270E LL	Phenol	108-95-2	Groundwater	0.042	0.4	ua/L			4800		11000	4800		
8270E LL	Bis(2-chloroethyl)ether	111-44-4	Groundwater	0.006	0.05	ua/L		0.04		0.4		0.04		
8270E LL	2-Chlorophenol	95-57-8	Groundwater	0.003	0.05	ua/L			40		88	40		
8270F 11	2-Methylphenol	95-48-7	Groundwater	0.031	0.4	ua/l			800		1800	800		
8270F 11	3 & 4 Methylphenol	15831-10-4	Groundwater	0.036	0.8	<u>µg/L</u> ug/l								
8270E II	N-Nitrosodi-n-propylamine	621-64-7	Groundwater	0.022	0.4			0.013		0.13		0.012		
8270E II	Hexachloroethane	67-72-1	Groundwater	0.003	0.4			1 1	5.6	11	12	1 1		
8270E_LL	Nitrobenzene	08-05-3	Groundwater	0.000	0.4				16		35	16		
8270E_LL	Isonborone	78-59-1	Groundwater	0.007	0.00			46	3200	920	7000	92		
8270E_LL	2-Nitrophenol	88-75-5	Groundwater	0.007	0.4			40	5200	320	7000	52		
8270E_LL	2.1-Dimethylphenol	105_67_9	Groundwater	0.033	0.4				320		700	320		
8270E II	Bis/2 chloroethoxy/methane	111 01 1	Groundwater	0.041	0.4				18		110			
9270E II	2.4 Dichlorophonol	120 82 2	Groundwater	0.003	0.4	<u>µg/L</u>			40		110	40		
0270E_LL	2,4-Dichlorophenol	01 20 2	Groundwater	0.009	0.4	µg/L	160		160		250	48		
<u>9270E II</u>		106 /7 9	Groundwater	0.014	0.1	<u>µg/L</u>	100	0.22	64		140	0.44		
0270E_LL	4-Chioroannine Hoveoblerobutadiono	07 60 2	Groundwater	0.000	0.1	µg/L		0.22	04	4.4	140	0.44		
0270E_LL	A Chlore 2 methylphenel	<u> </u>	Groundwater	0.003	0.05	µg/L		0.50	0	5.0	2500	0.50		
0270E_LL	4-Chloro-3-methylphenol	01 57 6	Groundwater	0.004	0.4	µg/L			1000		3500	1000		
8270E_LL	2-weinymaphinalene	91-57-0	Groundwater	0.012	0.1	µg/L			32		110	32		
8270E_LL	Hexachiorocyclopentadiene	//-4/-4	Groundwater	0.012	0.4	µg/L			48		110	48		
8270E_LL	2,4,6-1 richlorophenol	88-06-2	Groundwater	0.053	0.4	µg/L		4	16	80	35	8		
8270E_LL	2,4,5-1 richlorophenol	95-95-4	Groundwater	0.055	0.4	µg/L			1600		3500	1600		
8270E_LL		91-58-7	Groundwater	0.005	0.4	µg/L			640		1400	640		
8270E_LL	2-Nitroaniline	88-74-4	Groundwater	0.013	0.4	µg/L			160		350	160		
8270E_LL		131-11-3	Groundwater	0.057	0.4	µg/L								
8270E_LL		208-96-8	Groundwater	0.008	0.05	µg/L								
8270E_LL	2,6-Dinitrotoluene	606-20-2	Groundwater	0.015	0.05	µg/L		0.058	4.8	0.58	11	0.058		
8270E_LL	3-Nitroaniline	99-09-2	Groundwater	0.023	0.4	µg/L								
8270E_LL	Acenaphthene	83-32-9	Groundwater	0.006	0.1	µg/L			480		1100	480		
8270E_LL	2,4-Dinitrophenol	51-28-5	Groundwater	1.19	5	µg/L			32		70	32		
8270E_LL	4-Nitrophenol	100-02-7	Groundwater	0.295	1.5	µg/L								
8270E_LL	Dibenzofuran	132-64-9	Groundwater	800.0	0.4	µg/L			8		18	8		
8270E_LL	2,4-Dinitrotoluene	121-14-2	Groundwater	0.014	0.25	µg/L		0.28	32	2.8	/0	0.28		
8270E_LL	Diethyl phthalate	84-66-2	Groundwater	0.055	0.4	µg/L			13000		28000	13000		
8270E_LL	4-Chlorophenyl phenyl ether	/005-72-3	Groundwater	0.01	0.4	µg/L								
8270E_LL	Fluorene	86-73-7	Groundwater	0.009	0.1	µg/L			320		700	320		
8270E_LL	4-Nitroaniline	100-01-6	Groundwater	0.013	0.4	µg/L		4.4	64	44	140	4.4		
8270E_LL	4,6-Dinitro-2-methylphenol	534-52-1	Groundwater	0.273	1.5	µg/L			1.3		2.8	1.3		
8270E_LL	N-Nitrosodiphenylamine	86-30-6	Groundwater	0.007	0.4	µg/L		18		180		18		
8270E_LL	4-Bromophenyl phenyl ether	101-55-3	Groundwater	0.007	0.4	µg/L								
8270E_LL	Hexachlorobenzene	118-74-1	Groundwater	0.006	0.05	µg/L		0.055	6.4	0.27	14	0.27		
8270E_LL	Pentachlorophenol	87-86-5	Groundwater	0.144	0.4	µg/L		0.22	80	2.2	180	1		
8270E_LL	Phenanthrene	85-01-8	Groundwater	0.041	0.1	µg/L								
8270E_LL	Anthracene	120-12-7	Groundwater	0.011	0.1	µg/L			2400		5300	2400		
8270E_LL	Di-n-butyl phthalate	84-74-2	Groundwater	0.338	1.5	µg/L			1600		3500	1600		
Table 5B: Speciated Analytes, Method Reporting Limits, and Applicable Screening Level Values - Groundwater

							MTCA Cleanup Level (a) P				Preliminary		
							Method A	Method B	Method B	Method C	Method C	Target for Soil to	Ecology Cleanup
								(Cancer)	(Noncancer)	(Cancer)	(Noncancer)	Groundwater Pathway	Level (d)
METHOD	ANALYTE	CAS No.	MATRIX	MDL (b)	MRL (b)	UNITS	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
8270E LL	Fluoranthene	206-44-0	Groundwater	0.033	0.1	ua/L	101	187	640		1400	640	r-6/ -
8270E LL	Pyrene	129-00-0	Groundwater	0.058	0.2	µg/L			240		530	240	
8270E LL	Butyl benzyl phthalate	85-68-7	Groundwater	0.337	1.5	µg/L		46	3200	460	7000	46	
8270E LL	3,3'-Dichlorobenzidine	91-94-1	Groundwater	0.707	3	µg/L		0.19		1.9		0.19	
8270E LL	Benzo[a]anthracene	56-55-3	Groundwater	0.006	0.05	µg/L							
8270E LL	Chrysene	218-01-9	Groundwater	0.007	0.1	µg/L							
8270E LL	Bis(2-ethylhexyl) phthalate	117-81-7	Groundwater	0.543	1.5	µg/L		6.3	320	63	700	6	
8270E LL	Di-n-octyl phthalate	117-84-0	Groundwater	0.451	1.5	µg/L			160		350	160	
8270E LL	Benzo[a]pyrene	50-32-8	Groundwater	0.004	0.05	µg/L	0.1	0.023	4.8	0.88	11	0.2	
8270E LL	Indeno[1,2,3-cd]pyrene	193-39-5	Groundwater	0.005	0.05	µg/L							
8270E LL	Dibenz(a,h)anthracene	53-70-3	Groundwater	0.005	0.05	µg/L							
8270E_LL	Benzo[g,h,i]perylene	191-24-2	Groundwater	0.005	0.05	µg/L							
8270E_LL	Carbazole	86-74-8	Groundwater	0.004	0.4	µg/L							
8270E LL	1-Methylnaphthalene	90-12-0	Groundwater	0.011	0.1	µg/L		1.5	560	15	1200	1.5	
8270E LL	Benzo[b]fluoranthene	205-99-2	Groundwater	0.006	0.05	µg/L							
8270E_LL	Benzo[k]fluoranthene	207-08-9	Groundwater	0.006	0.05	µg/L							
8270E_LL	bis(chloroisopropyl) ether	108-60-1	Groundwater	0.041	0.4	µg/L		0.63	320	6.3	700	0.62	
8270E LL	Pyridine	110-86-1	Groundwater	0.167	1.5	µg/L			8		18	8	
8270E_LL	Acetophenone	98-86-2	Groundwater	0.062	0.4	µg/L			800		1800	800	
8270E LL	2,3,4,6-Tetrachlorophenol	58-90-2	Groundwater	0.115	0.4	µg/L			480		1100	480	
8082A	PCB-1016	12674-11-2	Groundwater	0.061	0.45	µg/L		1.3	0.56	6.3	1.2	0.56	
8082A	PCB-1221	11104-28-2	Groundwater	0.075	0.45	µg/L							
8082A	PCB-1232	11141-16-5	Groundwater	0.063	0.45	µg/L							
8082A	PCB-1242	53469-21-9	Groundwater	0.059	0.45	µg/L							
8082A	PCB-1248	12672-29-6	Groundwater	0.052	0.45	µg/L							
8082A	PCB-1254	11097-69-1	Groundwater	0.075	0.45	µg/L		0.044	0.16	0.22	0.35	0.022	
8082A	PCB-1260	11096-82-5	Groundwater	0.061	0.45	µg/L		0.044		0.22		0.022	
8082A	DCB Decachlorobiphenyl	2051-24-3	Groundwater	0.021	0.1	µg/L							
6020B_LL	Arsenic	7440-38-2	Groundwater	0.204	1	µg/L	5	0.058	4.8	0.58	11	5	
6020B_LL	Aluminum	7429-90-5	Groundwater	5.78	40	µg/L			16000		35000	16000	
6020B_LL	Antimony	7440-36-0	Groundwater	0.125	0.8	µg/L			6.4		14	6	
6020B_LL	Barium	7440-39-3	Groundwater	0.212	1.2	µg/L			3200		7000	2000	
6020B_LL	Beryllium	7440-41-7	Groundwater	0.11	0.4	µg/L			32		70	4	
6020B_LL	Cadmium	7440-43-9	Groundwater	0.037	0.4	µg/L	5		8		18	5	
6020B_LL	Chromium	7440-47-3	Groundwater	0.173	0.8	µg/L	50						
6020B_LL	Cobalt	7440-48-4	Groundwater	0.039	0.4	µg/L			4.8		11	4.8	
6020B_LL	Copper	7440-50-8	Groundwater	0.603	2	µg/L			640		1400	640	
6020B_LL	Iron	7439-89-6	Groundwater	13.3	100	µg/L			11000		25000	11000	
6020B_LL	Lead	7439-92-1	Groundwater	0.04	0.4	µg/L	15					15	
6020B_LL	Manganese	7439-96-5	Groundwater	0.459	2	µg/L			750		1600	750	
6020B_LL	Nickel	7440-02-0	Groundwater	0.125	3	µg/L			320		700	100	
6020B_LL	Selenium	7782-49-2	Groundwater	2.06	8	µg/L			80		180	50	
6020B_LL	Silver	7440-22-4	Groundwater	0.025	0.4	µg/L			80		180	80	
6020B_LL	Thallium	7440-28-0	Groundwater	0.029	1	µg/L			0.16		0.35	0.16	
6020B_LL	Vanadium	7440-62-2	Groundwater	0.456	4	µg/L			80		180	80	
6020B_LL	Zinc	7440-66-6	Groundwater	0.928	7	µg/L			4800		11000	4800	
6010D	Calcium	7440-70-2	Groundwater	76.7	500	µg/L							
6010D	Magnesium	7439-95-4	Groundwater	47.4	500	µg/L							
6010D	Sodium	7440-23-5	Groundwater	332	500	µg/L							
7470A	Mercury	7439-97-6	Groundwater	0.15	0.3	µg/L	2					2	

Table 5B: Speciated Analytes, Method Reporting Limits, and Applicable Screening Level Values - Groundwater

							MTCA Cleanup Level (a)				Preliminary		
							Method A	Method B	Method B	Method C	Method C	Target for Soil to	Ecology Cleanup
								(Cancer)	(Noncancer)	(Cancer)	(Noncancer)	Groundwater Pathway	Level (d)
METHOD	ΔΝΔΙ ΥΤΕ	CAS No	MATRIX	MDL (b)	MRI (b)	UNITS		μσ/Ι		<u>μσ/Ι</u>	(μσ/Ι	
9060A	Total Organic Carbon	7440-44-0	Groundwater	380	1500				₩6/ -	₩6/ -	₩8/ -		₩8/ -
300.0 28D	Sulfate	14808-79-8	Groundwater	800	1500	ua/L							
PFC IDA	Perfluorooctanoic acid (PFOA)	335-67-1	Groundwater	0.00085	0.002	ua/L			0.048		0.11		0.01
PFC IDA	Perfluorononanoic acid (PENA)	375-95-1	Groundwater	0.00027	0.002	ua/L			0.04		0.088		0.009
PFC IDA	Perfluorobutanesulfonic acid (PFBS)	375-73-5	Groundwater	0.0002	0.002	ua/L			4.8		11		0.345
PFC IDA	Perfluorohexanesulfonic acid (PEHxS)	355-46-4	Groundwater	0.00057	0.002	ua/l			0.16		0.34		0.065
PFC IDA	Perfluorooctanesulfonic acid (PEOS)	1763-23-1	Groundwater	0.00054	0.002	<u>µg/L</u> ug/l			0.048		0.11		0.015
PFC IDA	HEPO-DA (GenX)	13252-13-6	Groundwater	0.0015	0.004	ua/L			0.024		0.053		0.024
1613B	2.3.7.8-TCDD	1746-01-6	Groundwater	0.00000371	0.00001	ua/L		0.0000067	0.0000056	0.0000034	0.000012	0.000034	
1613B	Total TCDD	41903-57-5	Groundwater	0.00000371	0.00001	ua/L							
1613B	1.2.3.7.8-PeCDD	40321-76-4	Groundwater	0.00000606	0.00005	ua/L							
1613B	Total PeCDD	36088-22-9	Groundwater	0.00000606	0.00005								
1613B	1.2.3.4.7.8-HxCDD	39227-28-6	Groundwater	0.00000666	0.00005	ua/L							
1613B	1,2,3,6,7,8-HxCDD	57653-85-7	Groundwater	0.0000067	0.00005	ua/L							
1613B	1,2,3,7,8,9-HxCDD	19408-74-3	Groundwater	0.00000744	0.00005	ua/L							
1613B	Total HxCDD	34465-46-8	Groundwater	0.00000744	0.00005	ua/L		0.000014		0.00014		0.000014	
1613B	1.2.3.4.6.7.8-HpCDD	35822-46-9	Groundwater	0.00000483	0.00005	ua/L							
1613B	Total HpCDD	37871-00-4	Groundwater	0.00000483	0.00005	ua/L							
1613B	OCDD	3268-87-9	Groundwater	0.000015	0.0001	ua/L							
1613B	2.3.7.8-TCDF	51207-31-9	Groundwater	0.00000125	0.00001	ua/L							
1613B	Total TCDF	30402-14-3	Groundwater	0.00000125	0.00001	ua/L							
1613B	1.2.3.7.8-PeCDF	57117-41-6	Groundwater	0.0000075	0.00005								
1613B	2.3.4.7.8-PeCDF	57117-31-4	Groundwater	0.00000696	0.00005	ua/L							
1613B	Total PeCDF	30402-15-4	Groundwater	0.0000075	0.00005								
1613B	1.2.3.4.7.8-HxCDF	70648-26-9	Groundwater	0.00000699	0.00005	ua/L							
1613B	1.2.3.6.7.8-HxCDF	57117-44-9	Groundwater	0.00000702	0.00005	ua/L							
1613B	2.3.4.6.7.8-HxCDF	60851-34-5	Groundwater	0.00000538	0.00005	ua/L							
1613B	1.2.3.7.8.9-HxCDF	72918-21-9	Groundwater	0.0000184	0.00005	ua/L							
1613B	Total HxCDF	55684-94-1	Groundwater	0.00000702	0.00005	ua/L							
1613B	1.2.3.4.6.7.8-HpCDF	67562-39-4	Groundwater	0.00000667	0.00005	ua/L							
1613B	1.2.3.4.7.8.9-HpCDF	55673-89-7	Groundwater	0.00000672	0.00005	ua/L							
1613B	Total HpCDF	38998-75-3	Groundwater	0.00000672	0.00005	ua/L							
1613B	OCDF	39001-02-0	Groundwater	0.000013	0.0001	ua/L							
1613B	13C-2,3,7,8-TCDD	76523-40-5	Groundwater		0.002	µg/L							
1613B	13C-1,2,3,7,8-PeCDD	109719-79-1	Groundwater		0.002	µg/L							
1613B	13C-1,2,3,4,7,8-HxCDD	109719-80-4	Groundwater		0.002	µg/L							
1613B	13C-1,2,3,6,7,8-HxCDD	109719-81-5	Groundwater		0.002	µg/L							
1613B	13C-1,2,3,4,6,7,8-HpCDD	109719-83-7	Groundwater		0.002	µg/L							
1613B	13C-OCDD	114423-97-1	Groundwater		0.004	µg/L							
1613B	13C-2,3,7,8-TCDF	89059-46-1	Groundwater		0.002	µg/L							
1613B	13C-1,2,3,7,8-PeCDF	109719-77-9	Groundwater		0.002	µg/L							
1613B	13C-2,3,4,7,8-PeCDF	116843-02-8	Groundwater		0.002	µg/L							
1613B	13C-1,2,3,4,7,8-HxCDF	114423-98-2	Groundwater		0.002	μg/L							
1613B	13C-1,2,3,6,7,8-HxCDF	116843-03-9	Groundwater		0.002	μg/L							
1613B	13C-1,2,3,7,8,9-HxCDF	116843-04-0	Groundwater		0.002	µg/L							
1613B	13C-2,3,4,6,7,8-HxCDF	116843-05-1	Groundwater		0.002	µg/L							
1613B	13C-1,2,3,4,6,7,8-HpCDF	109719-84-8	Groundwater		0.002	µg/L							
1613B	13C-1,2,3,4,7,8,9-HpCDF	109719-94-0	Groundwater		0.002	µg/L							

Table 5B: Speciated Analytes, Method Reporting Limits, and Applicable Screening Level Values - Groundwater

							MTCA Cleanup Level (a)					Preliminary	
							Method A	Method B	Method B	Method C	Method C	Target for Soil to	Ecology Cleanup
								(Cancer)	(Noncancer)	(Cancer)	(Noncancer)	Groundwater Pathway	Level (d)
METHOD	ANALYTE	CAS No.	MATRIX	MDL (b)	MRL (b)	UNITS	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
1613B	13C-OCDF	109719-78-0	Groundwater			µg/L							
1613B	37Cl4-2,3,7,8-TCDD	85508-50-5	Groundwater	0.0004	0.002	µg/L							
1671A_UP	Dimethyl sulfoxide	67-68-5	Groundwater	20000	20000	µg/L							
9034	Sulfide	18496-25-8	Groundwater	700	2000	µg/L							

<u>Notes</u>

-- = not established

MDL = method detection limit

NA = not available

MRL - method reporting limit $\mu g/L$ = micrograms per liter

light gray shading = not applicable orange shading = preliminary cleanup levels (d)

(a) Ecology's Cleanup Levels and Risk Calculations (CLARC) accessed in February 2023.

(b) MDLs and reporting limits provided by Eurofins in March 2023. If a different laboratory is used, reporting limits will be requested from that laboratory.

(c) Method 1613B, Dioxins and Furans: MDL column values are EDLs (estimated detection limits).

(d) MTCA cleanup levels have not been established for PFAS. Preliminary soil and groundwater cleanup levels for select PFAS compounds were published in July 2022 and in the December 2022 Draft PFAS Guidance document and are included in this table. The preliminary groundwater cleanup values are consistent with the Washington State Department of Health State Action Levels (SALs). A SAL was not established for HFPO-DA (GenX). https://apps.ecology.wa.gov/publications/documents/2209075.pdf; https://apps.ecology.wa.gov/publications/documents/2209058.pdf.

Appendix A

Health and Safety Plan (HASP)

421 SW 6th Avenue, Suite 1000 Portland, Oregon 97204 503-423-4000

Site-Specific Health and Safety Plan (HASP) Georgia-Pacific Camas Mill Camas, Washington

31 March 2023

Prepared for

Georgia-Pacific LLC

401 NE Adams Street Camas, Washington 98607

KJ Project No. 1865004*23

Table of Contents

List of Tables		iii			
List of Attachm	nents	iii			
List of Append	dices	iii			
Section 1:	Introduction	1			
Section 2:	Key Health and Safety Personnel	3			
Section 3:	Site Description and History	4			
Section 4:	Planned Site Activities				
Section 5:	Hazard Assessment	7			
	 5.1 Potential Physical & Environmental Hazards 5.1.1 Heavy Equipment 5.1.2 Excavation and Trench Work 5.1.3 Tripping and Falling Hazards 5.1.4 Heat Stress 5.1.5 Cold Exposure 5.1.6 Underground/Overhead Utilities 5.1.7 Motor Vehicle Hazards 5.1.8 Biological Hazards 5.1.9 Equipment Hazards 5.1.10 Working Over or Near Water 5.1.11 Weather Hazard 5.1.12 Other Safety Considerations 5.2 Potential Chemical Hazards 5.2.1 Groundwater Samples 5.2.3 Chemical Use Plan and Safety Data Sheets (SDS)/Hazard Communication 				
Section 6:	Community Hazard Analysis	15			
Section 7:	Protective Actions 7.1 PPE 7.2 Work Zones	16 16 			

Table of Contents (cont'd)

	7.3	Monitoring	
	-	7.3.1 Hazardous Substances	
		7.3.2 Explosive Limits	
		7.3.3 Noise	
	7.4	Site Control	
	7.5	Cleaning	
	7.6	Training	
	7.7	Medical Monitoring	
	7.8	Sanitation and Illumination	
	7.9	COVID-19 Procedures and Processes	19
		7.9.1 COVID-19 Background	19
		7.9.2 Prevention and Treatment	19
		7.9.3 Site-Specific Procedures and Guidelines	20
		7.9.3.1 Transportation and Parking	20
		7.9.3.2 Interactions Within Field Teams	20
		7.9.3.3 Social Distancing – Non-Work Hours	20
		7.9.3.4 Meals	20
		7.9.3.5 Daily Safety Tailgate	21
		7.9.3.6 Sanitation	21
		7.9.4 Communication and Updates	21
Section 8:	Eme	rgency Response Plan	22
	8.1	Emergency Communications	
	-	8.1.1 Verbal Communication	
		8.1.2 Telephones	
	8.2	Emergency Protocol	
	8.3	Emergency Supplies	
	8.4	Injury Response	24
Section 9:	Repo	orting (Injury/Illness, Property Damage, or Near Miss)	25
Section 9:	Repo 9.1	orting (Injury/Illness, Property Damage, or Near Miss).	 25
Section 9:	Repo 9.1	Drting (Injury/Illness, Property Damage, or Near Miss). Injury/Illness Care and Notification Procedures 9.1.1 Emergency Services (9-1-1)	 25 25 25
Section 9:	Repo 9.1	 brting (Injury/Illness, Property Damage, or Near Miss). Injury/Illness Care and Notification Procedures	25 25 25 25
Section 9:	Repo 9.1	Injury/Illness, Property Damage, or Near Miss).Injury/Illness Care and Notification Procedures9.1.1Emergency Services (9-1-1)9.1.2Injury/Illness Intervention9.1.3When to Call WorkCare	25 25 25 25 25
Section 9:	Repo 9.1	DescriptionInjury/Illness, Property Damage, or Near Miss).Injury/Illness Care and Notification Procedures9.1.1Emergency Services (9-1-1)9.1.2Injury/Illness Intervention9.1.3When to Call WorkCare9.1.4Employee Role	25 25 25 25 25 25
Section 9:	Repo 9.1	Derting (Injury/Illness, Property Damage, or Near Miss).Injury/Illness Care and Notification Procedures9.1.1 Emergency Services (9-1-1)9.1.2 Injury/Illness Intervention9.1.3 When to Call WorkCare9.1.4 Employee Role9.1.5 Project Manager Role	25 25 25 25 25 25 26
Section 9:	Repo 9.1	Derting (Injury/Illness, Property Damage, or Near Miss).Injury/Illness Care and Notification Procedures9.1.1 Emergency Services (9-1-1)	25 25 25 25 25 26
Section 9:	Repo 9.1	Derting (Injury/Illness, Property Damage, or Near Miss). Injury/Illness Care and Notification Procedures 9.1.1 Emergency Services (9-1-1)	25 25 25 25 25 26 26 26
Section 9:	Repo 9.1 9.2	Derting (Injury/Illness, Property Damage, or Near Miss).Injury/Illness Care and Notification Procedures9.1.1 Emergency Services (9-1-1)	25 25 25 25 25 26 26 26

List of Tables

- 1 Potential Chemicals Present in Groundwater Monitoring Samples
- 2 Potential Chemicals Present in Soil Samples
- 3 Chemical Allowable Exposure Values and Exposure Symptoms
- 4 Measures for Level C Cleaning

List of Attachments

1 Map and Written Directions to Local Hospital

List of Appendices

- A Job Hazard Analysis
- B Tailgate Safety Briefing Record
- C Heat Stress Fact Sheet
- D Cold Stress Fact Sheet
- E Utility Locate Standard Operation Procedures and Utility Location and Acknowledgement Form
- F Field Chemical Use Policy and Procedures, Field Chemical Use Form, and Hazard Communications Written Program
- G Safety Data Sheets (SDSs)
- H CDC Fact Sheet
- I Injury/Illness, Property Damage Incident, Near Miss Reporting Forms, and Motor Vehicle Accident Report

Health and Safety Plan (HASP) Summary

Project Name	Georgia LLC (C	a-Pacific Consumer Operati amas Mill)	ions Proje	ct No.	1865004*23				
Prepared by	Ella Gy	erko		Date	03 March 2023				
Project Manager	Rachel	Morgan		Office	Portland, OR				
Field Services Description									
Field Services	Date(s)	Third Quarter 2023 to Thir	d Quarter 2024	4 (estim	ated)				
Site	e Name	Georgia-Pacific Consume	r Operations LL	_C (Car	nas Mill)				
Lo	401 NE Adams Street, Ca	mas, Washingt	on						
Client Site C	Contact	Caleigh Belkoff	Clien Telep	t Site	(404) 702-2052				
Type of Investigation: Site Remediation: Sampling Investigation: Site Remediation: Hand Auger / Test Pits Excavation Drilling Trenching Well Installation Underground Storage Tank (UST) Removal Soil Sampling Groundwater Sampling Other: Other:									
🛛 Site \	Nalk-thr	ough 🗌 (Other:						

Section 1: Introduction

This Site-Specific Health and Safety Plan (SSHSP), also referred to as a Health and Safety Plan (HASP), developed in accordance with Occupational Safety and Health Administration (OSHA) standards for hazardous waste operations (29 CFR 1910.120), and Washington Industrial Safety and Health Act (WISHA) establishes general health and safety protocols for Kennedy Jenks personnel at Georgia-Pacific Consumer Operations LLC (Camas Mill) site located at **401 NE Adams Street, Camas, Washington 98607**. As needed, addenda containing activity-specific health and safety protocols will be prepared and attached to this HASP prior to the initiation of each additional field activity. The HASP and activity-specific addenda, as a minimum, contain the following information:

- Names of key personnel and alternates responsible for site health and safety and appointment of a Site Safety Officer (SSO).
- A job hazard analysis (JHA) for each site task and operation (see Appendix A for example).
- Personal protective equipment (PPE) to be used by employees for each site task and operations being conducted.
- Medical surveillance requirements.
- Frequency and types of air monitoring, personal monitoring, and environmental sampling techniques and instrumentation to be used. Methods of maintenance and calibration of monitoring and sampling equipment to be used.
- Site control measures.
- Cleaning procedures.
- An Emergency Response Plan that addresses effective site response to emergencies.
- Procedures to report injuries or illness, property damage, or near miss incidents.

For informational purposes only, this plan may be provided to subcontractors of Kennedy Jenks involved in activities at the site, interested regulatory agencies, or others. However, entities and personnel other than Kennedy Jenks shall be solely responsible for their own health and safety and shall independently assess onsite conditions and develop their own health and safety protocols to meet the minimum health and safety requirements.

Kennedy Jenks has developed a Health & Safety Operations Manual (Kennedy Jenks, Corporate Health and Safety Program, June 2020). Kennedy Jenks' Health & Safety Program, upon which the manual is based, complies with current health and safety regulations, including OSHA 29 CFR 1910.120 and Hazardous Waste Operations and Emergency Response. Many of the protocols of the corporate program are conducted on a routine basis (general training, respirator fit testing, general medical record keeping, etc.) and are not repeated herein. The Health and Safety Operations Manual is available to Kennedy Jenks employees upon request during normal business hours. Questions regarding the program should be referred to the Kennedy Jenks Health & Safety Manager (H&S Manager) John Jindra.

Section 2: Key Health and Safety Personnel

Kennedy Jenks' SSO will be designated by the Project Manager, as appropriate. The current SSO for the project is Ella Gyerko. In the absence of the SSO during field activities, a member of the field investigation team will be designated as Kennedy Jenks SSO. The SSO is responsible for the following.

- Conducting daily tailgate safety briefings (TSBs) for Kennedy Jenks personnel at the beginning of each workday and documenting that subcontractors are also conducting TSBs. Kennedy Jenks staff may combine TSBs with the subcontractor in lieu of conducting separate safety meetings. Combined TSB meetings will be led by the subcontractor and must include emphasis provided by the subcontractor relative to the subcontractor's work. Other participants, including Kennedy Jenks and any regulatory personnel in attendance, should also discuss their respective health and safety issues and oversight specific to their activities. The TSB Record is attached to this HASP as Appendix B, and a copy of each day's executed form for Kennedy Jenks' TSB must be obtained for the project files, signed by all Kennedy Jenks employees attending the TSB meeting. Any subcontractors must provide the SSO with a daily copy of the subcontractor's own safety briefing form for the project file.
- Observing field activities for compliance with this HASP, applicable addenda, and Kennedy Jenks Health and Safety Operations Manual.
- Maintaining onsite medical surveillance, if required, and emergency medical treatment programs, and assisting in onsite emergencies.
- Modifying health and safety protocols or terminating field work when unsafe work conditions exist.
- Assuring all project team members participating in field activities have read and signed this HASP and have had the opportunity to ask safety-related questions regarding this project.
- Familiarizing personnel with health and safety protocols.
- Observing field personnel wear appropriate PPE.
- Recording data from direct reading instruments on field logs (as appropriate) and evaluating potential hazards.
- Monitoring cleaning procedures.
- Recording occurrence of any site injury, illness, property damage or near miss incident.

If unsafe conditions are encountered, if illness or injury occurs, or if the level of protection needs to be changed, the SSO will consult, in a timely manner, with the Project Manager, Rachel Morgan; and the H&S Manager, John Jindra.

Section 3: Site Description and History

The Georgia-Pacific Consumer Operations LLC (GP) Camas Mill (site) is located along the Columbia River in the City of Camas (City), at 401 NE Adams Street, Camas, Washington 98607 in Clark County. The site is located south of NW 6th Avenue and is bound by Lewis and Clark Highway to the west, the Camas Slough to the south, and the City to the east. The site occupies approximately 661 acres, consisting of 476 acres on Lady Island and 185 acres on the upland side north of the Camas Slough. In 2019, GP ceased certain operations at the Site, including wood pulping, the communication paper machine, fine paper converting, and related equipment. Continuing operations at the site include production of tissue paper and paper towels from purchased pulp.

Section 4: Planned Site Activities

Type of Investigation:	
Sampling Investigation: Hand Auger / Test Pit Drilling Trenching Well Installation Soil Sampling Groundwater Sampling Other:	Site Remediation: Excavation Treatment System Installation/O&M UST Removal
Site Walk-through	Other:
 Onsite Inspection or Construction-Services Entry into a Confined Space or Ex Work Along a Leading-Edge Requires Entry into an Excavation or Trench Washington) Field Investigation Requiring a. Entry into (potentially) hazard b. Interruption of vehicular traffield c. Interruption of plant processed d. Operation of pilot plant Chemical Use² Other - <u>specify</u> ¹ Completion of Kennedy Jenks Confined Space Procedures. ² A Field Chemical Use Plan must be completed. 	Related cavation ¹ uiring Fall Protection n with a Depth of 5 feet or Greater (4 feet in Oregon and dous area ic es
Potential Hazards:	
 ☑ Organics ☑ Inorganics ☑ Metals ☑ Acids 	Solvents Bases Pesticides Fire/Explosion Other:
Personal Protective Equipment:	
 ☐ Level C ⊠ Level D 	

In response to cessation of certain operations, Ecology engaged GP to initiate remedial investigation (RI) activities in areas where "release or threatened release of hazardous substance(s), as defined in RCW 70A.305.020(32) and (13), respectively, has occurred." On 12 August 2021, GP and Ecology completed Agreed Order (AO) No. DE 18201 to develop a Remedial Investigation Work Plan and prepare a Remedial Investigation Report per WAC 173-340-350 and WAC 173-204-550. Areas of the site included in the RI scope of work: Main Mill

Area (MMA); Camas Business Center (CBC), located north of the MMA; and Lady Island, located between the Camas Slough and the Columbia River.

The chemical hazards associated with site operations are related to inhalation, ingestion, and skin exposure to site-related chemicals of interest (COI). Risk of exposure can occur during any activity involving sampling of contaminated media. Site COI include Polychlorinated Dibenzodioxin and Polychlorinated Dibenzofuran compounds (Dioxins/Furans), Perfluoro Sulfonic Acid (PFOS)/ Perfluorooctanoic Acid (PFOA), Gasoline-Range Total Petroleum Hydrocarbons (TPH), Diesel- and Heavy Oil-Range Petroleum Hydrocarbons (DRO, ORO), Metals, Volatile Organic Compounds (VOCs), Semi-Volatile Organic Compounds (SVOCs), Diphenyl, Polycyclic Aromatic Hydrocarbons (PAHs), and Polychlorinated Biphenyls (PCBs).

Nitrile¹ sampling gloves and safety glasses shall be worn during all sampling activities to prevent contact with sample or container preservatives. The flora and fauna of the site may present hazards of poison ivy, poison oak, ticks, fleas, mosquitoes, wasps, spiders, and snakes. The work area presents slip, trip, and fall hazards from scattered debris and irregular walking surfaces. Wet surfaces may be present near the riverbank creating slippery surfaces.

Documented TSBs will be held prior to initiating job duties and a copy of this HASP, including a map and directions to the nearest hospital, will be present at all times at the project site.

¹ Alternate materials may be required for PFOS/PFOA sampling.

Section 5: Hazard Assessment

5.1 Potential Physical & Environmental Hazards

Every job must be scrutinized for potential hazards, which may cause an injury, illness, property damage, or an near miss incident. The preferred method of assessing a job for hazards is to break down each job into smaller tasks. Each task may then be scrutinized by performing a JHA.

Kennedy Jenks JHA form provides examples to assist employees in performing their own JHA. The JHA process is intended to provide a brief, consistent means of identifying and addressing hazards, which may injure employees.

Potential hazards may include, but are not limited to, the following:

- Heavy equipment
- Excavations and Trench work
- Tripping and falling hazards
- Heat stress
- Cold exposure
- Underground/overhead utilities
- Motor vehicle hazards
- Biological exposure
- Equipment hazards
- Working over or near open water
- Chemical exposure

5.1.1 Heavy Equipment

Field personnel should be cognizant of potential physical hazards associated with use of heavy equipment and electrical equipment during field operations. Appropriate precautions include the following:

- American National Standards Institute (ANSI)-approved hardhats, Class II reflective safety vests (when outside), safety glasses or goggles, and safety-toe boots will be worn.
- Loose clothing that may catch in moving parts will not be worn.

• Maintain visual contact with the equipment operator at all times within or near the equipment operating radius.

Prior to conducting drilling, a survey shall be conducted and discussed in the TSB to identify overhead electrical hazards and potential ground hazards, such as hazardous agents in the soil or underground utilities. Kennedy Jenks' staff will stay at least 25 feet from active drilling rig when possible. Coordinate collection of samples with equipment operator. Wear hearing protection when equipment is operating.

5.1.2 Excavation and Trench Work

Field personnel should enter an excavation or trench only as a last resort. Any excavation or trench exceeding 4 feet in depth must be properly shored, braced, or sloped, and a safety ladder must be provided for ready access or egress.

5.1.3 Tripping and Falling Hazards

Other potential physical hazards include falling and tripping on slippery, uneven, or unpaved surfaces.

Extra care should be taken in the event of frozen ground, sleet, or snow. Modify walking activities accordingly, paying close attention to exposed bare surfaces, such as stairs, platforms, concrete walkways, truck beds, etc.

5.1.4 Heat Stress

Adverse climate conditions, primarily heat, are important considerations in planning and conducting site operations. Maximum daytime temperature may exceed 75 degrees Fahrenheit (°F) at the site, and heat stress is an associated concern. Provisions of Kennedy Jenks Heat Illness Prevention Program, Appendix C, will be applied to all projects when Kennedy Jenks employees are subjected to sustained temperatures of 85 °F or greater.

Preventive measures include the following:

- Water and/or commercial electrolyte solutions will be available, and drinking these fluids will be encouraged. When temperatures exceed 85 °F, sufficient water will be provided to accommodate each employee with 1 quart of water per hour. Water will be kept cool by means of a portable cooler with ice or similar means.
- Suitable acclimation periods will be provided for workers to gradually establish their resistance to heat stress.

Personnel exhibiting symptoms of heat stress (nausea, cramps, dizziness, clammy skin) will be removed from the work area, cooled, and provided with water, and the personnel will be observed (see Appendix C, Heat Stress Card). Personnel exhibiting symptoms of heat stroke

(hot dry skin, mental confusion, unconsciousness) will be immediately cooled and taken to the hospital. A map and written directions to the local medical facility are included as Attachment 1.

5.1.5 Cold Exposure

Cold injury (e.g., frostbite and hypothermia) and impaired ability to work are dangers encountered at low temperatures and high wind-chill factors. To guard against these conditions, if cold weather is an important consideration at this site, field personnel should wear appropriate clothing, have access to readily available warm shelter, take carefully scheduled work and rest periods, and monitor physical conditions of other workers. See Appendix D, Cold Stress Fact Sheet.

5.1.6 Underground/Overhead Utilities

The site may contain underground and aboveground utilities, including buried electrical, natural gas, water, sewer and fuel lines, and aboveground utilities, such as high-voltage transmission lines. These utilities present a potential hazard if they are struck or can arc if equipment is located too close to them. Kennedy Jenks will use the following notification, documentation and clearance procedures to clear all boring or excavation locations of utilities prior to subsurface invasive activities. Subsurface invasive work includes excavations, borings, surface grading, and hand augering soil samples when depths penetrate more than 6 inches below ground surface (bgs). Work is not to proceed where there is doubt regarding the location of underground utilities or obstructions. Invasive Activities – Utility Location Standard Operating Procedures are included as Appendix E.

Notification Procedures: Notification is made through the One-Call Center (811) for all subsurface invasive work located on public property. Kennedy Jenks or its designated subcontractor will call for a universal underground notice at least 2 business days before drilling or subsurface invasive activities are to begin.

Document time of the call, names of utilities to be contacted, and obtain a ticket number for the call on Kennedy Jenks Utility Location and Acknowledgement Form included as Appendix E. On private property not covered by the Utilities Underground Location Center, Kennedy Jenks may be required to contact and receive utility clearance approval from a combination of other public and private entities, as well as private landowners, City officials, and State of Washington entities to obtain clearance approval who may have underground utilities in the work area.

Documentation: All proposed subsurface excavations, boring, and well locations are to be marked on the ground surface using **white** paint in accordance with American Public Works as shown on the American Public Works Association (APWA) Uniform Color Code. A Kennedy Jenks Utility Location and Acknowledgement Form must be filled out for each proposed well, boring, or excavation location. Obtain signatures from each private or public utility owner to document clearance on the each form, as required.

At all locations where drilling, probing, or well installation will be performed, an air knife or similar form of suction potholing will be performed to assess possible underground utilities in the upper 6 to 8 feet of soils (depending on local conditions and expected depth of utilities). Potholing is required at **all drilling locations**, except in remote areas where the likelihood of encountering underground utilities is very low and <u>only as approved by a Risk Manager</u>, <u>Resource/Operations Manager or Officer of the company familiar with underground utilities</u>.

(Note: Use of an air knife will be appropriate for most invasive drilling and probing work, but may not be appropriate for certain activities like very shallow borings (less than 1-foot deep), certain hand-auger borings, remedial injections using probe equipment, and test pitting.) Case-by-case exceptions for activities may be provided.

Should an underground line or pipe or other obstruction be encountered unexpectedly or disturbed (broken, damaged, or undermined) immediately discontinue invasive activities and contact the Project Manager. If the Project Manager cannot be reached, contact an officer of Kennedy Jenks. Secure the area to prevent further disturbance/damage.

When clearing the site for utilities, **ALWAYS REMEMBER TO LOOK UP for overhead utilities**. Kennedy Jenks will direct its subcontractors to limit the proximity of equipment to overhead power transmission lines according to the following schedule:

Distance from Power Line
10 feet
15 feet
20 feet
25 feet
35 feet
45 feet

If the voltage of a power line is unknown, assume it is 1,000 kV

5.1.7 Motor Vehicle Hazards

When working at the site, personnel should be aware of the following situations or activities:

- Vehicle, truck, and equipment traffic on residential streets and nearby service roads. Use barricades, signage, and/or a traffic control plan, where appropriate. Kennedy Jenks personnel are NOT trained in and are NOT authorized to set up traffic control or work as a highway flagger.
- When driving, personnel should be aware of the potential for wildlife to be on the road or run into the road. Driving after dark should be limited as much as possible.
- When driving, personnel should be aware of the potential of falling asleep at the wheel and take rest stops and breaks, at regular intervals or as needed. Do not drive to and from the site if weather conditions make road travel unsafe.
- Unpaved, uneven, or soft roadways. Personnel should only consider driving sport utility vehicles (SUVs) or pickup trucks into the site with 4x4 or all-wheel drive to prevent tires from getting stuck in soft or loose sand/mud.

5.1.8 Biological Hazards

Personnel should be aware of the potential presence of insects such as spiders and wasp/hornets, or snakes in wellheads or other enclosures.

The site may have some vegetative areas that may contain poisonous plants or tress such as sumac and/or poison ivy. Contact with such plants should be avoided. If contact is suspected, wash the area immediately with soap and water.

Ticks are prevalent at the site. To prevent exposure, staff should wear long sleeves, light colors, and consider tucking pant legs into boot cuffs and/or duct taping pant legs to boots. Regular "tick checks" should be conducted throughout the day. Field clothes should be removed immediately after work is complete and washed.

Insect repellent with DEET is encouraged be used to prevent exposure to biting insects such as ticks and mosquitoes.

Mosquitoes may pose a hazard because they are potentially infected with Eastern Equine Encephalitis (EEE) which may be transmitted through their bite. Personnel should have awareness of the severity of EEE warnings currently in the area. Field work should not be conducted during times of day when mosquitoes are known to be most active (i.e., dawn and dusk). Long-sleeve shirts, pants, gloves, and mosquito netting (over head and neck) are encouraged be worn to prevent exposure.

5.1.9 Equipment Hazards

Working with hand and small power tools, personnel should be aware of the following:

- Utilize tools only for the purpose for which they were designed.
- Inspect all tools and equipment before they are used.
- Immediately remove from service any tool or piece of equipment that is damaged.
- Be aware of potential of a burning hazard should equipment get hot during use.
- Do not wear any jewelry (including finger rings) or loose-fitting clothes that may get caught in equipment while conducting field activities.
- Use caution when lifting and carrying backpack containing bladder pump. The backpack weighs approximately 25 pounds. If walking long distances between monitoring wells, take intermittent rest breaks as needed to prevent fatigue.

5.1.10 Working Over or Near Water

Employees working over or near water shall consider the following recommended safety procedures:

- Employees must evaluate water conditions such as temperature or water current to select proper PPE. Example: dry suit and/or fall protection equipment. In addition, employees working within 4 feet of the water edge must wear properly sized U.S. Coast Guard personal floatation device (PFD).
- Perform visual inspections of area noting potential overhead and other hazards that are not in the normal field of vision.

- For work to be performed near water and more than 4 feet from the water's edge, erect sufficient barricades 4 feet away from the water's edge using traffic cones, plastic fencing, or caution tape to serve as a warning system when a worker unintentionally approaches the water's edge.
- For work to be performed above water and/or within 4 feet of the water's edge, another worker who can immediately summon emergency rescue must stand guard.
- Employees must know how to use rescue equipment such as "pole & life hook or ring buoy." (Ring buoys with at least 90 feet of line shall be provided and readily available for emergency rescue operations.)
- Proper footwear with adequate traction must be utilized when working or walking on wet faces.

5.1.11 Weather Hazard

There is a potential for snow and/or ice in the area of the proposed investigation. Personnel should layer clothing to lessen impact of the cold stress on the body (see Cold Stress Fact Sheet in Appendix D). Snow and ice can also cause roads and ground to be slick; therefore, extra precaution should be taken while driving, and moving around the work site. If personnel become too cold, they should take a break to warm up or add extra layers that do not impact PPE. If personnel experience symptoms of cold stress, they should stop work, and seek medical attention.

5.1.12 Other Safety Considerations

When working at the site, personnel should be aware of the following situations or activities:

- Vehicle, truck, and equipment traffic on residential streets and nearby service roads. Use barricades, signage, and/or a traffic control plan, where appropriate. Kennedy Jenks personnel are NOT trained in and are NOT authorized to set up traffic control or work as a highway flagger.
- Working with hand and small power tools. Utilize tools only for the purpose for which they were designed. Inspect all tools and equipment before they are used. Immediately remove from service any tool or piece of equipment that is damaged. Be aware of the potential of a burning hazard should equipment get hot during use.
- Do not wear any jewelry (including finger rings) or loose fitting clothes that may get caught in equipment while conducting field activities.
- Personnel should be aware of the potential presence of black widow spiders, wasp/hornets, or snakes in wellhead or other enclosures.
- When driving, personnel should be aware of the potential for wildlife to be on the road, or run into the road. Driving after dark should be limited as much as possible.

 When driving, personnel should be aware of the potential of falling asleep at the wheel and take rest stops and breaks, at regular intervals or as needed. Do not drive to and from the site if weather conditions make road travel unsafe.

5.2 Potential Chemical Hazards

Creosote is suspected to be present in timber piles beneath the PECO crane dock. Petroleum hydrocarbons have been detected in groundwater and soil samples collected at the site. Field personnel could potentially be exposed to petroleum hydrocarbons at the site by direct contact with soil or groundwater, through inhalation of dusts containing organic chemicals or through inhalation of organic chemical vapors. Field personnel will minimize potential chemical hazards by 1) avoiding direct contact with groundwater and soil, 2) performing air monitoring to determine necessary level of personal protective equipment, and 3) avoiding generation of dust. Ingestion of particulate matter containing chemicals is another general exposure route. However, for site personnel, the potential for this type of exposure is minimal. Safe work practices, including restriction of eating, drinking, or smoking to certain times and places, will be enforced at the work site.

5.2.1 Groundwater Samples

Potential chemicals present in groundwater from the site are listed in Table 1.

5.2.2 Soil Samples

Potential chemicals present in soil from the site are listed in Table 2.

Available Threshold Limit Values (TLV) or Permissible Exposure Limits (PEL) published for potential chemicals that may be detected in soil and groundwater are listed in Table 3.

5.2.3 Chemical Use Plan and Safety Data Sheets (SDS)/Hazard Communication

In addition to site-related chemicals, Kennedy Jenks field personnel may work with compressed gasses, cleaning materials, and other materials that present potential health and safety issues. Typical chemicals that may be brought to the site are listed below.

- Marking Spray Paint
- Non-phosphate detergent.

Kennedy Jenks has a "cradle to grave" policy regarding the purchase, storage, use, transportation, and disposal of chemicals used in the field. The Chemical Use Policy and Procedures are attached as Appendix F to provide guidance on the proper protocols for chemical use in the field. The Chemical Use Plan (see Appendix G) must be completed by Kennedy Jenks field staff using the chemicals and approved by the H&S Manager.

Kennedy Jenks has a Hazard Communication Written Program (see Appendix F) and training programs that cover these materials. Personnel conducting field activities must complete a

review of the Hazard Communication Written Program and site-related chemical hazards prior to starting field activities.

The Hazard Communication Written Program is part of Kennedy Jenks Health and Safety Operations Manual.

Copies of the SDS for chemicals listed in Table 1 or listed in this section are provided in Appendix G.

Section 6: Community Hazard Analysis

Generally, insignificant particulate and vapor emissions are generated during routine soil and groundwater sampling activities. During construction-related activities, particulate and vapor emissions may increase above concentrations generated during routine soil and groundwater sampling activities. Therefore, activity-specific health and safety addenda will be developed for activities where elevated particulate and vapor emissions may develop. Onsite worker exposure to chemicals at concentrations of concern is not expected. Potential exposures to the surrounding community will likely be much less than potential onsite worker exposure and is, therefore, also not expected to be of concern.

However, a potential for onsite worker exposure to chemicals exists during drilling and sampling activities. If, based on the action levels provided in Section 7, it becomes necessary for site personnel to don Level C PPE, Kennedy Jenks along with its subcontractor (Blaine Tech Services, Inc.), will establish three work zones: Exclusion Zone, Contaminant Reduction Zone, and Support Zone as described in Section 7.2. Exclusion and Contaminant Reduction Zones will control entrance and exit from potential exposure areas. Continuous air monitoring will be performed during activities performed within the Exclusion Zone to ensure that the appropriate level of PPE is selected and within the Support Zone to ensure that support workers are not exposed to chemicals. Potential exposures to the surrounding community are unlikely based on the size of the property. If air monitoring indicates that there is the potential for the surrounding community to be exposed, Kennedy Jenks will stop work and evaluate the need for alternative controls.

Use of barricades, caution tape, or signage to keep the general public away from working areas should be used where and when appropriate. At a minimum, keep public and non-essential personnel at least 50 feet away from an active drilling area. This can be accomplished using barricades, cones, vehicles, and caution tape.

7.1 PPE

Field personnel will wear equipment to protect against potential physical and chemical hazards, which have been identified herein and those that become apparent in the field. Guidelines for Contaminants Commonly Encountered at Kennedy Jenks Sites_provide guidance in assessing potential hazards and selecting the appropriate protection. Level D protection will be required at a minimum for field activities at the site. Level D personal protective equipment to be used may include all items on the following list that are denoted by an asterisk (*).

The level of protection employed may be upgraded, as deemed necessary by the SSO. If non-routine field activities are initiated, the level of protection will be specified in the activity-specific health and safety addenda.

Personal Protective Equipment (PPE) and Monitoring Equipment

Eyes: Safety Glasses Face Shield Boots: Safety-Toe Work Rubber Other Class II High-Visibility Reflective Safety Vest Hard hat Earmuffs/Plugs (as needed)	 Lockout Tags and Locks Ventilator/Fan Volt/Ampere Meter PID (calibration date: <u>specify</u>) OVA (calibration date: <u>specify</u>) OVM (calibration date: specify)
Suits: Cotton Tyvek Nylon Other	Hydrogen Sulfide Meter <i>(calibration date: specify)</i>
Respirator: (Type/Cartridge: <u>specify)</u>	Draeger Detection Tubes
Emergency Eyewash Emergency Shower	🖂 Soil Sampling Kit
Spill Kit	🛛 pH Meter/Paper
Fire Extinguisher	Conductivity/Temperature Meter
First Aid Kit	Metal Detector
Life Jackets Rescue Life Ring	Air Sampling Equipment
Safety Belt/Harness/Tripod	Peristaltic Pump
Lights (type: <u>Flashlight</u>)	US Coastguard approved PFD.
Camera/Video	Work clothing as prescribed by weather
Cell Phone	

7.2 Work Zones

Work zones, including designation of an Exclusion Zone, a Contamination Reduction Zone, and a Support Zone, will be established for any field activity that requires Level C protection or greater. Work zones will be clearly marked in the field. Work zones may vary depending on the proposed field activity and will be established in the activity-specific health and safety addenda.

7.3 Monitoring

7.3.1 Hazardous Substances

As appropriate, field personnel will perform air monitoring at least twice daily with a direct reading organic vapor analyzer (OVA, OVM, or HNU) in the breathing zone at each work location. All readings shall be recorded in field logs. All direct reading instruments shall be calibrated according to the manufacturer's specifications. The following action levels will be used.

- If OVA readings for a particular work area consistently exceed 5 parts per million (ppm) above background, then sampling will cease and personnel will withdraw from the work area.
- If concentrations persist above 5 ppm, then Level C protection will be required if work is to continue.
- If OVA readings exceed 10 ppm in the breathing zone while workers are in Level C protection, then work will cease, and the source of the emission will be determined and eliminated before work continues.
- Periodic measurements of the area will be taken before re-entry to ensure lower exposure limit (LEL) has been reduced to safe working levels.

7.3.2 Explosive Limits

If conditions encountered during drilling or sampling suggest potentially explosive conditions may exist, the SSO will direct explosimeter monitoring be conducted. The following explosimeter monitoring action levels will be used:

- If gas or vapor concentration is less than 10 percent of its LEL, continue investigation.
- If concentrations are between 10 and 25 percent of its LEL, continuously monitor site and continue investigation with extreme caution.
- If concentrations are greater than 25 percent of LEL, withdraw from area immediately.

7.3.3 Noise

Field personnel will initially monitor noise levels associated with equipment and machinery with a direct reading portable noise level monitor unless based on experience, it is known that hearing protection is not necessary. Readings will be taken within the normal worker hearing zone. If maximum noise levels exceed 85 decibels at any time during site operations, hearing protection will be worn.

The OSHA permissible noise exposure limit is 90 decibels as an average exposure over an 8-hour work period. If an employee's 8-hour time-weighted average noise exposure for any day is in excess of 85 decibels, the employee must participate in a hearing conservation program. For most field activities, it is unlikely the employee exposure in excess of 85 decibels for 8 hours will occur. Although a written hearing conservation program is not required, Kennedy Jenks will

provide field personnel with appropriate hearing protection (i.e., earmuffs or plugs) whenever noise levels have the potential to exceed 85 decibels.

All contractors are responsible to ensure whether a hearing conservation program is warranted per site conditions and are to ensure compliance with applicable OSHA regulations.

7.4 Site Control

Work zones will not be established for Level D activities. Individuals not directly involved in ongoing work will be requested to stay at least 50 feet away from Level D activities. For work inside a building, access will be controlled using building access control.

7.5 Cleaning

For activities requiring Level D protection and modified Level C protection without established work zones, it is unlikely major cleaning will be necessary. At the conclusion of each day or work period, disposable gloves and coveralls will be removed and disposed of in onsite containers.

If full Level C protection is required, minimum cleaning procedures associated with Level C protection will be followed and established within the Contamination Reduction Zone. These procedures are presented in Table 2.

7.6 Training

Kennedy Jenks personnel participating in field activities will have completed the Hazardous Waste Operations and Emergency Response 40-hour health and safety training course (29 CFR 1910.120), or have equivalent training, and have undergone annual 8-hour refresher training. Training requirements are discussed in Kennedy Jenks Health and Safety Operation Manual. Prior to each work day, a TSB meeting will be held at the site to familiarize personnel with health and safety issues, protective equipment, emergency information, and supplies and to discuss special topics.

7.7 Medical Monitoring

Kennedy Jenks personnel participating in field activities will be included in a medical monitoring program. The program includes a baseline physical examination, pulmonary function test, and blood and urine tests. Periodic (annual) examinations will be provided to employees who are exposed to hazardous substances or health hazards at or above the established PEL, above the published exposure levels for these substances, without regard to the use of respirators, for 30 days or more a year. Annual examinations will also be provided to Kennedy Jenks employees who wear a respirator for 30 days or more a year or as required by 1910.134. Details of the medical program are included in the Kennedy Jenks Health and Safety Operations Manual.

7.8 Sanitation and Illumination

The site may have drinking water, washing water, and restroom facilities available. If drinking water is not available at the site, a sufficient amount of water will be provided to accommodate each employee with 1 quart of water per hour. The water will be kept cool by means of a portable cooler with ice or similar means.

No eating, drinking, smoking, or gum or tobacco chewing is allowed in restricted areas.

Activities will take place during daylight hours. Because natural illumination (approximately 50- to 200-foot candles) will be sufficient to meet the 5-foot candle requirement for general site areas, no additional illumination will be required.

7.9 COVID-19 Procedures and Processes

The following information summarizes hazards, risks, and mitigation/minimization strategies for COVID-19 exposure and transmission in anticipation of field activities in the coming months. The procedures established herein provide a framework, with the expectation that site personnel will work together to optimize and refine these procedures to most effectively achieve the objective of minimizing COVID-19 exposure and transmission risks and safely completing their field assignments.

7.9.1 COVID-19 Background

COVID-19 is a new strain of coronavirus which originated in Wuhan, China, and has since been detected worldwide and now in the United States. COVID-19 is a respiratory virus and symptoms of infection include fever, dry cough, shortness of breath, and breathing difficulties. In severe cases, infection can cause pneumonia, acute respiratory syndrome, organ failure, and death . Treatment of COVID-19 is typically with medication to reduce fever and to support and improve respiratory function.

COVID-19 is thought to spread mainly from person-to-person between people who are in close contact with one another (within about 6 feet), or through respiratory droplets produced when an infected person coughs or sneezes. These droplets can land in the mouths or noses of people who are nearby or possibly be inhaled into the lungs. It may be possible that a person can get COVID-19 by touching a surface or object that has the virus on it and then touching their own mouth, nose, or possibly their eyes, but this is not thought to be the main way the virus spreads.

7.9.2 Prevention and Treatment

The best way to prevent illness is to avoid being exposed to this virus. COVID-19 vaccines are becoming available and being distributed to communities throughout the U.S. when available. Based on the information that is currently available, the vaccine is not expected to have wide-spread distribution until mid to late 2021. Centers for Disease Control and Prevention (CDC) recommends everyday preventive actions to help prevent the spread of respiratory diseases.

CDC Fact Sheets specific to COVID-19 are included in Appendix H.

7.9.3 Site-Specific Procedures and Guidelines

The following presents guidelines to be followed by all personnel onsite in conjunction with those already set in place. Other contractors/consultants working onsite should be provided this document and commit to abiding by these procedures (or more stringent firm-specific procedures). These procedures supplement those established in each firm's site-specific health and safety plan.

7.9.3.1 Transportation and Parking

Visitors to the Mill are required to complete a health self-assessment every day before reporting to work. The health self-assessment can be completed upon check-in at the Clockroom or the entry gate.

Employees are encouraged to drive separately to/from the site, unless their vehicle provides adequate interior space for social distancing. Parking will be situated such that staff traveling between their designated workspace and vehicle should not encounter members of other field teams.

Travel around the site will occur on foot with appropriate social distancing and/or in separate vehicles.

7.9.3.2 Interactions Within Field Teams

All site personnel should limit physical interactions as much as practicable while still allowing for a safe and efficient workspace. Social distancing is the primary means of avoiding physical interactions. The means by which a field team establishes and maintains social distance is task- and location-specific and will be assessed and refined in the field. Those routine elements of the field program are addressed below and associated procedures ensure the CDC suggested 6-foot buffer during physical interactions.

Effective 23 August 2021, Washington Department of Health (DOH) updated the Washington mask requirement. The Mill requires that all employees, vendors, contractors, and visitors wear a mask while indoors, regardless of distance and vaccination status, with limited exceptions for eating/drinking while maintaining social distancing, being alone in an enclosed room with a door, and other medical exceptions.

7.9.3.3 Social Distancing – Non-Work Hours

Procedures established herein effectively limit interactions while onsite. To supplement these onsite procedures, all personnel who will be returning to site the following day should practice social distancing during non-work hours away from the facility. In the event that a questionable encounter occurs during non-working hours, Kennedy Jenks recommends that the employee mention the interaction at the next safety briefing to make others aware and refine onsite procedures if needed.

7.9.3.4 Meals

All personnel should pack and bring their meals (and snacks/drinks) onsite with them. Employees are discouraged from leaving the site during the workday.

7.9.3.5 Daily Safety Tailgate

Field teams conduct daily safety tailgate briefings at the beginning of every workday. These meetings will be conducted outside in the parking area onsite each morning. The meetings include daily scope of work and hazards that are present onsite. Recognizing the everchanging stream of information and decisions related to COVID-19, safety briefings will include an overview of pertinent updates. At the end of each meeting (and anytime during the day), all personnel present will have a chance to voice concerns. All personnel onsite have stop work authority, and COVID-19 comfort concerns are a valid reason to stop work and revisit the procedures outlined herein and/or make a go/no-go decision regarding additional field activities. Field teams will record the meeting attendees in a field book in lieu of passing the tailgate sheet for signatures.

7.9.3.6 Sanitation

All personnel will be required to sanitize their field equipment at the end of the workday before leaving the site to help decrease spread or migration of the virus using sanitation wipes provided by their company. Similarly, once arriving onsite, all personnel should immediately thoroughly wash their hands in the designated restroom.

7.9.4 Communication and Updates

Kennedy Jenks will provide updates as more information on COVID-19 exposure and transmission risks becomes available.

While onsite, all personnel should practice safe prevention techniques as outlined in the Introduction and follow the guidelines hereinto. As the COVID-19 pandemic continues to unfold across the U.S. and in Washington, Kennedy Jenks will maintain constant communication with personnel onsite. Daily updates will be provided to verify that work can continue safely and address emerging situations.

IF YOU FEEL ILL, CONTACT YOUR H&S REPRESENTATIVE - <u>DO NOT COME TO THE</u> <u>SITE</u>.

Section 8: Emergency Response Plan

Hazard recognition is an essential part of the Emergency Response Plan. Initiation of the contingency plan relies on the employee's ability to recognize an emergency or potential for an emergency. The following is a list of events that will immediately initiate emergency procedures:

- Explosion
- Fire
- Release of organic vapors or particulate above the action levels
- Personal injury
- Failure or expected failure of runon/runoff control measures
- Natural occurrences (i.e., lightning, tornado, high winds, etc.)
- Spills.

8.1 **Emergency Communications**

Emergency communications will consist of two methods.

8.1.1 Verbal Communication

Verbal communication will be the primary method of emergency communication between onsite personnel, distance permitting.

8.1.2 Telephones

Telephones are used for routine communication and to notify offsite agencies of incidents and request assistance. Emergency telephone numbers are given in Section 9.

8.2 Emergency Protocol

When an event recognized as an emergency occurs, the alarm system will be used to notify personnel. As soon as the alarm system is activated, the SSO will be notified.

The SSO will take into account the following information:

- Nature of emergency
- Wind direction
- Location of personnel
- Monitoring results

- Emergency equipment available
- Offsite population.

Based on this information, the SSO will direct appropriate emergency action and agency notification. After the emergency has been controlled and the site is considered safe to re-enter, the SSO, in coordination with the Project Manager, will direct remedial action to restore the site to full operating condition.

The SSO will investigate the nature and cause of the incident so work procedures can be modified to minimize the likelihood of the incident's recurrence.

All incidents must be reported in a timely, appropriate manner to the H&S Manager. An incident is any unplanned event resulting in injury, damage, loss of assets, adverse publicity, or which requires notification of a regulatory agency, regardless of severity. All Kennedy Jenks personnel should report an incident to the SSO. The SSO will report to the Project Manager, who is responsible for notifying the H&S Manager.

Each incident will be investigated and a Root Cause Analysis Report will be generated and forwarded to the Project Manager and the H&S Manager.

If work zones are established, the Exclusion Zone will have several emergency exits, which will allow safe egress in multiple directions from any point onsite. The exit selection will be based on the emergency location, type of emergency, and wind direction. Upon hearing the evacuation signal or otherwise being notified of an evacuation, employees will immediately travel to the assembly area located at the cleaning station.

Employees will follow a route that avoids locations downwind from the emergency. If emergency exits are used, employees will proceed to the assembly area by the quickest route possible. When the assembly area is reached, employees will immediately check in with the SSO. The site will remain evacuated until the all clear signal has been given.

8.3 Emergency Supplies

The following is a list of emergency equipment available to take to the site:

- Portable emergency eye wash
- First aid supplies
- Cooler for water and ice (when temperatures are predicted to be above 85°F)
- Shade cover to protect from sun exposure.

All personnel will have a thorough understanding of the HASP before starting work. It will be reviewed periodically to keep it current with new or changing site conditions or information.

8.4 Injury Response

In the event of an employee injury in a contaminated area, consideration must be given before moving the injured and contaminated employee to outside the restricted contamination area. The nature of the injury, hazards posing an immediate danger, and other factors must all be weighed before moving an injured employee who is wearing contaminated PPE. Initial responders should follow directions from 9-1-1 personnel or the or H&S Manager.

Section 9: Reporting (Injury/Illness, Property Damage, or Near Miss)

9.1 Injury/Illness Care and Notification Procedures

9.1.1 Emergency Services (9-1-1)

Call 9-1-1 for critical injuries or illnesses (i.e., head injuries, uncontrolled bleeding, difficulty breathing, chest pain, or altered level of consciousness) or if an employee or his/her supervisor has immediate concerns about an injury or illness.

9.1.2 Injury/Illness Intervention

Kennedy Jenks has retained WorkCare, a team of occupational physicians, to provide our employees with effective treatment of non-critical work-related injuries and illnesses. WorkCare provides on the spot, 24/7 employee consultations at the time an on-the-job incident occurs, as well as post-accident follow-up and consultation.

9.1.3 When to Call WorkCare

In the instance of a non-critical workplace injury or illness, an employee should call WorkCare at (888) 449-7787 to receive instruction on how to contact one of its clinicians and contact their immediate supervisor as soon as possible. Common non-critical workplace injuries/illnesses include:

- Back sprains
- Slips, trips, falls
- Shoulder strains
- Contact with a harmful substance.

9.1.4 Employee Role

The injured employee, if able, must do the following:

 Report any non-critical injuries/illness to WorkCare at (888) 449-7787 and, as soon as possible, to their immediate supervisor. WorkCare will notify the Chief Risk Officer and the H&S Manager of the injury or illness. As appropriate, the Chief Risk officer The will immediately the senior leadership team members of the injury or illness.

• If WorkCare determines medical attention is required, transportation must be provided for the injured employee. An injured employee must not transport himself/herself to a facility for medical treatment. If a co-worker is not available to transport the injured employee, an ambulance, a taxi, or other means of transportation must be provided, unless the employee is working in a remote area and no other form of transportation is available. WorkCare will send the employee to an approved local facility and inform the treating physician the injury is work related.

9.1.5 Project Manager Role

The Project Manager must do the following:

- Make sure the injured employee contacts WorkCare and is provided transportation to immediately obtain any required medical care from an approved doctor or hospital, if required.
- Provide emergency ambulance service if needed for critical injuries or illnesses, if required.
- Notify the H&S Manager of the injury or illness.

9.1.6 Injured Subcontractor or Other Non-Kennedy Jenks Employee

In the case of injuries or illness to non-employees, the appropriate staff member should ensure they receive proper medical attention, and their supervisor and the Chief Risk Officer are notified immediately. As appropriate, the Chief Risk Officer will notify Senior Leadership Team.

9.2 **Property Damage and Near Miss Incident Investigation**

All work-related property damage and near miss incidents will be investigated by Kennedy Jenks in a timely manner. Minor incidents and "near misses" will also be investigated so the risk of serious occurrences can be reduced in the future. All serious incidents and serious "near misses" will be investigated by the H&S Manager.

- Near Miss. Incidents where no property was damaged and no personal injury sustained, but where, given a slight shift in time or position, damage and/or injury easily could have occurred.
- Rule of Thumb. If you need to ask yourself if the incident was a near miss or not, you have answered the question, and it is a near miss.

Forms

The Injury/Illness, Property Damage Incident, and Near Miss Reporting Forms are included as Appendix I.

Section 10: Emergency/Team Contacts & Approvals

	Name	Phone
Site Contact	Samantha McDowell	360-834-8439
WorkCare (Non-Critical Injuries)	WorkCare	888-449-7787
Fire Department ¹		9-1-1
		360-835-2611
Hospital: PeaceHealth Southwest Medical (Center	360-514-2000 (non-emergency)
Directions to hospital ² :	400 NE Mother Joseph Pl,	
See attached map	Emergency Entrance,	
	Vancouver, WA 98664	
Ambulance		9-1-1
Police		9-1-1
		360-834-4151 (non-emergency)
Kennedy Jenks:		
Project Manager	Rachel Morgan	415-243-2441 (Office)
Site Safety Officer (SSO)	Ella Gyerko	253-835-6417 (Office)
		503-705-1169 (Cell)
Health and Safety Manager	John Jindra	253-835-6466 (Office)
		253-254-1079 (Cell)

Emergency Telephone Numbers

¹ The local fire department prefers the public use 911 to assure the proper assistance in case of accident or injury.

² Attach written directions and map showing route to hospital.

Project Team Members Participating in Field Activities

Name	Affiliation	Responsibility	Signature/Date	
Ella Gyerko	KJ	Oversight/SSO	Ella Suppo	3/03/2023
		-	0	
			U	

Approvals Name Signature/Date Project Manager Rachel Morgan Radul Manager Radul Manager Health and Safety
Manager John Jindra Manager 3/03/2023 CC: Project File
PM Portal CC: Project File
PM Portal Signature/Date

Tables

Table 1: Potential Chemicals Present In Groundwater Monitoring Samples

Chemical		
Dioxins/Furans		
Perfluoro Sulfonic Acid (PFOS)/ Perfluorooctanoic Acid (PFOA)		
Gasoline-Range Total Petroleum Hydrocarbons (TPH)		
Diesel- and Heavy Oil-Range Petroleum Hydrocarbons (DRO, ORO)		
Metals		
Volatile Organic Compounds (VOCs)		
Semi-Volatile Organic Compounds (SVOCs)		
Diphenyl		
Polychlorinated Biphenyls (PCBs)		
Polycyclic Aromatic Hydrocarbons (PAHs)		

Table 2: Potential Chemicals Present In Soil Samples

Chemical		
Dioxins/Furans		
Gasoline-Range Total Petroleum Hydrocarbons (TPH)		
Diesel- and Heavy Oil-Range Petroleum Hydrocarbons (DRO, ORO)		
Metals		
Volatile Organic Compounds (VOCs)		
Semi-Volatile Organic Compounds (SVOCs)		
Diphenyl		
Polychlorinated Biphenyls (PCBs)		
Polycyclic Aromatic Hydrocarbons (PAHs)		

TLV TWA^(a) STEL^(b) PEL^(b) Chemical Acute Exposure Symptoms^(c) Target Organs^(c) 0.10-8 __(e) Dioxin __(e) Shortness of breath, headaches, fatigue, muscle Eyes, skin^(d), liver, ma/m^{3x}` pains, weakness, digestive disturbance; Nausea, kidnevs. vomiting and possible pancreatitis; Chemical burns, reproductive chloracne. skin fragility, hirsutism, photosensitivity, system conjunctivitis, and chemical burns to eyes __(e) Irritant to eyes, skin, mucous membranes, None None Developed Eves, skin, Develop dermatitis, lassitude, blurred vision, dizziness, respiratory system, Gasoline ed slurred speech, confusion, convulsions CNS. liver kidnevs __(e) __(e) Eyes, skin, liver, Irritant to eyes, nose, and throat Diesel/ 100 kidneys, respiratory ma/m³ Heavy Oil system, CNS __(e) 0.2 ppm Eves, respiratory Irritation eyes, throat; headache, nausea, lassitude (weakness, exhaustion), numb limbs; liver damage system, liver, Diphenyl 0.2 ppm central nervous system. PCBs 1 mg/m^3 1 mg/m^3 1 mg/m^3 Eye irritation; chloracne; hyperpigmentation; Eves, skin liver. gastrointestinal disturbances; liver damage; reproductive numbness of extremities system PAHs 0.2 0.2 mg/m³ Dermatitis: bronchitis Skin, bladder. ---mg/m³ kidnevs. respiratory system 0.2 0.2 mg/m^3 Benzo(a)p 0.6 mg/m^3 Dermatitis, bronchitis, [potential occupational Respiratory mg/m³ carcinogen] system, skin, vrene [65996-93bladder, kidnevs 2] Eyes, skin, Benzene 1 ppm 1 ppm 5 ppm Irritation eyes, skin, nose, respiratory system; respiratory system, dizziness: headache, nausea, staggered gait: anorexia, lassitude (weakness, exhaustion); blood, central dermatitis; bone marrow depression; [potential nervous system, occupational carcinogen] bone marrow 100 ppm Irritation eyes, nose; lassitude (weakness, Toluene 100 ppm 150 ppm Eves, skin, exhaustion), confusion, euphoria, dizziness, respiratory system, headache: dilated pupils. lacrimation (discharge of central nervous tears); anxiety, muscle fatigue, insomnia; paresthesia; system, liver, dermatitis; liver, kidney damage kidneys

Table 3: Chemical Allowable Exposure Values and Exposure Symptoms

Site-Specific Health and Safety Plan Georgia-Pacific Camas Mill, 1865004*23 © Kennedy/Jenks Consultants, Inc., 2023 \\sfocad\projects\is-proj\2018\1865004.18_gp_camas\09-reports\rivip_sap-qapp\02_revised\appendix a - hasp\camas_ri_hasp_2023.docx

	ILV				
Chemical	TWA ^(a)	STEL ^(b)	PEL ^(b)	Acute Exposure Symptoms ^(c)	Target Organs ^(c)
Ethylbenz ene	100 ppm	100 ppm	125 ppm	The substance is irritating to the eyes, the skin, and the respiratory tract. Swallowing the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis. The substance may cause effects on the central nervous system. Exposure above the OEL could cause lowering of consciousness	Eyes, skin, respiratory system, central nervous system, liver, kidneys
Xylenes	100 ppm	100 ppm	150 ppm	Irritation eyes, skin, nose, throat; dizziness, excitement, drowsiness, incoordination, staggering gait; corneal vacuolization; anorexia, nausea, vomiting, abdominal pain; dermatitis	Eyes, skin, respiratory system, central nervous system, gastrointestinal tract, blood, liver, kidnevs

Notes:

(a) TLV TWA = threshold limit value – 8-hour time-weighted average.
 STEL = short-term exposure limit.
 American Conference of Governmental Industrial Hygienists. TLV and Biological Exposure Indices for 1997.
 TLV TWA = threshold limit value – 8-hour time-weighted average.

TLV TWA reported in ppm represents parts of vapor per million parts of air by volume at 25 degrees Celsius (°C) and 760 torr. TLV - TWA reported in milligrams per cubic meter (mg/m³) represents milligrams of substance per cubic meter of air.

(b) PEL = Federal Occupational Safety and Health Administration (OSHA) (29 CFR 1910 Subpart Z) Permissible Exposure Level based on 8-hour time weighted average.

(c) Source: U.S. Department of Health and Human Services. National Institute for Occupational Safety and Health (NIOSH) Pocket Guide to Chemical Hazards. June 1994. Sittig, Marshall. 1985. Handbook of Toxic and Hazardous Chemicals and Carcinogens. Park Ridge, New Jersey. Noyes Publications.

- (d) Skin notation indicates route of exposure through cutaneous absorption.
- (e) "---" indicates there is no published limit for this chemical at the Oregon State or Federal level.

ppm = parts per million

_ . . .

IDLH = immediately dangerous to life and health

CNS = central nervous system

1 Equipment Drop Deposit equipment used onsite (tools, sampling devices and containers, monitoring instruments, radios, clipboards, etc.) on plastic drop cloths. Segregation at the drop reduces the probability of cross contamination. During hot weather operations, a cool down station may be set up within this area. 2 Outer Garment, Boots, and Gloves Wash and Rinse Scrub outer boots, outer gloves, and splash suit with decon solution or detergent water. Rinse off using copious amounts of water. 3 Outer Boot and Glove Removal Remove outer boots and gloves. Deposit in container with plastic liner. 4 **Canister or Mask Change** If worker leaves Exclusion Zone to change canister (or mask), this is the last step in the cleaning procedure. Worker's canister is exchanged, new outer gloves and boot covers donned, joints taped, and worker returns to duty. 5 **Boot, Gloves and Outer Garment Removal** Boots, chemical-resistant splash suit, inner gloves removed and deposited in separate containers lined with plastic. 6 Face Piece Removal Face piece is removed. Avoid touching face with fingers. Face piece is deposited on plastic sheet. 7 **Field Wash** Hands and face are thoroughly washed. Shower as soon as possible.

Description

Table 5: Measures for Level C Cleaning

Station

Attachment 1

Site Map

Map and Written Directions to Local Hospital

Directions to Hospital

These directions are to/from the site to PeaceHealth Southwest Medical Center located at 400 NE Mother Joseph PI, Vancouver, WA 98664. These directions should be confirmed by the Program Manager prior to the start of work at the site. Directions, as provided by Google Maps, are provided below.

Start: 401 NE Adams, Camas, WA 98607 (Georgia-Pacific Camas Mill) --- Drive 10.1 miles, 14 minutes

- 1. Head west on NW 6th Ave toward NW Fargo St. (0.8 mi)
- 2. At the traffic circle, continue straight onto the WA-14 W ramp (0.4 mi)
- 3. Merge onto WA-14 W (7.5 mi)
- 4. Keep left to stay on WA-14 W (2.1 mi)
- 5. Take exit 4 for Leiser Road toward Southeast 88th Avenue (0.2 mi)
- 6. Turn right onto S Lieser Rd (0.8 mi)
- 7. Turn right onto E Mill Plain Blvd (0.2 mi)
- 8. Turn left onto NE Mother Joseph PI (456 ft)
- 9. Turn right (236 ft)
- 10. Turn left (20 ft)

Destination will be on the right.

End: PeaceHealth Southwest Medical Center

Appendix A

Job Hazard Analysis

JOB HAZARD ANALYSIS	Project No.: 1865004*23
Job/Operation Title:	Date:
Excavation or Trenching	3/31/2023
Business Unit:	JHA Reviewed By:
Industrial	Rachel Morgan
Project Location:	JHA Revised By:
401 NE Adams St, Camas, WA 98607	Robert Ardissono
Person(s) Performing This Job/Task:	Project Manager:
Ella Gyerko, Robert Ardissono, Shaelyn Thomas	Rachel Morgan
Job/Task Start Date:	Job/Task Duration:
September 2023	12 months

Task/Step	Potential Hazards	Recommended Safe Job Procedures
Mobilize equipment	Risk of injury to automotive or pedestrian traffic.	A Traffic / Pedestrian Control Plan is required when blocking or partially blocking any walkway, roadway, or driveway.
		Work area should be delineated off from Unauthorized personnel and signs posted.
		Proper PPE shall be worn by adjacent personnel, as required by their proximity to the work task.
Locate utilities	Risk of damaging underground utilities.	Follow Utility Locate Stand Operating Procedures (SOPs).
		Ensure all areas to be disturbed have been scanned prior to the start of work.
Excavate or trench	Risks of injury from cave-in's collapse of unstable or poorly supported soil.	Soil type shall be classified by an Excavation Competent Person (CP). The contractor or subcontractor will provided an Excavation CP.
		Trenches, spoil piles, and surrounding work areas must be inspected daily or as needed.
		Kennedy Jenks personnel will not enter any trench greater than 5 feet deep (4 feet in Washington and Oregon) that is not shored or benched. Appropriate shoring or benching is determined by the CP.
		Excavated soil spoils are properly managed.
		Any trench greater than 4 feet, located next to underground piping or tanks containing hazardous materials or having soil discoloration or odors shall be evaluated for permit-required confined space controls.

Task/Step	Potential Hazards	Recommended Safe Job Procedures
Containment	Risk of accidental release into the storm water drains	Follow Stormwater Pollution Prevention Program as required.
		If storm drains are below work areas, ensure drain covers are surrounded by waddles, lined with mesh covers (silt screens).

JOB HAZARD ANALYSIS

COVID-19 Safety Practices

Similar to any other hazard encountered in the performance of field work, COVID-19 presents hazards we must consider and address as part of our job hazard analysis (JHA).

Supplemental Document References:

COVID-19 General Guidelines

https://kjcnet.sharepoint.com/sites/SafetyZone/SiteAssets/SitePages/Coronavirus/KJ_COVID_01_GeneralGuid elines.pdf?web=1

COVID-19 Projects

https://kjcnet.sharepoint.com/sites/SafetyZone/SiteAssets/SitePages/Coronavirus/KJ_COVID_03_Projects.pdf ?web=1_

COVID–19 Vehicles

https://kjcnet.sharepoint.com/sites/SafetyZone/SiteAssets/SitePages/Coronavirus/KJ_COVID_04_Vehicles.pdf ?web=1

COVID-19 Travel

https://kjcnet.sharepoint.com/sites/SafetyZone/SiteAssets/SitePages/Coronavirus/KJ_COVID_05_Travel.pdf?w eb=1

Controlling spread of COVID–19 infection

Task/Step	Potential Hazards	Recommended Safe Job Procedures
Pre-Trip Planning	Travel by air, rail or vehicle Access restrictions/closures due to COVID-19 Lack of vital services due to COVID-19 Increased exposure potential to COVID-19	 Check with client regarding potential access restrictions or specific guidance regarding COVID-19. Determine requirements of any local, state, federal government directives/ordinances applicable to the areas of travel. Verify flights, hotels, and meal accommodations are available in areas of travel. Review CDC or local health department guidance with project team members and KJ's COVID-19 Travel Planning Policy (linked above) to prevent or reduce the likelihood of exposure. Provide adequate supplies for the task and access for all team members (hand washing and sanitation stations, PPE (gloves, safety glasses, face covering, as appropriate). Follow hygienic practices to reduce the spread of germs: Wash hands regularly and thoroughly with soap and water, for a minimum of 20 seconds. While in the field keep hand sanitizer^(a) (containing at least 60% alcohol) and/or disinfectant wipes^(b) easily accessible. Avoid touching your nose, mouth, and eyes and wash hands before and after eating. Cover coughs and sneezes with a tissue, or cough and sneeze into upper sleeve if tissues are not available.

Task/Step	Potential Hazards	Recommended Safe Job Procedures
		 Properly dispose of tissues immediately after use (do not place used tissues on desk surfaces or in clothing pockets). Wash hands or use hand sanitizer^(a) after coughing, sneezing, or blowing your nose. Wipe down frequently touched work surfaces, tools, and equipment with sanitizing wipes. Use disposable gloves if handling tools and equipment that may be contaminated. Avoid using other employees' work tools and equipment. Avoid close contact with others; maintain social distancing when possible (defined by the CDC as remaining out of congregate settings, avoiding mass gatherings, and maintaining distance (approximately 6 feet from others). Avoid handshakes. Always wash hands after physical contact with others.
Travel to and from Jobsite	Inadequate social distancing for COVID-19	 Avoid public transportation when possible. Separate vehicle occupants as far as possible or plan to take individual vehicles/means of transportation to maintain social distancing.
Evaluate Job Sites and Discuss with Client and or Contractor	Contracting COVID-19 virus	 Project managers and assigned field staff should evaluate job sites where we will be working for potential exposure. Obtain as much information as you can from the client and/or contractor on current projects and for new projects. Have there been reported COVID-19 cases or suspected cases at the site? What precautions has our client and or contractor put in place for disease transmission prevention? Has the client/contractor provided a COVID-19 revision of their Safety Plan for all site staff to follow and if yes, are you following it? Ask our client or contractor to immediately notify us of suspected cases at the site. What requirements or restrictions does our client or contractor have for KJ personnel that will be onsite? Has anything changed that will impact our services, schedule, staffing, costs? If yes, we will need to discuss with our client immediately.

Task/Step	Potential Hazards	Recommended Safe Job Procedures
Interacting with Co-workers and Client Employees to Deliver Essential Services	Contracting COVID-19 virus	 Provide services remotely if possible, utilizing teleconferencing resources. Observe social distancing by maintaining a minimum of 6 feet between all persons. Amend work environment by providing physical barriers or maintaining social distancing. Limit all physical contact with persons and time spent in close proximity to absolute minimum. Conduct ongoing cleaning and disinfection of high touch surfaces (e.g., tables, hard-backed chairs, doorknobs, light switches, remotes, handles, desks, toilets, sinks, other's computers and cell phones) following the Safety Practices for Cleaning^(c) and Disinfecting^(d). Observe proper hand hygiene Wash your hands often with soap and water for at least 20 seconds especially after you have been in a public place, or after blowing your nose, coughing, or sneezing. If soap and water are not readily available, use a hand sanitizer that contains at least 60% alcohol. Cover all surfaces of your hands and rub them together until they feel dry. If social distancing (6 feet minimum) is not possible and employees must work in close proximity wear the following PPE. Non-sterile or nitrile exam gloves. Safety glasses.

Task/Step	Potential Hazards	Recommended Safe Job Procedures
Task/Step Cleaning and Disinfecting	Potential Hazards Contracting COVID-19 virus	 Recommended Safe Job Procedures Amend work environment to limit physical contact with high touch surface. Provide individual equipment as possible to limit multiple persons contacting same surfaces. Maintaining social distancing to limit physical contact. Wear disposable gloves when cleaning and disinfecting surfaces. Gloves should be discarded after each cleaning. If reusable gloves are used, those gloves should be dedicated for cleaning and disinfection of surfaces for COVID-19 and should not be used for other purposes. Clean hands immediately after gloves are removed. If surfaces are dirty, they should be cleaned using a detergent or soap and water prior to disinfection. For disinfection, diluted household bleach solutions, alcohol solutions with at least 70% alcohol, and most common EPA-registered household disinfectants should be effective. After cleaning: Launder or dispose of items as appropriate in accordance with the manufacturer's instructions. If possible, launder items using the warmest appropriate water setting for the items and dry items completely. Staff should wear disposable gloves for all tasks in the cleaning process, including handling trash. Gloves should be removed carefully to avoid contamination of the wearer and the surrounding area. Be sure to clean hands after removing gloves. Gloves should be removed after cleaning. Clean hands immediately after gloves are removed.
		are visibly dirty, always wash hands with soap and water.

Task/Step	Potential Hazards	Recommended Safe Job Procedures
Essential Staff Reporting to Work Location	Contracting COVID-19 virus	 Reduce contact with high touch surfaces. Disinfect personal spaces with available cleaning solutions. Amend physical work environment to maximize physical distance between employees. Provide individual equipment and position workstations to prevent employees from being closer than 6 feet to each other while working. Limit the number of persons working in the same location contacting same surfaces. Stay home if you have a fever, cough, or are experiencing shortness of breath. Follow guidelines for workplace cleaning and disinfection.

Notes:

- (a) Hand Sanitizer Use hand sanitizer as needed and if available. If hand sanitizer is not available, use a combination of nitrile gloves and wash hands with soap and water to prevent the spread of the virus.
- (b) Disinfectant Wipes If disinfecting wipes are not available, mix 1/3 cup of bleach with 1 gallon of water, spray into clean towel or rag and wipe surfaces down.
- (c) Cleaning refers to the removal of germs, dirt, and impurities from surfaces. Cleaning does not kill germs, but by removing them, it lowers their numbers and the risk of spreading infection.
- (d) Disinfecting refers to using chemicals, found on the Environmental Protection Agency (EPA) "List N^{*}", to kill germs on surfaces. This process does not necessarily clean dirty surfaces, but by killing germs on a surface after cleaning, it can further lower the risk of spreading infection.

"List N" includes products that meet EPA's criteria for use against SARS-CoV-2, the novel coronavirus that causes the disease COVID-19. When purchasing a product, check if its EPA registration number is included on "List N".

JOB HAZARD ANALYSIS

Lone Worker

Control measures to decrease expose of a lone worker to hazards may include instruction, training, supervision, protective equipment and communication devices.

Task/Step	Potential Hazards	Recommended Safe Job Procedures
Working alone	 Remote location Unidentified hazards Equipment and material handling Chemical or hazardous substances exposure Limiting medical conditions 	 Identify hazards of the work and assessing the risks involved Establish emergency procedures Regular contact between the lone worker and supervision using cell phone or computer Lone workers should have access to adequate first-aid facilities or should carry a first-aid kit suitable for treating minor injuries Verify that a lone worker has returned to their base or home on completion of a task.

JOB HAZARD ANALYSIS

Vehicle Operation

Task/Step	Potential Hazards	Recommended Safe Job Procedures
Entering vehicle	Injury from door	Be careful when opening vehicle door.
Turn on engine	None foreseen	
Driving motorized vehicle	Injury to self from accidents Injury to others	 Fasten seat belt before driving. Use defensive driving skills. Obey all traffic regulations. Never leave unattended car running. Refer to the State Department of Motor Vehicles handbook for more information. Survey surroundings before driving.
		Use defensive driving skills.
Parking	Property damage Injury to self from accidents Injury to others	 When or if available, back vehicle into position when parking to enable operator to pull forward when leaving the site.
Turn off engine	None foreseen	

JOB HAZARD ANALYSIS	Project No.: 1865004*23
Job/Operation Title:	Date:
Groundwater Monitoing	3/31/2023
Business Unit:	JHA Reviewed By:
Industrial	Rachel Morgan
Project Location:	JHA Revised By:
401 NE Adams St, Camas, WA 98607	Robert Ardissono
Person(s) Performing This Job/Task:	Project Manager:
Ella Gyerko, Robert Ardissono, Shaelyn Thomas	Rachel Morgan
Job/Task Start Date:	Job/Task Duration:
September 2023	12 months

Task/Step	Potential Hazards	Recommended Safe Job Procedures
Mobilizing / Demobilizing Equipment / Supplies at	Traffic	 Visually inspect field vehicle before driving (tires, lights, etc.).
Each Location		• Adjust mirrors (views for left, right, and rear).
		• Fasten seatbelts before engaging vehicle.
		• Cellphone usage is prohibited while driving a vehicle.
		Obey posted speed limits and traffic laws.
		Place traffic cones behind vehicles, as needed, to alert vehicular traffic.
		• When possible, park field vehicle facing into traffic for protection.
		Remove keys from ignition and engage parking brake when out of the vehicle.
Perform Site Safety Inspection	Unidentified Site hazards, potential near-misses	• Assess potential hazards. Analyze how to reduce risk. Act to ensure sampling is performed safely.
		• Site Safety Officer conducts tailgate safety meeting by reviewing Health and Safety Plan (HASP), Vehicle Safety, Job Hazard Analysis (JHA), Evacuation Plan.
		 Make site-specific changes to JHA, as necessary.
		• Sign compliance agreement to comply with HASP/JHA.
		 Identify nearest hospital, location of health and safety equipment (first aid kit/eye/fire extinguisher).

Task/Step	Potential Hazards	Recommended Safe Job Procedures
Personal Health & Safety	Heat stress and heat stroke	• Drink plenty of fluids and have plenty of fluids available (water and sports drinks are recommended; coffee and soda may actually cause further dehydration).
		 Wear loose, non-restrictive clothing and hat/cap.
		• Stay in shade as much as possible to keep cool (use vehicle and air-conditioning if necessary).
		Use sunscreen to prevent sunburn and lip balm to prevent chapped lips.
		• Be aware of faintness, dizziness, unconsciousness, paleness, and profuse sweating in Site personnel (contact PM or, if severe, contact emergency personnel).
		• Redness to the face, high body temperature, and lack of sweating may indicate heat stroke (contact emergency personnel immediately).
Access Monitoring Wells / Well Covers	Strain / sprains from opening well covers / heavy lifting / hand tools / puncture hazards from hidden boards with nails or hidden hails on the ground / biological	 Use proper lifting posture when opening/closing all well or vault covers.
		• Wear leather gloves and safety glasses when opening and closing well or vault covers and caps, tapping bolts.
		Check for poisonous spiders, insects, etc.
		• Stand upwind of well when removing cover.
		Ensure well is securely closed after sampling.
Calibrate and Check Over All Equipment	Equipment malfunction, inaccurate data recovery	Calibrate water level/water quality meter(s) and check to ensure they are working properly.
Measuring Water Levels	Dermal contact and inhalation of potential constituents	Perform careful triple-rinse decontamination of sounder or interface meter.
		• Wear nitrile gloves when handling water. Be careful not to splash or spill large amounts of water on clothing or on the Site.
Well Purge & Sample	Pinch points / cross- contamination of wells / spills, leaks, slips, trips / Chemical exposure	 Keep hands clear of well opening when inserting bailer or pump tubing.
		• Replace peristaltic pump silicon and polyethylene tubing with new at each well location.
		Inspect the integrity of liquid containers prior

Task/Step	Potential Hazards	Recommended Safe Job Procedures
		to and during use.
		Carefully pour liquids when transferring between containers.
		• Avoid spills when filling sample bottles, and handle with care to avoid breakage.
		Ensure bottles are labeled accurately.
		• Maintain good housekeeping. Have trash bag at Site and clean as work is conducted.
		• Sample preservative may consist of injurious chemicals, such as acids. Maintain adequate rinsing/flushing capabilities and baking soda to neutralize spills.
Place Samples in Cooler with Ice and Padding	Bottle breakage, back strain	• Wear proper PPE and pack bottles carefully (bubble wrap bags are helpful).
Materials		• Ensure cooler is thoroughly iced to maintain samples at proper temperature (4 degrees Celsius).
Load Equipment and Supplies into Vehicle	Back injury, equipment damage	 Use proper lifting techniques when loading/lifting coolers and equipment into vehicle.
		• Ensure equipment and supplies are loaded correctly and do not shift during driving.
Site Cleanup	Debris or equipment left onsite or unsecure can cause tripping hazard	Make careful visual sweep of Site.
		Check for tools, debris, or dirt left onsite.
		• Remove freestanding water by sweeping or with absorbent material.

JOB HAZARD ANALYSIS	Project No.: 1865004*23
Job/Operation Title:	Date:
Hand Auger	3/31/2023
Business Unit:	JHA Reviewed By:
Industrial	Rachel Morgan
Project Location:	JHA Revised By:
401 NE Adams St, Camas, WA 98607	Robert Ardissono
Person(s) Performing This Job/Task:	Project Manager:
Ella Gyerko, Robert Ardissono, Shaelyn Thomas	Rachel Morgan
Job/Task Start Date:	Job/Task Duration:
September 2023	12 months

Task/Step	Potential Hazards	Recommended Safe Job Procedures
Digging Using a Hand Auger	Striking Underground UtilitiesStruck By	 Hand augering can only occur after a public and private utility locate has cleared the boring location. Hand augering is not considered a soft
	Cuts / Laceration Elving Debris	digging technique.
		• Never use a hand auger to locate a utility.
	• Strains / Sprains	Wear safety-toe boots and safety glasses.
Blistering	Blistering	• Do not thrust the auger into the ground; the auger is intended to cut through the soil by twisting the handle.
		• Wear cut resistant gloves when handling the working end of the auger.
		 Adjust auger so handle is capable of being reached easily.
		Wear gloves while auguring.

JOB HAZARD ANALYSIS	Project No.: 1865004*23
Job/Operation Title:	Date:
Hand Tool Use	3/31/2023
Business Unit:	JHA Reviewed By:
Industrial	Rachel Morgan
Project Location:	JHA Revised By:
401 NE Adams St, Camas, WA 98607	Robert Ardissono
Person(s) Performing This Job/Task:	Project Manager:
Ella Gyerko, Robert Ardissono, Shaelyn Thomas	Rachel Morgan
Job/Task Start Date:	Job/Task Duration:
September 2023	12 Months

Task/Step	Potential Hazards	Recommended Safe Job Procedures
Check condition of tool.	Lacerations	Avoid contact with blade or teeth of a tool.
Using hand tool.	Lacerations, pinching or impact and other injuries	Assess surrounding environment and be aware of others. Check to see that replaceable parts such as blades are secured. Be aware of what may happen if the tool slips or is misdirected. Use caution when using a hand tool. When possible, wear gloves.
Transporting hand tool.	Injuries to self and others	Ensure that the blade is not exposed when transporting. Do not throw the tool. Assess surrounding environment and be aware of others.

JOB HAZARD ANALYSIS	Project No.: 1865004*23
Job/Operation Title:	Date:
Hazardous Waste Drum Handling	3/31/2021
Business Unit:	JHA Reviewed By:
Industrial	Rachel Morgan
Project Location:	JHA Revised By:
401 NE Adams St, Camas, WA 98607	Robert Ardissono
Person(s) Performing This Job/Task:	Project Manager:
Ella Gyerko, Robert Ardissono, Shaelyn Thomas	Rachel Morgan
Job/Task Start Date:	Job/Task Duration:
September 2023	12 months

Task/Step	Potential Hazards	Recommended Safe Job Procedures
Examine the drum, for contents (labeling) and	Exposure to unknown substance.	 NEVER open a drum when the contents are unknown.
structural integrity.		 NEVER open a drum that shows signs of excessive stresses (bulging, damage, rust, etc.).
Examine the rim of the drum,	Pinch hand while handling	Wear leather or similar gloves.
lid, and sealing ring to be sure they will sit properly.	parts.	 Use care (do not grab) while examining.
	on metal part.	 Keep your hands open (do not grab) while examining parts.
Place the lid on the drum, sit	Pinch hand while handling	Use care and wear leather or similar gloves.
the ring, and tighten the bold using a wrench.	parts.	 Position your body so the wrench can be easily
	Cut abrasions from burrs on metal parts.	turned.
	Abrasion or impact from tightening bolt.	
Attach the ring clamp for hard to sit rings, and torque into place by turning the handle.	Impact and pinch while positioning the ring clamp.	 Hold clamp so the components do not slip over threaded shaft.
	Muscle strain from tightening clamp.	 Position your body so the clamp-tightening handle can be easily turned.
Secure and tighten the nut on the ring bold using the pneumatic hammer drill.	Muscle strain from tightening ring bolt	 Seat pneumatic hammer drill properly on nut. Position your body to stabilize position of hammer drill prior to pulling trigger.

JOB HAZARD ANALYSIS	Project No.: 1865004*23
Job/Operation Title:	Date:
Soil Sampling Logging and Screening	3/31/2023
Business Unit:	JHA Reviewed By:
Industrial	Rachel Morgan
Project Location:	JHA Revised By:
401 NE Adams St, Camas, WA 98607	Robert Ardissono
Person(s) Performing This Job/Task:	Project Manager:
Ella Gyerko, Robert Ardissono, Shaelyn Thomas	Rachel Morgan
Job/Task Start Date:	Job/Task Duration:
September 2023	12 months

Task/Step	Potential Hazards	Recommended Safe Job Procedures
Prepare Work Area	Slips Trips and Falls	Maintain good housekeeping practices.
	Cuts / Abrasions	Setup work area away from active
	Struck By	operations and high traffic areas.
	Strains / Sprains	Remove trip hazards in workspace.
		• Setup work area on a level surface.
		Use caution when climbing in and out of truck bed, avoid jumping out of truck bed.
		• Wear cut resistant gloves while using cutting devices.
		• Wear cut resistant gloves while unloading work supplies that may have pinch point or sharp edges, such as a sample table or work canopy.
		 Inspect work area for sharp edges prior to setup.
		Wear safety toe boots.
		Wear a hardhat.
		Use proper lifting techniques.
		 Use two people to lift objects greater than 50 pounds.
Obtain Sample (Either from	Contamination with	Conduct breathing space monitoring with a
loose soil or sample tube)	Hazardous Substances	photoionization detector (PID) and follow
	Cuts / Abrasions	requirements.
		• Wear chemical resistant gloves as defined in the site-specific HASP.
		 Use caution when collecting sample from sample tube, as there may be rough or sharp edges

Task/Step	Potential Hazards	Recommended Safe Job Procedures
Clean work area in preparation for the next sample	Contamination w/ hazardous substances Cuts/abrasions	 Conduct breathing space monitoring with a PID and follow site-specific HASP requirements.
		• Wear chemical resistant gloves as defined in the site-specific HASP.
		Pick up samples and place in appropriate disposal container.
		• Avoid brushing off work area with your hand, use a brush or broom.
Changing out PPE (Gloves)	Contamination w/ hazardous substances	 Remove gloves by removing one glove and turning the glove inside out as it is being removed. Use the inside out glove to remove the second glove also turning the second glove inside out as it is being removed.
		 Place the containnated gloves in appropriate waste container.
Log sample description	Contamination w/ hazardous substances	• Remove contaminated PPE prior to handling the logbook.
		 Locate logbook away from contaminated areas.
Collect headspace analysis from soil sample	Contamination w/ hazardous substances	• Wear chemical resistant gloves as defined in the site-specific HASP.
		Wear safety glasses.
		• Hold sample bag away from your body when puncturing bag.
Place soil sample in sample jar	Contamination w/ hazardous substances (including sample jar preservative)	Wear chemical resistant gloves as defined in the site-specific HASP.
Cleanup/Decontaminate work area	Contamination w/ hazardous substances	• Wear chemical resistant gloves as defined in the site-specific HASP.
		Wear safety glasses.
		 Place all waste in appropriate waste containers.
		• Decontaminate all surfaces and equipment that has contacted the contaminated soil according to the site-specific HASP.
Demobilize work area	Slips, trips, and falls	Maintain good housekeeping.
	Cuts/abrasions Struck by	 Use caution when climbing in and out of truck bed, avoid jumping out of truck bed.
		• Wear cut resistant gloves while loading work

Task/Step	Potential Hazards	Recommended Safe Job Procedures
	Strains/sprains	supplies that may have pinch point or sharp edges, such as a sample table or work canopy.
		• Wear steel toe boots.
		• Wear a hardhat.
		Use proper lifting techniques.
		 Use two people to lift objects greater than 50 pounds.

JOB HAZARD ANALYSIS	Project No.: 1865004*23
Job/Operation Title:	Date:
Utility Locating	3/31/2023
Business Unit:	JHA Reviewed By:
Industrial	Rachel Morgan
Project Location:	JHA Revised By:
401 NE Adams St, Camas, WA 98607	Robert Ardissono
Person(s) Performing This Job/Task:	Project Manager:
Ella Gyerko, Robert Ardissono, Shaelyn Thomas	Rachel Morgan
Job/Task Start Date:	Job/Task Duration:
September 2023	12 months

Task/Step	Potential Hazards	Recommended Safe Job Procedures
Inspect site for evidence of utilities	Slips, Trips, and Falls	• Inspect walking surfaces for terrain hazards or potholes that could cause a slip, trip, or fall.
		 Identify and/or communicate fall hazards to project team.
		• Do not walk through tall grass or vegetation where the walking surface cannot be viewed. The area should be cut down prior to walking through it.
		Wear appropriate work shoes or boots.
		• Avoid working at times when it is dark, or you should use additional lighting when necessary.
	Biological Hazards	Avoid all animals, including domestic animals.
	Animais	Be aware of insect nests and wear long
	Paiseneus Plants	pants, long sleeve shirts.
	Poisonous Plants	Apply insect repellant.
		• Use insect pesticide to eradicate insects that interfere with work activities.
		 Review site HASP for understanding of biological hazards, including poisonous plants.
		 If contacted by a poisonous plant, immediately decontaminate skin with soap and water.
		• If contact with poisonous plants is necessary, you must don chemical resistant suits and gloves.
		Report all incidents involving biological

Task/Step	Potential Hazards	Recommended Safe Job Procedures
		hazards to the site safety officer.
	Heat/Cold Stress	Monitor for heat/cold stress.
		Dress appropriate for the weather.
		Provide fluids to prevent worker dehydration.
		Establish work/rest.
	Traffic	Don a hi-visibility vest.
		• Do not enter the right-of-way or roads unless free of traffic or a traffic control plan has been developed and implemented.
Perform utility locating using GPR and/or Electromagnetic Induction	Slips, Trips, and Falls	 Inspect walking surfaces for terrain hazards or potholes that could cause a slip, trip, or fall.
		 Identify and/or communicate fall hazards to project team.
		 Do not walk through tall grass or vegetation where the walking surface cannot be viewed. The area should be cut down prior to walking through it.
		• Wear appropriate work shoes or boots.
		 Avoid working at times when it is dark, or you should use additional lighting when necessary.
	Biological Hazards	Avoid all animals, including domestic animals.
		 Be aware of insect nests and wear long pants, long sleeve shirts.
		Apply insect repellant.
		Use insect pesticide to eradicate insects that interfere with work activities.
		 Review site HASP for understanding of biological hazards, including poisonous plants.
		 If contacted by a poisonous plant, immediately decontaminate skin with soap and water.
		 If contact with poisonous plants is necessary, you must don chemical resistant suits and gloves.
		 Report all incidents involving biological hazards to the site safety officer.

Task/Step	Potential Hazards	Recommended Safe Job Procedures
	Heat/Cold Stress	Monitor for heat/cold stress.
		Dress appropriate for the weather.
		• Provide fluids to prevent worker dehydration.
		Establish work/rest.
	Traffic	Don a hi-visibility vest.
		• Do not enter the right-of-way or roads unless free of traffic.
	Lifting – Strains/Sprains	Utilize proper lifting techniques when loading and unloading equipment.
		• Use a team lift if the weight of object is greater than 40 pounds or if the object is an awkward size or shape.
	Electrical	Avoid opening electrical panels or outlets.
		• Don insulated gloves and tools if required to be exposed to live electrical wires.
		Do not attempt to repair damaged electrical lines.
		 Maintain a minimum of 10 feet from unprotected electrical lines.
	Gas leaks	 If leaks in gas or fuel lines are identified, immediately contact the public utility company responsible for the utility.
		• Evacuate area and do not let anyone into area until the leak is resolved.
		• Remove all sources of ignition from the area if it is safe to do so.
	Hazardous Chemicals	• All chemicals, including spray paints, must have an MSDS onsite.
		• Portions of the site may be contaminated with hazardous substances. Don nitrile gloves (or similar type of glove if handling soils).
		• Decontaminate shoes/boots, if necessary.
Soft digging to clear/daylight utilities (air knife, hand dig w/shovel, hydro excavation)	Slips, Trips, and Falls	Inspect walking surfaces for terrain hazards or potholes that could cause a slip, trip, or fall.
		Identify and/or communicate fall hazards to project team.
		 Do not walk through tall grass or vegetation where the walking surface cannot be

Task/Step	Potential Hazards	Recommended Safe Job Procedures
		viewed. The area should be cut down prior to walking through it.
		• Wear appropriate work shoes or boots.
		 Avoid working at times when it is dark, or you should use additional lighting when necessary.
	Biological Hazards	Avoid all animals, including domestic animals.
		Be aware of insect nests and wear long pants, long sleeve shirts.
		Apply insect repellant.
		• Use insect pesticide to eradicate insects that interfere with work activities.
		 Review site HASP for understanding of biological hazards, including poisonous plants.
		 If contacted by a poisonous plant, immediately decontaminate skin with soap and water.
		• If contact with poisonous plants is necessary, you must don chemical resistant suits and gloves.
		Report all incidents involving biological hazards to the site safety officer.
	Heat/Cold Stress	Monitor for heat/cold stress.
		Dress appropriate for the weather.
		• Provide fluids to prevent worker dehydration.
		Establish work/rest.
	Traffic	Don a hi-visibility vest.
		• Do not enter the right-of-way or roads unless free of traffic.
	Lifting – Strains/Sprains	Utilize proper lifting techniques when loading and unloading equipment.
		• Use a team lift if the weight of object is greater than 40 pounds or if the object is an awkward size or shape.
	Noise	• Utilize hearing protection during air knife and hydro excavation.

Task/Step	Potential Hazards	Recommended Safe Job Procedures
	Flying Debris	• Wear safety glasses with side shield at a minimum. Upgrade to add a face shield during air knife or at any time debris is flying up towards the operators face.
	Abrasions/Cuts/Contusions	 Wear work gloves to prevent blisters or scratches
		• Wear steal toe boots or shoes.
		 Avoid contact with pressure lines/wands for air knife and hydro excavation.

JOB HAZARD ANALYSIS	Project No.: 1865004*23
Job/Operation Title:	Date:
Vehicle Operation	3/31/2023
Business Unit:	JHA Reviewed By:
Industrial	Rachel Morgan
Project Location:	JHA Revised By:
401 NE Adams St, Camas, WA 98607	Robert Ardissono
Person(s) Performing This Job/Task:	Project Manager:
Ella Gyerko, Robert Ardissono, Shaelyn Thomas	Rachel Morgan
Job/Task Start Date:	Job/Task Duration:
September 2023	12 months

Before and after every use, ensure that all items listed in the Vehicle Disinfection Checklist are disinfected and sanitized with an approved cleaner such as disinfectant wipes, 70% isopropyl alcohol (IPA) and disposable paper towels, or similar.

Hard copies of the Vehicle Disinfection Checklist are located within the KJ owned vehicle mileage log. Leave a copy of the completed checklist with the mileage log.

Task/Step	Potential Hazards	Recommended Safe Job Procedures
Entering vehicle	Injury from door	Be careful when opening vehicle door.
Turn on engine	None foreseen	
Driving motorized vehicle	Injury to self from accidents Injury to others	 Fasten seat belt before driving. Use defensive driving skills. Obey all traffic regulations. Never leave unattended car running. Refer to the State Department of Motor Vehicles handbook for more information. Survey surroundings before driving.
		Use defensive driving skills.
Parking	Property damage Injury to self from accidents Injury to others	 When or if available, back vehicle into position when parking to enable operator to pull forward when leaving the site.
Turn off engine	None foreseen	

Task/Step	Potential Hazards	Recommended Safe Job Procedures
Cleaning and Disinfecting	Infectious disease exposure	 At a minimum, vehicle parts to be cleaned Preand Post-Use Steering Wheel Shift Knob Emergency Brake Switch Levers (Windshield Wiper Lever, Signal Lever, Fuel Lever) Dashboard Console Rearview Mirror Front and Used Side Window Interiors (if sneeze or cough) Radio and Climate Control Buttons Cupholders All Used Door Handles (inside and outside), including Door Locks, Window Controls and Glove Compartment Seat Adjusters Seat Belts Car Keys Arm Rests Common Equipment Stored in Vehicle if Used Mileage Log Binder and Pen

JOB HAZARD ANALYSIS	Project No.: 1865004*23
Job/Operation Title:	Date:
Working in the Vicinity of Heavy Equipment	3/31/2023
Business Unit:	JHA Reviewed By:
Industrial	Rachel Morgan
Project Location:	JHA Revised By:
401 NE Adams St, Camas, WA 98607	Robert Ardissono
Person(s) Performing This Job/Task:	Project Manager:
Ella Gyerko, Robert Ardissono, Shaelyn Thomas	Rachel Morgan
Job/Task Start Date:	Job/Task Duration:
September 2023	12 months

Task/Step	Potential Hazards	Recommended Safe Job Procedures
Preparing Job Site	Trips and Falls. Bodily injury to others.	• Clear area within work zone; remove trip hazards and/or mark clearly hazards with cones, etc.
		• Identify work zone with cones, barricades, and other means necessary to keep pedestrian and other traffic out of work zone.
Operational Tasks	Bodily Injury to workers.	 Wear reflective safety vest, hardhat, and safety glasses.
		• A pre-job discussion should occur to ensure both the equipment operator and assisting workers understand the scope of the project.
		• Operator should keep watch for ground workers near equipment and ensure they are aware of operator's intended direction of movement. Use spotter, as needed, to warn/watch for ground workers.
		• Ground workers should watch operator and equipment, staying clear of equipment's path.
		 All workers need to be aware of changing conditions at work site.
After Operations or during periods when area is not occupied by workers	Bodily Injury to workers and others.	Operator should always leave equipment with bucket/attachments down.
		Operator should ensure equipment is secured/locked out so it cannot be used by unauthorized personnel.
		• Workers should secure job site with barricades, cones, and signs to warn others to keep out of work site.
		• Supervisor may place employee to watch job site if extreme hazards exist.
JOB HAZARD ANALYSIS	Project No.: 1865004*23	
---	-------------------------	
Job/Operation Title:	Date:	
Working Over or Near Water	3/31/2023	
Business Unit:	JHA Reviewed By:	
Industrial	Rachel Morgan	
Project Location:	JHA Revised By:	
401 NE Adams St, Camas, WA 98607	Robert Ardissono	
Person(s) Performing This Job/Task:	Project Manager:	
Ella Gyerko, Robert Ardissono, Shaelyn Thomas	Rachel Morgan	
Job/Task Start Date:	Job/Task Duration:	
September 2023	12 months	

Task/Step	Potential Hazards	Recommended Safe Job Procedures
Employee(s) working over or near water	 Drowning Hypothermia Slips, trips and falls Slippery surfaces 	 Employees must evaluate water conditions such as temperature or water current to select proper PPE. Example: dry suit and/or fall protection equipment. In addition, employees working within 4 feet of the water edge must wear a certified and properly sized U.S. Coast Guard personal floatation device (PFD). Perform visual inspections of area noting potential overhead and other hazards that are not in the normal field of vision. For work to be performed near water and more than four feet from the water's edge, erect sufficient barricades four feet away from the water's edge using traffic cones, plastic fencing, or cation tape to serve as a warning system when a worker unintentionally approaches the water's edge. For work to be performed above water and/or within four feet of the water's edge, another worker who can immediately summon emergency rescue must stand guard. At least one lifesaving skiff shall be immediately available at locations where employees are working over or adjacent to water Prior to each use, the floatation device must be inspected for defects which would alter their strength, buoyancy, or fastening capability. Defective devices must be taken out of service immediately. Employees must know how to use rescue equipment such as "pole & life hook or ring buoy" (Ring buoys with at least 90 feet of line shall be provided and readily available for emergency rescue operations).

Task/Step	Potential Hazards	Recommended Safe Job Procedures
		 Proper footwear with adequate traction must be utilized when working or walking on wet surfaces.

Appendix B

Tailgate Safety Briefing Record

Kennedy Jenks DAILY TAILGATE SAFETY BREIFING

Pro	oject Name: Date:					
Pro	oject No.:	_ Conducted By:		Contractor(s)	:	
Cł	neck the Topics/Information	on Reviewed:				
0	emergency procedures & evacuation	tion route	0	insects/snakes/biological hazards	0	scaffolding
0	site-specific safety plan, review	and location	0	daily scope of work	0	cell phone usage / prohibitions
0	fire prevention/safety/fire exting	uishers		directions to hospital	Ø	personal protective equipment
0	training/certification		0	stop work authority	0	hard hats, safety vest, steel-toe boots
0	COVID-19		0	pinch points		strains and sprains
0	sharp objects, rebar, and scrap m	ietals	0	lifting techniques	0	buddy system
0	slips, trips, and falls			site housekeeping		tool safety
0	vehicle safety and driving/road of	conditions		parking and lay down areas	Ø	public safety
0	overhead utility locations and cl	earances		backing-up hazards		traffic safety
0	open pits and excavations			location of utilities		hearing & eyewear protection
0	drinking water and restroom loc	ations		noise hazards		flying debris hazards
Ð	smoking in designated areas onl	у		equipment movement	Ø	fire extinguisher locations
Ð	eye wash station locations			cleaning procedures O	hear	vy equipment hazards
0	Hazard Communication//SDS lc	ocations	0	first aid	Ø	dust and/or vapor control
0	site control/security		Ø	no horseplay	Ø	drug and alcohol policy
0	heat and cold stress		0	visitors / media / passers-by	0	weather hazards
0	confined spaces		0	lockout/tagout	0	electrical hazards
0	fall protection		0	ladders safety	0	other

List Any Special Site Conditions / H&S Precautions Reviewed

By signing below, I acknowledge that I have participated in this safety briefing. I am aware that a sitespecific safety plan exists for this project and that it is available to me upon request.

NAME	SIGNATURE	COMPANY

Appendix C

Heat Stress Fact Sheet

HEAT EXHAUSTION

What happens to the body:

Headaches, dizziness, or light-headedness, weakness, mood changes, irritability or confusion, feeling sick to your stomach, vomiting, fainting, decreased and dark-colored urine, and pale, clammy skin.

What should be done:

What happens to the body:

clammy skin.

heat stroke.

What should be done:

- Move the person to a cool, shaded area. Don't leave the person alone. If the person is dizzy or light-headed, lay him on his back and raise his legs about 6-8 inches. If the person is sick to his stomach, lay him on his side.
- Loosen and remove heavy clothing.
- Have the person drink some cool water (a small cup every 15 minutes) if he is not feeling sick to his stomach.
- Try to cool the person by fanning him. Cool the skin with a cool spray mist of water or wet cloth.
- If the person does not feel better in a few minutes call for emergency help (ambulance or 911.)

HEAT EXHAUSTION

Headaches, dizziness, or light-headedness, weakness, mood

changes, irritability or confusion, feeling sick to your stomach,

vomiting, fainting, decreased and dark-colored urine, and pale,

Move the person to a cool, shaded area, Don't leave the

 Have the person drink some cool water (a small cup every 15 minutes) if he is not feeling sick to his stomach.

Try to cool the person by fanning him. Cool the skin with a

If the person does not feel better in a few minutes call for

If heat exhaustion is not treated, the illness may advance to

is sick to his stomach, lay him on his side.

cool spray mist of water or wet cloth.

emergency help (ambulance or 911.)

© Kennedy/Jenks Consultants. Inc. 2023

Loosen and remove heavy clothing.

person alone. If the person is dizzy or light-headed, lay him

on his back and raise his legs about 6-8 inches. If the person

If heat exhaustion is not treated, the illness may advance to heat stroke.

PUBLICATION F417-218-909 [05-2008]

HEAT STROKE - A Medical Emergency

What happens to the body:

Dry, pale skin, sweating may still be present; hot, red skin (looks like a sunburn); mood changes; irritability, confusion, and not making any sense; seizures or fits, and collapse (will not respond).

What should be done:

- Call for emergency help (ambulance or 911.)
- Move the person to a cool, shaded area. Don't leave the person alone. Lay him on his back and if the person is having seizures; remove objects close to him so he won't hit them. If the person
- is sick to his stomach, lay him on his side.
- Remove heavy and outer clothing.
- Have the person drink small amounts of cool water if he is alert enough to drink anything and not feeling sick to his stomach.
- Try to cool the person by fanning him or her. Cool the skin with a cool spray mist of water, wet cloth, or wet sheet.
- If ice is available, place ice packs in armpits and groin area.

HEAT STROKE - A Medical Emergency

What happens to the body:

Dry, pale skin, sweating may still be present; hot, red skin (looks like a sunburn); mood changes; irritability, confusion, and not making any sense; seizures or fits, and collapse (will not respond).

What should be done:

- Call for emergency help (ambulance or 911.)
- Move the person to a cool, shaded area. Don't leave the person alone. Lay him on his back and if the person is having seizures; remove objects close to him so he won't hit them. If the person
 - is sick to his stomach, lay him on his side.
- Remove heavy and outer clothing.
- Have the person drink small amounts of cool water if he is alert enough to drink anything and not feeling sick to his stomach.
- Try to cool the person by fanning him or her. Cool the skin with a cool spray mist of water, wet cloth, or wet sheet.
- If ice is available, place ice packs in armpits and groin area.

PREVENTING HEAT-RELATED ILLNESS

- Drink a lot of water, about 1 cup every 15 minutes.
- Know the signs/symptoms of heat-related illness; monitor yourself and co-workers.
- Block out direct sun or other heat sources.
- Use cooling fans/air-conditioning; rest regularly.
- Wear lightweight, light colored, loose-fitting clothes.
- Avoid alcohol, caffeinated drinks, or heavy meals.

PREVENTING HEAT-RELATED ILLNESS

- Drink a lot of water, about 1 cup every 15 minutes.
- Know the signs/symptoms of heat-related illness; monitor yourself and co-workers.
- Block out direct sun or other heat sources.
- Use cooling fans/air-conditioning; rest regularly.
- Wear lightweight, light colored, loose-fitting clothes.
- Avoid alcohol, caffeinated drinks, or heavy meals.

Site-Specific Health and Safety Plan Georgia-Pacific Camas Mill, 1865004*23

\\sfocad\projects\is-proj\2018\1865004.18_gp_camas\09-reports\ri wp_sap-qapp\02_revised\appendix a - hasp\camas_ri_hasp_2023.docx

PUBLICATION F417-218-909 [05-2008]

Appendix D

Cold Stress Fact Sheet

COLD STRESS PREVENTION

Protecting Workers from Cold Stress

Cold temperatures and increased wind speed (wind chill) cause heat to leave the body more quickly, putting workers at risk of cold stress. Anyone working in the cold may be at risk, e.g., workers in freezers, outdoor agriculture and construction.

Common Types of Cold Stress

Hypothermia

- Normal body temperature (98.6°F) drops to 95°F or less.
- · Mild Symptoms: alert but shivering.
- Moderate to Severe Symptoms: shivering stops; confusion; slurred speech; heart rate/breathing slow; loss of consciousness; death.

Frostbite

- Body tissues freeze, e.g., hands and feet. Can occur at temperatures above freezing, due to wind chill. May result in amputation.
- Symptoms: numbness, reddened skin develops gray/ white patches, feels firm/hard, and may blister.

Trench Foot (also known as Immersion Foot)

- Non-freezing injury to the foot, caused by lengthy exposure to wet and cold environment. Can occur at air temperature as high as 60°F, if feet are constantly wet.
- · Symptoms: redness, swelling, numbness, and blisters.

Risk Factors

· Dressing improperly, wet clothing/skin, and exhaustion.

For Prevention, Your Employer Should:

- · Train you on cold stress hazards and prevention.
- Provide engineering controls, e.g., radiant heaters.
- Gradually introduce workers to the cold; monitor workers; schedule breaks in warm areas.

How to Protect Yourself and Others

- · Know the symptoms; monitor yourself and co-workers.
- · Drink warm, sweetened fluids (no alcohol).
- · Dress properly:
 - Layers of loose-fitting, insulating clothes
 - Insulated jacket, gloves, and a hat (waterproof, if necessary)
 - Insulated and waterproof boots

What to Do When a Worker Suffers from Cold Stress

For Hypothermia:

- · Call 911 immediately in an emergency.
- · To prevent further heat loss:
 - Move the worker to a warm place.
 - Change to dry clothes.
 - Cover the body (including the head and neck) with blankets, and with something to block the cold (e.g., tarp, garbage bag). Do not cover the face.
- · If medical help is more than 30 minutes away:
 - Give warm, sweetened drinks if alert (no alcohol).
 - Apply heat packs to the armpits, sides of chest, neck, and groin. Call 911 for additional rewarming instructions.

For Frostbite:

- · Follow the recommendations "For Hypothermia".
- Do not rub the frostbitten area.
- · Avoid walking on frostbitten feet.
- · Do not apply snow/water. Do not break blisters.
- · Loosely cover and protect the area from contact.
- Do not try to rewarm the area unless directed by medical personnel.

For Trench (Immersion) Foot:

 Remove wet shoes/socks; air dry (in warm area); keep affected feet elevated and avoid walking. Get medical attention.

Appendix E

Utility Location Standard Operations Procedures

Utility Location and Acknowledgement Form

KENNEDY JENKS

STANDARD OPERATING PROCEDURES INVASIVE ACTIVITIES - UTILITY LOCATION PROCEDURES

Below is a summary of the minimum requirements for location of potential underground utilities where invasive activities are planned. Invasive activities include, but are not limited to, drilling soil borings, installing wells, hand-auger borings, excavating test pits, remedial injections, and other similar activities which penetrate the ground surface.

Minimum Procedures

- 1. Contact the client or property owner where invasive activities will be performed to inquire about possible underground utilities and request maps or drawings documenting the location of the utilities. Document your request for information (e.g., written email request for information).
- 2. Contact the local/regional underground utility location center to document planned activities and request all underground utilities be located. In most (if not all) of the United States, this can be initiated by dialing "811". Contacting the local underground utility center is also required by state law. Contacting the local utility location center is required for each episode (event) of invasive work. It is preferred to arrange a field meeting with utility representatives to confirm the absence of utilities at each drilling location. Maintain a written record for each boring/invasive location and get signatures from the locators documenting the locations are clear of utilities. This can be performed on a site map or KJ's Utility Locate Form & Acknowledgment Form (provided in the KJ Safety Zone). The goal is to have written acknowledgement that all final drilling locations are free of underground utilities.
- 3. At all locations where drilling, probing or well installation will be performed, an air-knife or similar form of suction pot-holing will be performed to assess possible underground utilities in the upper 6 to 8 feet of soils (depending on local conditions and expected depth of utilities). Potholing is required at **all drilling locations**, except in remote areas where the likelihood of encountering underground utilities is very low and <u>only as approved by a Risk Manager</u>, <u>Resource Manager or Officer of the company familiar with underground utilities</u>. (Note: Use of an air knife will be appropriate for most invasive drilling and probing work, but may not be appropriate for certain activities like very shallow borings (less than 1 foot deep), certain hand-auger borings, remedial injections using probe equipment and test pitting.) Case by case exceptions for activities may be provided.

Optional Step – While it is recommended under most conditions, an optional additional step includes coordinating (including establishing a written contract) with a private utility locator to perform an independent utility evaluation to locate "all underground utilities" at the proposed locations of invasive work. Maintain written record for each boring/invasive location and get signatures from the locators. [Note: This step is typically not too expensive and can save costs incurred during suction pot-holing by focusing the areas of the borings (i.e., provides prior knowledge of possible utilities).]

Kennedy Jenks
riterine dy dennie

KENNEDY JENKS UTILITY LOCATION & ACKNOWLEDGEMENT FORM Call 811 for Utility Locate at Least 48 Hours Prior to Work

Project Location:			
Project Number:			
Project Name:			
Planned Start Date of Field Activities:			
Kennedy Jenks Personnel:			
Private Utility Locator Name:			
811 Contact Date and Time (48 hours before work begins):			
K I Ope-Call Contractor ID# (varies by state)			
Ticket Number:			

Utility Clearance Information

How Were Boring/Excavation Locations Cleared:

Utilities Contacted by 811	Utility Contact Number	Utility Contacted by Telephone	Marked in Field	Other (Describe)

Contact information verified by (KJ Staff):_____

Scheduled On-Site Meeting Location (if applicable):

Public Utility_____

Private Utility Locator_____

Use back of sheet to sketch of identified utilities and proposed boring/excavation locations **OR** attach figure. Include north arrow and structures if applicable.

Notes:

Mark all proposed borings and excavations with <u>WHITE</u> paint per APWA Utility Color Codes.

Request locator to mark utilities as required by their standard operating procedures or at least within 25 feet of boring/excavation, whichever is greater, with paint/flags.

Utility marks are valid for 14 calendar days and must be remarked if work continues beyond 14 days.

Appendix F

Field Chemical Use Policy and Procedures

Field Chemical Use Form

Hazard Communications Written Program

Field Chemical Use Policy & Procedures

Policy: Kennedy Jenks will follow appropriate chemical handling protocol, implement proper health and safety measures, and follow appropriate waste regulations when using chemicals in the field. Examples of field chemical use include, but are not limited to:

- Test kits with chemical reagents
- Chemical preservatives for samples
- Chemicals for field investigations, bench tests, and pilot studies
- Special chemicals for cleaning equipment.

Procedures: Business Unit Health & Safety Managers must review and approve field chemical use before chemicals can be purchased or taken into the field. A site-specific project Health and Safety Plan (HASP) that addresses field chemical use must be prepared by the Project Manager, then reviewed and approved by the Business Unit Health & Safety Manager. The portion of a project HASP that addresses field use of chemicals should include the following information:

- Chemical use justification. Include evaluation of alternatives, such as, less hazardous chemicals, alternative means of measuring (direct measurements without chemical reagents), and testing by a commercial laboratory or mobile laboratory.
- List of chemicals to be used, including quantities on hand.
- Safety Data Sheets (SDS) for the chemicals.
- Names of staff members that will be using the chemicals.
- Personal protective equipment (PPE) required.
- Description of how the materials will be transported, where the materials will be received and how the materials will be stored (note that our office leases prohibit handling or storage of hazardous materials or non-hazardous materials in quantities considered hazardous).
- Description of how the waste residuals will be disposed. Hazardous wastes generated from field testing, pilot studies, or equipment cleaning must be disposed in accordance with state and federal hazardous waste regulations. Project Managers should include provisions and budget for assisting clients with residual waste disposal. As the generator, the client should sign the hazardous waste manifest. Consider:
 - Coordinating with a local analytical laboratory to accept the waste. Some laboratories will accept small quantities of reagent waste along with samples for disposal for a small fee. This typically involves collecting the wastes in an appropriate container, placing wastes into a sealed container inside of a cooler, and including safety data sheets for the materials with the shipment.

- Using client's existing hazardous waste generator process to dispose of waste. Provide client with information on the type of waste generated to assure compatibility with existing waste streams.
- Returning excess chemicals to the vendor for recycling or reuse. Wherever possible, purchase reagents from a vendor that will accept return of unused product. Have the vendor provide appropriate packaging materials for the return shipment.
- Disposing of non-hazardous residuals as solid waste or in a sanitary sewer. Some wastes, with review and approval by the Business Unit Health & Safety Manager, can be disposed of in the local municipal solid waste or wastewater systems.

This information on the field use of chemicals can be provided by incorporating the example form provided at the end of this document into the HASP. An SDS for each chemical or product must be attached to the HASP. The Business Unit Health & Safety Manager will review the HASP and conduct appropriate Hazard Communication update training for the staff that will be using the chemicals.

Project Task:	
Name of Preparer:	
Describe Evaluation of Alternatives to Che	emical Use:
Chemicals to be Used for Project: Chemical Name	Quantity (indicate units)
Names of Staff Using Chemicals During P	roject:
Describe Personal Protection to be Used V	When Using or Handling Chemicals:
Safety Goggles	Portable Eye Wash
Nitrile Gloves	Splash Apron/Coveralls
Respirator with cartridges Other:	Face Shield
Describe how Chemicals will be Transport	ted and Stored at Project Site:
Describe How Used or Leftover Chemicals	s will be Disposed:

Health and Safety Manager Approval Signature

Date Approved

Appendix G

Safety Data Sheets (SDSs)

Appendix H

CDC Fact Sheet

SHARE FACTS ABOUT COVID-19

Know the facts about coronavirus disease 2019 (COVID-19) and help stop the spread of rumors.

FACT

FACT

2

Diseases can make anyone sick regardless of their race or ethnicity.

Fear and anxiety about COVID-19 can cause people to avoid or reject others even though they are not at risk for spreading the virus.

For most people, the immediate risk of becoming seriously ill from the virus that causes COVID-19 is thought to be low.

Older adults and people of any age who have serious underlying medical conditions may be at higher risk for more serious complications from COVID-19.

ғаст **4**

There are simple things you can do to help keep yourself and others healthy.

- Wash your hands often with soap and water for at least 20 seconds, especially after blowing your nose, coughing, or sneezing; going to the bathroom; and before eating or preparing food.
- Avoidtouchingyoureyes, nose, and mouth with unwashed hands.
- Stayhomewhenyouaresick.
- Cover your cough or sneeze with a tissue, then throw the tissue in the trash.

5

FACT

You can help stop COVID-19 by knowing the signs and symptoms:

- Fever
- Cough
- Shortness of breath

Seek medical advice if you

Develop symptoms

AND

 Have been in close contact with a person known to have COVID-19 or if you live in or have recently been in an area with ongoing spready of COVIID-19.

FACT

Someone who has completed quarantine or has been released from isolation does not pose a risk of infection to other people.

For up-to-date information, visit CDC's coronavirus disease 2019 web page.

cdc.gov/COVID-19

Appendix I

Injury/Illness, Property Damage Incident, Near Miss Reporting Forms, and Motor Vehicle Accident Report

Injury/Illness Report Form

This form should only be used for reporting an incident resulting in employee injury/illness. Prior to completing this form, verify that the appropriate notifications have been made as identified below. Use the Property Damage/Incident Report Form to document property damage or other incident. Use the Near-Miss Report Form to document Near-Misses.

Name and job title of injured/illness employee:

Employee's address and telephone number:

Time, Date, and Location where the injury/illness occurred:

Address of KJ site contact:

Coroin

Check the appropriate nature of injury/illness(s):

Locarotion

			_ Nausea
Fracture	Puncture	Allergic Reaction	_ Chemical/Substance Exposure

Impact/Compression Injung

Abrasion Avulsion (amputation) Eye Injury

Heat/Cold Exposure

Mauraa

Bruise Burn Hearing-Related Injury

Altered Level of Consciousness Respiratory/Cardiac-Related Event

Identify the body part affected:

What was the employee doing when the injury/illness occurred?

What action, mechanism, or piece of equipment directly contributed to the injury/illness?

What other processes or items may have indirectly contributed to the employee injury/illness?

Description of accident, accident scene and if accident scene has been instrumentally altered by employees, bystanders and/or emergency personnel and equipment:

How might have this injury/illness been avoided?

Was the injury/illness immediate or did it gradually evolve over time?

If this event occurred at a job site, was a site-specific safety plan prepared and approved? If so, please attach to this form.

If this event occurred at a job site, was a job hazard analysis completed for the task which the employee was performing at the time of injury/illness? If so, please attach.

What were weather conditions at the time of the injury/illness?

Was the employee's supervisor notified? When?

Did the employee contact WorkCare for medical direction? When?

List emergency medical services, fire, or law enforcement agencies summoned for the injured employee:

Provide names and phone numbers of witnesses:

Injured employee was transported to:

Name of person preparing this report: _____

Title: _____ Date: _____

Property Damage Incident Report Form

This form should be used only for an incident resulting in property damage without injury to employees involved. Use the Injury/Illness Report Form to document employee injuries. Use the Near-Miss Report Form to document Near-Misses.

Name(s) of employee(s) involved:

Time, Date, and Location where the incident occurred:

Description of the incident:

What was the employee doing when the incident occurred?

What action, mechanism, or piece of equipment may have directly contributed to the incident?

What other processes or items may have indirectly contributed to this incident?

If this incident occurred at a job site, was a site-specific safety plan prepared and approved? If so, please attach to this form.

Detail any corrective actions taken.

Provide names and phone numbers of witnesses:

Name of person preparing this report:			
Title:	Date:		
Signature of H&S Manager:		Date:	
Signature of Project Manager:		Date:	

Near-Miss Report Form

This form should only be used for Near-Miss events which did NOT result in injury or property damage. Use the Injury/Illness Report Form to record injuries or illness. Use the Property Damage Incident Report Form to record property damage.

Date: Location:	
Time: a.mp.m.	
Weather Conditions:	
Please check all that apply:	
Unsafe Act Unsafe Condition Unsafe Equipment	Unsafe Use of Equipment
Description of Near-Miss in detail:	
Employee Name	Date:
This section to be completed by Health & Safety Ma	nager or Penresentative
Cause of Near-Miss:	lager of Representative.
Corrective action(s) taken:	
H&S Manager	Date:

Kennedy Jenks Motor Vehicle Accident Report

Directions: Employee, Project Manager or Supervisor must gather the detailed information below and submit to the Health and Safety Manager (John Jindra) and the Chief Risk Officer (Jerry Cavaluzzi) for review as soon as possible or safe to do so.

After review and approval by the Health and Safety Manager and the Chief Risk Officer, Employee, Project Manager or Supervisor must contact Zurich noting Policy Number BAP9326879 and E-mail Accident Report to: USZ_CareCenter@Zurichna.com Phone: 1-800-987-3373 Copy Katie Haun at Khaun@lockton.com and Jerry Cavaluzzi at JerryCavaluzzi@KennedyJenks.com on initial report.

Employee Information			
Employee Name:	 		
Address:	 City:	State:	Zip:
Home Phone ()	 Employee's preferred language:		
Driver's License:	 State Issued	Injured?	🗌 Yes 🗌 No

Company Vehicle

Was the vehicle Co	ompany/Personal/Rental?		_Rental Agency:
Year:M	Make:	Model:	License Plate Number:
VIN:	Ar	ea of Damage to Vehicle:	
Vehicle Drivable?	🗌 Yes 🗌 No	Phone number of garage tal	ken to:

Accident Information

Date of Accident:/ Location of Accident:	_/	Time of Accident:A.M./P.M. City:	State:	Zip:
Were Police Called?	🗌 No	Department:		
Officer Name/Badge #		Pho	one (
Police Report Number:		Was a citation/ticket issued to any driver?	🗌 Yes 🗌 No	
Reason:				
How did accident occur? (please be specific)				

Other Vehicle (use additional sheet if necessary, for additional vehicles)

Was another person/vehicle involved in accident? Yes No Were they issued a citation? Yes No					
Year:Make:I	Model:	License Plat	e Number:	Driver's	License #:
Owner's Name:	Address:	City:		State:	Zip:
Driver's Name:	Address:	City:		State:	Zip:
Home Phone ()	Work Phone ())	Damage to	Vehicle:	_
Insurance Carrier:	Policy #:	-	Agent's Name:	Phon	e (
Were there passengers in the othe	er vehicle? 🛛 Yes 🗌 No	נ		Injure	ł
Name:			Phone ()	Yes	s No
Name:		Phone (🗆 Ye	s No No
Name:		Phone (🗌 Ye	es 🗌
Witness Information					
Were there any witnesses to this	accident? Ves No				

 Were there any witnesses to this accident?
 Yes
 No

 Name:

 Phone (____)___-___

 Name:

 Phone (____)___-___

Appendix B

Kennedy Jenks Standard Operating Guidelines (SOGs)

SOG No. PFAS-01 Page 1 of 12

SAMPLING FOR PER- & POLYFLUOROALKYL SUBSTANCES

PURPOSE

The purpose of this Standard Operating Guideline (SOG) is to provide guidance for collecting samples for per- and polyfluoroalkyl substances (PFAS) analysis. *Please note that PFAS are emerging contaminants; therefore, this SOG will be modified as new information becomes available.*

Because of the potential presence of PFAS in common consumer products and in equipment typically used to collect groundwater samples and the low detection limits associated with laboratory PFAS analysis, special handling and care must be taken when collecting samples for PFAS analysis.

This SOG outlines general practices for collecting PFAS samples and provides a summary of non-acceptable field and sampling materials (likely to contain PFAS) and acceptable alternatives.

BACKGROUND

Based on U.S. Environmental Protection Agency (EPA) guidance, "per- and polyfluoroalkyl substances (PFAS)" is the preferred term to refer to this class of chemicals, although the general public and others may also refer to them as "perfluorinated chemicals (PFCs)" or "perfluorinated compounds (PFCs)."

PFAS are a family of man-made compounds that do not naturally occur in the environment. They have a large number of industrial uses and are found in many commercial products because of their properties to resist heat, oil, grease and water.

RESOURCES

Frequently asked questions, fact sheets and additional information concerning PFAS can be found on the EPA website¹, applicable state regulatory websites, and the Interstate Technology & Regulatory Council (ITRC) website². ITRC and state environmental agencies often release and/or update PFAS guidance related to regulatory action levels, sample collection guidance, analytical methodology, permitting, remediation, and reporting/compliance. Ensure that project work plans and/or site-specific sampling and analysis plans (SAPs) reflect current guidance prior to PFAS sample collection.

¹ <u>https://www.epa.gov/pfas</u>

² https://pfas-1.itrcweb.org/

GENERAL GUIDANCE

Personal Protective Equipment

Disposable nitrile gloves must be worn at all times. Further, a new pair of nitrile gloves shall be donned prior to the following activities at each sample location:

- 1. Cleaning of re-usable sampling equipment.
- 2. Contact with sample bottles or water containers.
- 3. Insertion of anything into the well (e.g., tubing, pump, bailer, war level meter).
- 4. Insertion of silicon tubing into the peristaltic pump.
- 5. Sample collection upon completion of monitoring well purging.
- 6. Handling of any quality assurance/quality control samples including field blanks and equipment blanks.

New gloves shall also be donned after the handling of any non-dedicated sampling equipment, contact with non-decontaminated surfaces, or when judged necessary by field personnel.

The use of a different colored glove (e.g., bright orange) for the collection of PFAS samples can help provide a visual reminder to prevent cross-contamination.

Sample Collection Method/Sequence

- 1. After donning a new pair of nitrile gloves, collect the sample for PFAS *first*, prior to collecting samples for any other parameters into any other containers; this avoids contact with any other type of sample container, bottles or packaging materials that may have PFAS-related content.
- 2 Do not place the sample bottle cap on any surface when collecting the sample and avoid all contact with the inside of the sample bottle or its cap.
- 3. Once the sample is collected, capped and labeled, place the sample bottle(s) in an individual re-sealable plastic bag (e.g., Ziploc®) and place in an appropriate cooler packed only with loose ice (preferably from a verifiable PFAS-free source).

Samples Collected From Drinking Water Supply Wells

- 1. Contact the owner to get permission to sample their drinking water supply well, if necessary.
- 2. Collect as much data about the well as possible, such as: the well depth, type of well (e.g., deep bedrock or shallow dug well) and type of treatment system, if any (e.g., a cartridge filter, a water softener, pH adjuster, point of entry, radon, carbon or an ultra violet system).
- 3. The sample must be collected from a point in the plumbing system that is prior to any type of water treatment system, preferably from the closest spigot to the holding tank in the plumbing system, or the treatment system must be bypassed. For convenience and to prevent unnecessary loading of the septic system, an outside spigot is preferable to an inside faucet.
- 4. The water (cold water) is typically purged at a high rate of flow for 10-15 minutes (a minimum of 10 minutes).
- 5. Once the well has been purged, reduce the rate of flow to a very slow rate.
- As described above in the Sample Collection Method/Sequence section, don a new pair of nitrile gloves and collect PFAS samples *first*, prior to collecting samples for any other parameters. The PFAS sample must be collected directly from the spigot or sampling port.
- 7. Do not place the sample bottle cap on any surface when collecting the sample and avoid all contact with the inside of the sample bottle or its cap.
- 8. Once the sample is collected, capped, and labeled place the sample in an individual resealable plastic bag and then into loose ice (preferably from a verifiable PFAS-free source) within the cooler.
- 9. Once the PFAS samples have been collected, shut the water off. Attach a decontaminated brass tap apparatus to the tap, if appropriate. Turn water back on at a very slow flow rate. Purge a small amount of water through the apparatus to rinse it with the water being sampled.
- 10. Collect remaining samples as required.

Samples Collected From Monitoring Wells

- 1. If collecting field parameters using a multiparameter meter, samples for laboratory analyses must be collected before the flow-through cell and the three-way stopcock (if utilized). This will be done by disconnecting the three-way stopcock from the pump discharge tubing so that the samples are collected directly from the pump tubing.
- 2. When feasible, use dedicated single-use or disposable polyethylene or silicone materials (tubing, bailers, etc.) for monitoring well purging and sampling equipment.
- 3. When reuse of materials or sampling equipment across multiple sampling locations is necessary, follow project cleaning protocols with allowed materials identified in the table below and incorporate collection of equipment blanks into the sampling program, as appropriate.
- 4. When using positive displacement/submersible pump or bladder pump sampling equipment, familiarize yourself with the sampling pump/accessory equipment specifications to confirm that device components are not made of nor contain polytetrafluoroethylene (PTFE, a.k.a. Teflon®) or other PFAS-containing components.

Samples Collected During Production Well Pumping Tests

- 1. If feasible, do not use tape or pipe thread sealant containing Teflon on pipe fittings or sampling tap threads on the pump discharge pipe.
- 2 As with all other sample parameters, the sample for PFAS will be collected at the last hour (or hours) of the pumping portion of the testing program, but before the collection of other sample parameters.
- 3. Discharge water will be purged through the sampling tap on the discharge pipe for a minimum of 20 minutes prior to collection of samples.

Samples Collected From Active Production Wells

- 1. If feasible, avoid contact with any tape or pipe thread paste containing Teflon on pipe fittings or sampling tap threads that may be present on the water supply discharge pipe.
- 2 The sample for PFAS will be collected while the production well pump is operating, and, preferably, has been operating for at least one hour.
- 3. Discharge water will be purged through the sampling tap on the discharge pipe for a minimum of 20 minutes prior to collection of samples.

Cleaning

Cleaning fluids have been viewed as a possible source of equipment cross contamination. Therefore, more frequent changes of cleaning liquids may be warranted. Refer to the Equipment and Materials Table below for prohibited and acceptable cleaning liquids.

A final rinse with "PFAS-free" deionized (DI) water, typically provided by the analytical laboratory or other verifiable source, is required.

SOG No. PFAS-01

Kennedy Jenks

Page 5 of 12

SITE-SPECIFIC SOGS AND SAMPLING AND ANALYSIS PLANS

The details within this SOG should be used in conjunction with approved site-specific SOGs or an approved site-specific SAP. The site-specific SAP will provide the following information:

- Sample collection objectives;
- Locations to be sampled;
- Number and volume of samples to be collected at each location;
- Types of chemical analyses to be conducted for the samples;
- Specific quality control procedures and sampling required;
- Personnel responsibilities;
- Site-specific Health and Safety Plan; and
- Any additional sampling requirements or procedures beyond those covered in this SOG, as necessary.

All field personnel must confer with their Project Manager or Field Lead before deviating from approved procedures. All deviations must be documented in the field log book and presented in the final sampling report.

Sample Collection Objectives, Locations, and Number of Samples

When developing site-specific SAPs, the scope of the investigation shall consider whether the site history includes, or has the potential to include, activities such as industrial processes that manufactured or used PFAS, solid waste management (e.g., landfilling), fire training and/or response with storage or use of Class B Foam [e.g., aqueous film forming foam (AFFF)], wastewater management (e.g., onsite septic or disposal, treatment facilities, sludge and/or biosolids management). It is appropriate to consider the wide-ranging use of PFAS in commercial and industrial applications, as summarized, but not limited to, the uses shown in the table below.

Commercial Products	Industrial Uses
Cookware (Teflon®, Nonstick)	Photo Imaging
Fast Food Containers	Metal Plating
Candy Wrappers	Semiconductor Coatings
Microwave Popcorn Bags	Aviation Hydraulic Fluids
Personal Care Products (Shampoo, Dental Floss)	Medical Devices
Cosmetics (Nail Polish, Eye Makeup)	Firefighting Aqueous Film-Forming Foam
Paints and Varnishes	Insect Baits
Stain Resistant Carpet	Printer and Copy Machine Parts
Stain Resistant Chemicals (Scotchgard®)	Chemically Driven Oil Production
Water Resistant Apparel (Gore-Tex®)	Textiles, Upholstery, Apparel and Carpets
Cleaning Products	Paper and Packaging
Electronics	Rubber and Plastics
Ski Wax	

Sample locations, media (e.g., soil, groundwater, drinking water, surface water), and number of samples shall be selected based on the professional judgement of the Professional Engineer, Geologist, and/or Scientist directing the sampling effort in consideration of previous and current uses of the site, site hydrogeology, proximity to sensitive receptors, and other known releases. The sampling approach shall be described in the site-specific SAP and/or work plan. Note that samples collected from water supply wells must be collected from a point in the plumbing system that is prior to treatment.

Chemical Analyses

Currently, PFAS are not federally regulated in drinking water, and there is no requirement for PFAS testing under the federal Safe Drinking Water Act. Therefore, review applicable state laws, regulations, and/or guidance for required analytical laboratory qualifications, analytical methods, parameters, and reporting limits. If state(s) do not have applicable laws, regulations, and/or guidance regarding PFAS analysis, the site-specific SAP should detail analytical laboratory qualifications, analytical methods, parameters, and reporting limits. Analytical laboratories with Department of Defense (DOD) and/or National Environmental Laboratory Accreditation Program (NELAP) certification should be used for PFAS analysis.

Analysis should be conducted by a method that uses isotope dilution techniques, unless otherwise specified in the site-specific SAP. As of the date of this document, EPA has developed and validated three analytical methods for PFAS analysis: Method 537.1 for analysis of 18 PFAS congeners in drinking (potable) water; Method 533 for analysis of 25 PFAS congeners in drinking (potable) water; Method 8327 for analysis of 24 analytes in non-potable water and other environmental media (e.g., groundwater, surface water, wastewater). Certain laboratories may adapt these methods for media other than those specified (e.g., groundwater, surface water, wastewater, biosolids, soil). Other analytical methods are also currently under development by EPA, DoD, and ASTM International (ASTM).

Samples for PFAS analysis shall be analyzed for PFAS congeners in accordance with:

- State-specific analytical requirements (if applicable)
- Standard EPA method analyte list [see applicable Method(s)]; or
- Site-specific analyte list (detail in the site-specific SAP).

The site-specific SAP should include the selected analytical method and the analyte list. Modifications may be requested on a site-by-site basis. The analyte list should be evaluated and changed, if necessary, based on site history and environmental data.

Quality Assurance Quality Control

Many clothing items and types of field equipment may contain PFAS, which increases the potential for inadvertent contamination of the samples. In order to evaluate the potential impact these, as well as laboratory-provided materials, might have on PFAS samples, various Quality Assurance Quality Control (QA/QC) samples are to be considered in the PFAS sampling and analysis plan.

Refer to the site-specific SAP for specific information on QA/QC samples to be collected. QA/QC requirements may vary for initial screening and assessment, and site investigations.

To support the validity of the data, the following QA/QC is suggested:

- Trip Blanks
 - Trip blanks for PFAS samples shall be prepared by the laboratory prior to the sampling event using PFAS-free DI water.
 - Only one PFAS trip blank per chain-of-custody, per cooler is acceptable.
- Field Duplicates
 - Duplicate samples shall be collected by filling a separate container for each analysis immediately following the collection of the primary sample (e.g., PFAS sample, PFAS duplicate sample; VOC sample, VOC duplicate sample).
 - Duplicate samples are typically collected at a frequency of one duplicate sample per twenty field samples (1:20), with a minimum of one field duplicate per sampling event.
 - The duplicates may be Blind Duplicates.
- Equipment Blanks for all non-dedicated equipment used to collect samples
 - $\circ\,$ Equipment blanks shall be prepared using PFAS-free laboratory grade DI water provided by the laboratory.
 - Equipment blanks consist of a sample of PFAS-free laboratory grade DI water which has been poured around and through sample collection equipment to evaluate the equipment cleaning procedures and the potential for cross- contamination between sample locations.
 - One equipment blank per type of non-dedicated equipment is typically collected per sampling event (e.g., water level meter, bailer, submersible pump, bladder pump) to evaluate the cleaning procedure.
 - A second equipment blank on certain types of equipment (e.g., bladder pump) may be useful in order to evaluate the potential influence of components within the piece of equipment.

SOG No. PFAS-01 Page 8 of 12

- Field Blanks
 - Collect a field blank from each batch of PFAS-free DI water while in the field by pouring an aliquot of the water into the appropriate PFAS sample container.
 - Refer to the site-specific SAP for the quantity of field blanks to be collected. At a minimum, field blanks should be collected by each person collecting PFAS samples. Consideration should also be given to when the field blank should be collected so that it is representative of the conditions most likely to influence the sample.

QA/QC shall also include management to ensure that field crews are adhering to procedures provided herein and procedures described in the site-specific SAP, including sampling techniques, field documentation, cleaning, sample packaging, chain-of-custody sample handling and shipping documentation procedures, and equipment calibration.

EQUIPMENT AND MATERIALS

The following table provides a summary of items that are likely to contain PFAS (i.e., prohibited items) and that should not be used by the sampling team at the site during sampling for PFAS, along with acceptable alternatives. This list may change as new information becomes available.

Category	Prohibited Items	Allowable Items
Field Equipment T flu Including: m	Teflon and other fluoropolymer-containing materials	High-density polyethylene (HDPE) - <i>preferred,</i> low density polyethylene (LDPE), or silicone tubing.
Pumps Turkin n	(e.g. Teflon tubing bailers	HDPE/LDPE or stainless steel
 Tubing Bailers 	tape; T e f I on -containing	bailers. Peristaltic pumps.
	Bailers plumbing paste, or other Teflon materials) Note: The Grundfos Redi-Flow Submersible Pump is a submersible pump which, as of this revision, has a Teflon impeller and is not	Stainless steel submersible pumps (e.g., ProActive stainless steel pumps with PVC [polyvinyl chloride]) leads and Geotech Stainless Steel Geosub pumps).
		Bladder pumps with polyethylene bladders and tubing need to be evaluated on a case- by-case basis because the gaskets and O- rings may contain PFAS.
recommended for collecting PFAS samples.	Equipment with Viton components needs to be evaluated on a case-by-case basis. Viton contains PTFE, but may be acceptable if used in gaskets or O-rings that are sealed away and will not come into contact with sample or sampling equipment.).	
Cleaning	Decon 90	Alconox® or Liquinox® ³ , potable water followed by laboratory "PFAS-free" DI water rinse.

³ While Alconox and Liquinox soap is acceptable for use for PFAS decontamination, they may contain 1,4dioxane. If Alconox and Liquinox soap is used at sites where 1,4-dioxane is a contaminant of concern/interest, then equipment blanks analyzed for 1,4-dioxane should be collected. Refer to the sitespecific Equipment Decontamination SOG for required decontamination procedures.

SOG No. PFAS-01 Page 9 of 12

Category	Prohibited Items	Allowable Items
Sample Storage and Preservation	LDPE or glass bottles, PTFE- or Teflon-lined caps, chemical ice packs ⁴	Laboratory-provided sample container - <i>preferred</i> ; or, HDPE or polypropylene bottles with an unlined plastic screw cap, as specified by the laboratory doing the analysis, regular loose ice (preferably from a known PFAS-free source).
Field Documentation	Waterproof/treated paper or field books, plastic clipboards, non-Sharpie® markers, Post- It® and other adhesive paper products.	Plain Paper, metal clipboard, Sharpies, ballpoint pens.
Clothing/ laundering	Clothing or boots made of or with Gore-Tex [™] or other synthetic water proof/ resistant and/or stain resistant materials, coated Tyvek® material that may contain PFAS; fabric softener	Synthetic or cotton material, previously laundered clothing (preferably previously washed greater than six times) without the use of fabric softeners. Polyurethane and wax coated materials. Boots made with polyurethane and PVC, well- worn or untreated leather boots. Tyvek material that is PFAS free (e.g., uncoated).
Personal Care Products (for day of sample collection)	Cosmetics, moisturizers, hand cream, and other related products	Sunscreens: Alba Organics Natural Yes to Cucumbers Aubrey Organics Jason Natural Sun Block Kiss My Face Baby-safe sunscreens ('free' or 'natural') Insect Repellents: Jason Natural Quit Bugging Me Repel Lemon Eucalyptus Herbal Armor California Baby Natural Bug Spray BabyGanics Sunscreen and Insect Repellents: Avon Skin So Soft Bug Guard-SPF 30
Food and Beverage	Pre-packaged food, fast food wrappers or containers	Bottled water or hydration drinks (i.e., Gatorade® and Powerade®).

⁴ All samples requiring cooling must be placed in loose ice within a cooler; the use of bagged ice (unless the bag is verified PFAS-free material), block ice, dry ice, and ice packs is not acceptable.
Appendix B: Data Quality Standard Operating Guidelines SOG-1: Environmental Data Collection

B.1 Introduction

This guideline describes recommended procedures to be followed by Kennedy Jenks personnel when collecting environmental data. The guideline is divided into Pre-field Procedures and Field Procedures for ease of use.

B.2 Pre-Field Procedures

The following procedures represent the minimal effort appropriate for most environmental data collection projects. Refer to project-specific plans for additional data collection procedures.

- 1. Review the work plan or sampling plan prior to initiating fieldwork, and discuss any questions with project manager or field leader.
- 2. Review the Health and Safety Plan.
- 3. Set up subcontract¹ with analytical laboratory for type and quantity of analyses, documentation and delivery format, both hard copy and electronic data deliverables (EDDs) and turnaround time requirements. Establish contacts at the laboratory, field and home office (Project Manager or person responsible) for all communications.
- 4. Notify the analytical laboratory of the upcoming fieldwork and advise about the following:
 - a. Number of samples per medium
 - b. Analyses needed
 - c. Dates of sample delivery, coordinate for Saturday pick-up if necessary
 - d. Means of delivery (e.g., courier, FedEx)
 - e. Turnaround time required
 - f. Level of quality control (QC) reporting required
 - g. Delivery format, for both hard copy and EDDs.
- 5. Order the sample containers from the laboratory. Determine whether field personnel will preserve the samples in the field or if pre-preserved sample containers will be provided. It is preferable to order containers with appropriate preservatives.
- 6. Arrange for delivery or pickup of sample containers.

Sampling and Analysis Plan/Quality Assurance Project Plan

\\sfocad\projects\is-proj\2018\1865004.18_gp_camas\09-reports\ri wp_sap-qapp\appendix b - sogs\sog01-environmentaldatacollection.docx

¹ The analytical laboratory may be contracted with another entity, with Kennedy Jenks facilitating the order.

- 7. Request the laboratory fax or email you chain-of-custody forms and laboratory receipt documents immediately after receiving the samples.
- 8. Check the chain-of-custody form to verify the correct samples were collected and correct analyses were requested. Double check the laboratory receipt documents to verify there are no typographical errors for samples.

If changes are required, request change in writing, via email, do not request over the phone. Request the laboratory to include all change request documentation in the laboratory summary report.

B.3 Field Procedures

- 1. At the beginning of each field day, identify planned work and document field conditions in the field notes.
- 2. Hold Tailgate Safety Meeting and have all present sign the form.
- 3. Complete sample identification labels for each sampling container using an indelible pen. Use the sample identification protocol described in the work plan or sampling plan. It is recommended that pre-printed labels be created at the office prior to going to the field site, if possible.
- 4. Complete the chain-of-custody form, accounting for each sample. Verify that sample identifications, sampling times, and requested analyses on the chain-of-custody form match the sample identifications, sampling times, and requested analyses on the sample labels.
- 5. Verify that the appropriate QC samples (field duplicate samples, trip blanks samples, etc.) required in the work plan or sampling plan were collected. If applicable, document blind duplicate parents in field notes, and if using a database, supply a summary table of your parent and duplicate samples to your database coordinator.
- 6. Verify, where applicable, that the appropriate sample volume was collected to enable the analytical laboratory to perform QC analyses (e.g., matrix spike and matrix spike duplicate analysis). (For example, if a water sample is being analyzed for polynuclear aromatic hydrocarbons, 1 liter of sample is required for the analysis, and another 2 liters are required for the matrix spike and matrix spike duplicate analyses.)
- 7. Collect, preserve, and transport samples to the analytical laboratory in accordance with the work plan or sampling plan.
- 8. Provide adequate ice in coolers so that the coolers arrive at the laboratory at a temperature of 4 degrees C \pm 2 degrees C.
- 9. Keep in contact with the project manager or other team member to report any problems, unusual observations, etc.
- 10. Verify that samples were received by the analytical laboratory and that the laboratory understands the chain-of-custody and requested analyses prior to beginning analyses.

11. If samples are sent by overnight delivery, include the tracking number and time released to the delivery service on the chain-of-custody form.

Appendix B: Standard Operating Guideline SOG-2: Surface and Shallow Soil Sampling

B.1 Introduction

This guideline describes the equipment and procedures that are used by Kennedy Jenks personnel for collecting surface and shallow soil samples.

B.2 Equipment

- Stainless steel or plastic scoops
- Hand auger
- Split-spoon drive sampler (2.5-inch or 2.0-inch I.D.) and associated drill rods, wrench and other tools needed to break down equipment
- Slide hammer
- 2.5-inch or 2.0-inch brass liners and sealing materials (plastic end caps, Teflon seals, silicon tape, zip-lock plastic bags)
- Shovel
- Post hole digger
- Pick
- Breaker bar
- Foxboro FID-Organic Vapor Analyzer (OVA)
- HNU PID-Organic Vapor Analyzer
- OVM
- Measuring tape or measuring wheel
- Stakes or spray paint for sampling grid
- Sampler cleaning equipment
 - Steamcleaner (if available)
 - Generator (if available)
 - Stiff-bristle brushes
 - o Buckets
 - High priority phosphate-free liquid soap, such as Liquinox
 - Trisodium phosphate (TSD) for use if samples are oily
 - Methanol (if necessary)
 - 0.1N nitric acid (if necessary)
 - Deionized water
 - Potable water
- Insulated sample storage and shipping containers
- Personal protective equipment (as specified in site safety plan)

B.3 Typical Procedure

- 1. Obtain applicable drilling and well construction permits, prior to mobilization, if necessary.
- 2. Clear locations for underground utilities and structures by Underground Service Alert (USA) and subcontractors, if necessary.

- 3. Measure and mark sampling locations prior to initiation of the sampling program, as specified in the sampling and analysis plan. If sampling locations are based on a grid pattern, stakes can be used to define the grid layout.
- 4. Collect soil samples for chemical analysis by using precleaned scoops or a hand auger, or by driving a split-spoon drive sampler.
- 5. If overlying soil is to be removed (as specified in the sampling and analysis plan), use shovels, picks, or post-hole diggers, as needed.
- 6. Collect soil samples for lithologic logging purposes.
- 7. If applicable, as described in the site safety plan, use an OVA to analyze *in situ* air samples from the breathing zone and other locations as necessary.
- 8. Have the soils classified in the field in approximate accordance with the visual-manual procedure of the Unified Soil Classification System (ASTM D 2488-90) and the Munsell Color Classification (refer to SOG-4).
- 9. Prior to each sampling event, wash sampling equipment (scoops, hand auger, split-spoon drive sampler, and brass liners) with high purity phosphate-free soap. Double-rinse it with deionized water and methanol, and/or 0.1N nitric acid, as appropriate.
- 10. At each sampling interval, collect soil and place it in the appropriate sampling container. Fill the sample container and compact the soil to minimize air space. Minimize handling of the soil, especially if it is being collected for analysis of volatile compounds.
- 11. If a split-spoon drive sampler is being used, select one brass liner for potential laboratory analysis. Cover the ends of this sample in Teflon sheets, seal it with plastic caps, and wrap it with silicon or Teflon tape. Place a completed sample label on the brass liner.
- 12. Place the selected samples in appropriate containers and store them at approximately 4 °C.
- 13. As a field screening procedure (if applicable), for each sampling interval, place soil not selected for chemical analysis in an airtight container (e.g., plastic bag or jar) and allow it to equilibrate. After this, monitor the headspace in the container using either an HNU, OVM or OVA. Record the headspace concentration in the field notes (refer to SOGs 4 and 5).
- 14. Complete chain-of-custody forms in the field and transport the selected samples in insulated containers, at an internal temperature of approximately 4°C, to the analytical laboratory (refer to SOG-3).

B.4 Equipment Cleaning

Prior to collection of each soil sample, the sampling equipment should be either steamcleaned or hand washed. If the sampling equipment is hand washed, wash excavation equipment with a brush, in a solution of high purity phosphate-free soap and potable water. Rinse the equipment with potable water and methanol, and/or 0.1N nitric acid, as appropriate. Follow this with double-rinsing using distilled water (refer to SOG-12).

B.5 Investigation-Derived Residuals

If sufficient volumes of soil cuttings and other residuals are generated, contain the material in appropriately labeled containers for disposition by the client. All soil samples transported to the laboratory must be returned to the client for disposition if required by the laboratory. Kennedy Jenks is available to assist the client with options for disposition of residuals.

Appendix B: Standard Operating Guideline SOG-3: Procedures for Using a PID Vapor Analyzer

B.1 Introduction

This guideline identifies the procedures that will be used by Kennedy Jenks personnel during operation of a photo ionizing detector (PID) vapor analyzer or Organic Vapor Monitor (OVM).

B.2 Equipment

- H-Nu model P-10 or Thermo Analytical Model 580A PID Organic Vapor Analyzer
- Calibration gas with regulator, tubing
- Pint plastic jars
- Aluminum foil
- Small screw driver

B.3 Procedures

- 1. Check battery charge level. If in doubt, charge battery as described in manual. Battery should typically be recharged daily after use.
- 2. Turn unit on. DO NOT look into sensor (ultraviolet radiation hazard).
- 3. The probe or pump should make an audible sound (whine or click) confirming operation.
- 4. Perform zero and calibration procedures as described in operating manual. Calibration for specific compounds can be performed so instrument response is proportional to the calibration gas concentration. Isobutylene calibrant is available and response factors for other compounds are provided in the instrument manual.
- 5. The PID does not detect methone and many compounds with an ionization potential greater than the lamp energy (typically about 10 eV). Consult the operation manual reference for ionization potentials and response factors for common compounds.
- 6. If so equipped, set alarm at desired level.
- 7. Once calibrated, unit is ready for use.
- 8. Position intake assembly should be in close proximity to area in question as sampling rate only allows for localized readings.
- 9. A slow, sweeping motion of the intake assembly will help prevent the bypassing of problem areas.
- 10. For screening soil samples in the field refer to the headspace method described in SOG-5.
- 11. Be prepared to evacuate the area if preset alarm sounds.

- 12. Static voltage sources; such as power lines, radio transmissions, or transformers; may interfere with measurements. See operating manual for discussion of necessary considerations.
- 13. Regular cleaning and maintenance of instrument and accessories will ensure representative readings.
- 14. As with any field instrument, accurate results depend on the operator being completely familiar with the operator's manual for unit use.
- 15. Moisture may affect readings.
- 16. The PID is capable of recording readings at a determined rate which are logged and downloaded to a computer. Refer to manual for instructions on how to use this feature.

B.4 References

HNU Systems, Inc. 1975. Instruction Manual for Model PI 101 Photoionization Analyzer.

OVM - SM 580 Instruction Manual, Thermo-Analytical.

Introduction

This Standard Operating Guideline (SOG) provides the procedures typically followed by Kennedy Jenks personnel for classifying soils and preparing boring logs and other types of soil reports. The purpose of this SOG is to facilitate the acquisition of uniform descriptions of soils encountered during borehole programs and to promote consistency in the logging practices used by Kennedy Jenks personnel. This SOG provides guidance on procedures that are generally consistent with standard practices used to classify soils. Deviations from, and additions to, the procedures described herein may be appropriate based on project-specific objectives, site-specific conditions, and/or regulatory requirements. The user of this SOG should modify the sampling procedures used, as appropriate, to conform to the project-specific requirements and then document such deviations from this SOG in the project-specific documentation of subsurface exploration activities.

Borehole logging is the systematic observation and recording of geologic and hydrogeologic information from subsurface borings and excavations. The Unified Soil Classification System (USCS) (ASTM D2487-00) is used to identify, classify, and describe soils principally for engineering purposes, and is based on laboratory tests.

For field applications, ASTM D2488-06 (Visual-Manual Procedure) is used as the general guide adopted under this SOG.

Both ASTM D2487 and ASTM D2488 utilize the same group names and symbols. However, soil reports should state that boring logs are not formal USCS laboratory determinations but are based on the visual-manual procedures described in ASTM D2488.

This SOG contains the following sections:

- Field Equipment/Materials
- Typical Procedures
 - Soil Classification
 - Classification of Coarse-Grained Soil
 - Classification of Fine-Grained Soil including Organic Soils
- Other Logging Parameters
- Logging Refuse
- References.

Field Equipment/Materials

Material/equipment typically required for classifying soils and preparing boring logs may include:

- Pens, pencils, waterproof pens, and field logbook or other appropriate field forms (e.g., boring log forms), water-tight field case.
- Daily inspection report forms

Sampling and Analysis Plan/Quality Assurance Project Plan © Copyright 2009 by Kennedy/Jenks Consultants, Inc.

- USCS (ASTM D 2488-06) table and classification chart
- Soil color chart (i.e., Munsell) If used, the edition of the Munsell chart should be specified on each borehole log as the color descriptions and hue, color values and chromas have changed between editions. Also, whenever possible, the newest version of Munsell's color charts should be used due to fading of color chips over time.
- American Geological Institute (AGI) Data Sheets
- Graph paper
- Engineer's scale
- Previous project reports and boring logs (if available)
- Pocket knife or putty knife
- Hand lens
- Supply of clean water
- Dilute hydrochloric acid (HCI) (make sure and MSDS for HCl is included in the project HASP)
- Aluminum foil, Teflon® sheets, and paper towels
- Sample containers (brass, stainless steel or aluminum liners, plastic or glass jars)
- Clean rags or paper towels
- Sample shipping and packaging supplies
- Personnel and equipment decontamination supplies
- Personal protective equipment as described in the Health and Safety Plan (HASP).

Typical Procedures

Soil classification and borehole logging should be conducted by a qualified geologist, engineer; or other personnel trained and experienced in the classification of soils.

Soils are typically logged in conjunction with advancing boreholes and sampling subsurface soils. Although the guideline focuses on classifying soil samples obtained from boreholes, this particular procedure also applies to soils and sediments collected using other techniques (e.g., post hole digger, scoop, Ekman, Ponar, or Van Veen grab samplers, and backhoe).

The USCS as described in ASTM D2488-06 categorizes soils into 15 basic group names, each with distinct geologic and engineering properties. The following steps are required to classify a soil sample:

- 1. Observe basic properties and characteristics of the soil. These include grain-size grading and distribution and influence of moisture on fine-grained soil.
- 2. Assign the soil a USCS classification and denote it by the standard group name and symbol.
- 3. Provide a written description to differentiate between soils in the same group, if necessary.

Many soils have characteristics that are not clearly associated with a specific soil group. These soils might be near the borderline between groups, based on either grain-size grading and distribution, or plasticity characteristics. In this case, assigning dual group names and symbols might be appropriate (e.g., GW-GC or ML-CL).

The two basic soil groups are:

- 1. **Coarse-Grained Soils –** For soils in this group, more than half of the material is larger than No. 200 sieve (0.074 mm).
- 2. **Fine-Grained Soils (including Organic Soils) –** For soils in this group, one half or more of the material is smaller than No. 200 sieve (0.074 mm).

Note: No. 200 sieve is the smallest size that can be seen with the naked eye.

Classification of Coarse-Grained Soils

Coarse-grained soils are classified on the basis of:

- 1. Grain size and distribution
- 2. Quantity of fine-grained material (i.e., silt and clay)
- 3. Character of fine-grained material

Classification uses the following symbols:

Basic Symbols	Modifying Symbols
G - gravel	W - well graded
S - sand	P - poorly graded
	M - with silt fines
	C - with clay fines

The following are basic facts about coarse-grained soil classification:

- The basic symbol G is used if the estimated volume percentage of gravel is greater than that for sand. In contrast, the symbol S is used when the estimated volume percentage of sand is greater than the percentage of gravel.
- Gravels include material in the size range from 3 inches to 0.2 inch (i.e., retained on No. 4 sieve). Sand includes material in the size range from 0.2 inches to 0.003 inches. Use the grain size scale used by engineers (ASTM Standards D422-63 and D643-78) to further classify grain size as specified by the USCS.

• Although not specifically treated in ASTM D2488-06, cobbles range in size from 3 inches to 10 inches and boulders refer to particles with a single dimension greater than 10 inches. They are included here for the purpose of completeness and for their hydrogeologic significance.

Note: The ASTM grain size scale differs from the Modified Wentworth Scale used in teaching most geologists. Also, it introduces a distinction between sorting and grading (i.e., well graded equals poorly sorted and poorly graded equals well sorted.)

- The modifying symbol W indicates good representation of a range of particle sizes in a soil.
- The modifying symbol P indicates that there is a predominant excess or absence of particle sizes.
- The symbol W or P is only used when a sample contains less than 15 percent fines.
- Modifying symbol M is used if fines have little or no plasticity.
- Modifying symbol C is used if fines have low to high plasticity (clayey)

The following rules apply for the written description of the soil group name:

Types of Soil	Rule
Sands and gravels (clean)	Less than 5 percent fines
Sands (or gravels) with fines	5 to 15 percent fines
Silty (or clayey) sands or gravels	Greater than 15 percent fines

- Other descriptive information may include:
 - Color (e.g., Munsell Soil Color chart, specify edition). Soil color is named and coded using the Munsell Soil Color chart if required for the project. The code should be in parentheses immediately following the written description. Presence of mottling and banding is also recorded. For example, "dk brn (7.5 YR, 3/4)."
 - Relative Density/Penetration Resistance. For cohesionless materials use very loose, loose, medium, dense, or very dense estimated from drive sample hammer blows or other field tests. Blow counts may be used, if reliable.
 - Maximum grain size (fine, medium, coarse, as described in AGI data sheets or USCS). Note the largest cross-sectional dimension measured in tenths of an inch for grains larger than sand size.
 - Composition of grains (mineralogy)
 - Approximate percentage of gravel, sand, and fines (use a percentage estimation chart as provided in the AGI data sheets)

Modifiers Description

Trace	Less than 5 percent
Few	5 to 10 percent
Little	15 to 25 percent
Some	30 to 45 percent
Mostly	50 to 100 percent

Sampling and Analysis Plan/Quality Assurance Project Plan © Copyright 2009 by Kennedy/Jenks Consultants, Inc.

- Angularity (round, subround, angular, subangular)
- Shape (flat or elongated)
- Moisture Condition (dry, moist, wet)
 - Dry Absence of moisture to the touch.
 - Damp Contains enough water to keep the sample from being brittle, dusty or cohesionless; is darker in color than the same material in the dry state.
 - Moist Leaves moisture on your hand, but displays no visible free water.
 - Wet Displays visible free water.
- HCI Reaction (none, weak, strong)
- Cementation (Crumbles under finger pressure: weak, moderate, or strong)
- Range of Particle Sizes (sand, gravel, cobble, boulder)
- Maximum Particle Size (fine, medium, coarse)
- Cementation (weak, moderate, or strong)
- Hardness (breaks with hammer blow)
- Structure (stratified, laminated, fissured, slickensided, blocky, lensed, homogeneous)
- Organic material
- Odor
- Iridescent sheen (based on sheen test)
- Debris (e.g., paper, wood, plastic, cloth, concrete, construction materials, etc.).
- Additional Comments (e.g., roots or rootholes, difficult drilling, borehole caving, presence of mica, contact and/or bedding dip, bedding features, sorting, structures, fossils, cementation, geologic origin, formation name, minerals, oxidation, etc.

Classification of Fine-Grained Soils

Fine-grained soils are classified on the basis of:

- 1. Liquid limit
- 2. Plasticity

Classification uses the following symbols:

Basic Symbols	Modifying Symbols
M - silt	L - low liquid limit
C - clay	H - high liquid limit
O - organic	
Pt - peat	

Sampling and Analysis Plan/Quality Assurance Project Plan © Copyright 2009 by Kennedy/Jenks Consultants, Inc. The following rules apply for the written description of the soil group name:

Types of Soil

Silts and clays with sand and/or gravel Sandy or gravelly silts or clays **Rule** 5 to 15 percent sand and/or gravel Greater than 15 percent sand and/or gravel

The following are basic facts about fine-grained soil classification:

- The basic symbol M is used if the soil is mostly silt, while symbol C applies if it consists mostly of clay. Use of symbol O indicates that organic matter is present in an amount sufficient to influence soil properties. The symbol Pt indicates soil that consists mostly of organic material.
- Modifying symbols are based on the following hand tests conducted on a soil sample:
 - Dry strength (crushing resistance : none, low, medium, high, very high)
 - Dilatancy (molded ball reaction to shaking: none, slow, rapid)
 - Toughness (resistance to rolling or kneading near plastic limit : low, medium, high)
 - Plasticity (nonplastic, low, medium, high).
- Soil designated ML has little or no plasticity and can be recognized by none to low dry strength, slow to rapid dilatency, and low toughness.
- CL (lean clay) indicates soil with medium plasticity, which can be recognized by medium to high dry strength, no or slow dilatency, and medium toughness.
- OL is used to describe an organic, fine-grained soil that is less plastic than CL soil and can be recognized by low to medium dry strength, medium to slow dilatency, and low toughness. In some cases, it may be possible to differentiate organic silts (OL) from organic clays (OH), based on correlations between dilatancy, dry strength, toughness, or laboratory tests.
- MH soil has low to medium plasticity and can be recognized by low to medium dry strength, no to slow dilatency, and low to medium toughness.
- Soil designated CH (fat clay) has high plasticity and is recognizable by its high to very high dry strength, no dilatency, and high toughness.
- OH is used to describe an organic fine-grained soil that is less plastic than CH soil and can be recognized by medium to high dry strength, slow dilatency, and low to medium toughness. In some cases, it may be possible to differentiate organic silts (OL) from organic clays (OH), based on correlations between dilatancy, dry strength, toughness, or laboratory tests.

Note: PT (peat) is used to describe a highly organic soil composed primarily of vegetable tissue with a fibrous to amorphous texture, usually a dark brown to black color, and an organic odor.

- Other descriptive information includes:
 - Color (e.g., Munsell) Soil color is named and coded using the Munsell Soil Color chart if required for the project. The code should be in parentheses immediately following the written description. Presence of mottling and banding is also recorded. For example, "reddish brn (5YR, 4/4)."
 - Moisture condition,
 - Omit moisture terms below the regional water table and when drilling with mud or airmist rotary systems.
 - Consistency (thumb penetration test: very soft, soft, firm, hard, very hard . For fine sediments use very soft, soft, medium, stiff, very stiff, and hard.) These are estimated from drive sample hammer blows or other field tests. Blow counts may also be used, if reliable.
 - Structure (same descriptors as coarse grain)
 - Compactness (loose, dense) for silts
 - o Odor
 - o Iridescent sheen (based on sheen test)
 - o Debris (e.g., paper, wood, plastic, cloth, concrete, construction materials, etc.).
 - HCI Reaction (none, weak, strong).
 - Additional Comments (e.g. roots or rootholes, difficult drilling, borehole caving, presence of mica, , contact and/or bedding dip, bedding features, cementation, structures, fractures, fracture fillings, fossils, formation name, minerals, oxidation).

Fine-Grained Rock Description

- Textural Classification
- Color. Rock color is named and coded using the Geological Society of America rock color chart. The code should be in parentheses immediately following the written description. Presence of mottling and banding is also recorded. For example, "gry grn (5G, 5/2)."
- Hardness. Very hard, hard, medium, soft, very soft..
- Moisture Content. Dry, damp, moist, wet (saturated).
- Size Distribution. Approximate percentage of gravel, sand, and fines (silt and clay).
- Estimated Permeability. Very low, low, moderate, or high. This is based primarily on grain size, sorting, and cementation. Estimate secondary permeability due to natural rock fractures when applicable.
- Miscellaneous. Odor, contact and/or bedding dip, cementation, bedding, inclusions, secondary mineralization, fossils, structures, formation name, and fractures.

- Fractures are identified by depth, angle, width, and associated mineralization if applicable. The interpretation of the fracture type (i.e., as natural [N], coring induced [CI], or handling induced [HI]) should be stated. For example, "NF @90.8', 25 deg to axis, 0.1" wide, minor calcite."
- Coarse-Grained Rock Description
- Textural Classification.
- Color. Rock color is named and coded using the Geological Society of America rock color chart. The code should be in parentheses immediately following the written description. Presence of mottling and banding also is recorded. For example, "gry olive grn (5GY, 3/2)."Hardness. Very hard, hard, medium, soft, very soft.
- Moisture Content. Dry, damp, moist, and wet (saturated).
- Size Distribution. Approximate percentage of gravel, sand, and fines (silt and clay).
- Grain Shape. Angular, subangular, subrounded, rounded, or well-rounded, for grains larger than sand size.
- Grain Size. The largest cross-sectional dimension measured in tenths of an inch for grains larger than sand size.
- Miscellaneous. Odor, contact and/or bedding dip, cementation, bedding, inclusions, secondary mineralization, fossils, structures, formation name, and fractures.
- Fractures are identified by depth, angle, width, and associated mineralization, if applicable. The interpretation of the fracture type (i.e., as natural [N], coring induced [CI], or handling induced [HI]), should be stated. For example, "NF @126.1', 35 deg to axis, 0.1" wide, minor calcite."

Other Logging Parameters

Rock Quality Designation

This designation generally follows ASTM D6032-08 Standard Test Method for Determining Rock (RQD) of Rock Core.

The RQD denotes the percentage of intact and sound rock retrieved from a borehole of any orientation. All pieces of intact and sound rock core equal to or greater than 100 mm (4 in.) long are summed and divided by the total length of the core run. This method is generally applied to core barrel samples.

Standard Penetration Tests

This method generally follows ASTM D1586-08A Standard Test Method for Standard Penetration Test (SPT) and Split-Barrel Sampling of Soils. This method provides a means of assigning a relative density to the soil by counting the number of hammer blows (blow counts) required to advance a split-barrel sampler a specified distance into the undisturbed soil ahead of the lead

auger. This method is not applicable to boreholes advanced with direct-push sampling equipment. It is used primarily in conjunction with hollow stem auger drilling apparatus as the test can be performed through the auger string without removal of the augers thereby allowing the borehole to remain open to the bottom of the drill string without risk of caving. As the sampler is advanced by the repeated drop of a hammer of known weight, the blow counts are recorded on the log and used to provide a relative density descriptor to the soil penetrated during the test.

The number of blows required to drive the sampler 6 inches by a 140-lb hammer falling 30 inches. Fifty blow counts per 6-inch drive is considered "refusal," and sampling at this depth is usually terminated. In addition, a total of 100 blow counts per 18-in. drive, or no observed advance of the sampler during ten successive hammer blows, is also considered "refusal." During coring, leave this section blank. Normally, the second and third 6-inch intervals are recorded and added as the number of blows per feet.

Sampler Type/Depth. Give sampler type by the letter code listed below and identify the depth at the top of the sampling interval in feet below ground surface (bgs).

Sampler type	Inside diameter(in.)	Code
Standard penetrometer	1.38	SP
Split-barrel (small)	2.0	SBS
Split-barrel (large)	2.5	SBL
HQ wireline core	2.3	PC

Those descriptors are as follows for coarse grained soils:

Very Loose	0 to 3 SPT Sampler	0 to 4 Mod CA Sampler
Loose	4 to 7 SPT Sampler	5 to 10 Mod CA Sampler
Medium Dense	8 to 23 SPT Sampler	11 to 30 Mod CA Sampler
Dense	24 to 38 SPT Sampler	31 to 50 Mod CA Sampler
Very Dense	> 38 SPT Sampler	>50 Mod CA Sampler

Relative Density Descriptors for fine grained soils are as follows:

Very Soft	<1 SPT Sampler	0 to 1 Mod CA Sampler
Soft	1 to 3 SPT Sampler	2 to 4 Mod CA Sampler
Firm	4 to 6 SPT Sampler	4 to 8 Mod CA Sampler
Stiff	7 to 12 SPT Sampler	8 to 15 Mod CA Sampler
Very Stiff	13 to 23 SPT Sampler	15 to 30 Mod CA Sampler
Hard	> 23 SPT Sampler	>30 Mod CA Sampler

Sampling and Analysis Plan/Quality Assurance Project Plan © Copyright 2009 by Kennedy/Jenks Consultants, Inc. Regardless of the degree of adherence to the ASTM Standard Method, split barrel samplers are used as the preferred method of undisturbed sample acquisition in a hollow stem auger drilling. Upon retrieval of the sampler from the borehole, the sampler should be opened without making contact with its interior contents and the logging personnel should record the percent recovery or length of the sample recovered. Sample containers should be removed with a clean gloved (gloves may not be needed, depending upon requirements of HASP) hand and placed in a clean, dry area for examination and logging. The sample will be described per the above. Any lithologic changes that may be observable in the exposed ends of the intact core over the sampled interval should be estimated and recorded on the boring log. The least disturbed sample container of the two deeper six-inch sample increments should be secured with Teflon® or aluminum end sheets and snug fitting plastic end caps, sealed with silicon tape, depending upon testing, sampler may be filled with one inch rings instead of 6 inch. Sealing material should also be compatible with subsequent testing requirements.

Ambient Temperature Head-Space:

Organic vapor analyzers such as photoionization detectors (PIDs) or flame ionization detectors (FIDs) are generally used to assess the relative concentration of volatile hydrocarbons in the soil as the borehole is advanced and recorded as a value in parts per million on the boring log. This can be done by placing a uniform amount of soil in a Ziploc® bag, glass jar or other clean container, allowing the soil in the container to equilibrate to the ambient temperature, then inserting the probe of the PID or FID into the sealed container and recording the maximum PID or FID reading.

Non-Aqueous Phase Liquid (NAPL) Containing Soil

Appropriate observations of NAPL containing soil should include the following:

Appearance: If a separate phase liquid appears to be present, it might be described as "dark brown viscous fluid or liquid observed in the soil matrix." This remark should follow the lithologic description in the borehole log. Observations of color should be made such as "black streaks" or "mottled gray to "olive brown", however, it should not be inferred or remarked that the color is a necessary consequence of petroleum staining.

Odor: If the soil smells like petroleum it might be remarked that it has a "petroleum like" or "solvent like" odor. The use of terms like "strong" or "slight" should be avoided because there is no way to ensure that these terms can be applied uniformly in the field between various persons performing the logging (i.e., each_person's olfactory sense is different). The use of terms like "chemical odor" should also be avoided as there is no common reference point. Notations regarding the type of petroleum distillate present (e.g., "diesel-like odor" or "gasoline odor") are inappropriate as these are determination s that can only be accurately made by laboratory analysis.

Logging Refuse

This procedure applies to the logging of subsurface samples collected from a landfill or other waste disposal sites:

- 1. Observe refuse as it is brought up by the hollow stem auger, bucket auger, or backhoe.
- 2. If necessary, place the refuse in a plastic bag to examine the sample.

- 3. Record observations according to the following:
 - a. Composition (by relative volume), e.g., paper, wood, plastic, cloth, cement, construction debris. Use such terms as "mostly" or "at least half." Do not use percentages.
 - b. Moisture content: dry, damp, moist, wet.
 - c. State of decomposition: highly decomposed, moderately decomposed, slightly decomposed, etc.
 - d. Color: obvious mottling included.
 - e. Texture: spongy, plastic (cohesive), friable.
 - f. Odor.
 - g. Combustible gas indicator readings (measure downhole).
 - h. Miscellaneous: dates of periodicals and newspapers, degree of drilling effort (easy, difficult, very difficult).

References

Grain Size Scale Used by Engineers. ASTM D422-63 and ASTM D643-78.

Compton, R. R. 1962. Manual of Field Geology. New York: John Wiley & Sons, Inc.

International Society for Rock Mechanics. Commission on Classification of Rocks and Rock Masses. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 1981, Vol. 18, pp. 85-110, Great Britain.

Standard Test Method for Standard Penetration Test (SPT) and Split-Barrel Sampling of Soils. ASTM D1586-08A

Standard Practice for Description and Identification of Soils (Visual-Manual Procedure). ASTM D2488-06.

Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System. ASTM D2487-00

Standard Test Method for Determining Rock Quality Designation (RQD) of Rock Core. ASTM D6032-08.

U.S. Department of the Interior. 1989. *Earth Manual*. Washington, D.C.: Water and Power Resources Service.

Appendix B: Standard Operating Guideline SOG-5: Boring and Subsurface Soil Sampling

B.1 Introduction

This guideline describes the equipment and procedures that are used by Kennedy Jenks personnel for drilling and collecting soil samples.

B.2 Equipment

- Drill rigs and associated drilling and sampling equipment as specified in work plan:
 - Hollow stem auger
 - Air-rotary casing hammer
 - o Dual tube percussion hammer
 - Cable tool
 - Mud rotary
 - Reverse rotary
- CME, 5 ft x 94 mm continuous-core barrels (hollow-stem auger)
- 2.5-inch or 2.0-inch I.D. split-spoon drive sampler
- 2.5-inch or 2.0-inch brass liners and sealing materials (plastic end caps, Teflon seals, silicon tape, zip-lock plastic bags)
- Large capacity stainless steel borehole bailer
- Foxboro FID-Organic Vapor Analyzer (OVA)
- HNU PID-Organic Vapor Analyzer
- OVM
- Sampler cleaning equipment
 - o Steamcleaner
 - Generator
 - Stiff-bristle brushes
 - o Buckets
 - High purity phosphate-free liquid soap, such as Liquinox
 - Methanol (if necessary)
 - 0.1N nitric acid (if necessary)
 - Deionized water
 - Potable water
- Insulated sample storage and shipping containers
- Personal protective equipment (refer to project site safety plan)

B.3 Typical Procedure

- 1. Obtain applicable drilling and well construction permits prior to mobilization.
- 2. Clear drilling locations for underground utilities and structures by Underground Service Alert (USA) and subcontractors.
- 3. Have all downhole equipment steam-cleaned prior to drilling each boring.

- 4. Ensure that soil borings not to be completed as monitoring wells are drilled with an auger drill rig, using hollow stem augers of appropriate size.
- 5. Make sure that borings not completed as monitoring wells are grouted to the surface, using a neat cement-bentonite grout (containing approximately 5 percent bentonite).
- 6. Ensure that borings made to construct shallow monitoring wells are drilled with an auger drill rig that uses hollow stem augers of appropriate size to provide an annular space of a minimum of 2 inches between borehole wall and well casing.
- 7. Verify that drill borings used to construct deeper monitoring wells are drilled with a dual tube percussion hammer or air-rotary casing hammer, using a steel drive casing of appropriate size, or with hollow stem augers through a steel conductor casing.
- 8. Collect soil samples for lithologic logging purposes with a CME continuous coring system in 5-foot increments.
- 9. Collect soil samples for lithologic logging and chemical and physical analyses by driving a splitspoon drive sampler, in 2.5- to 5-foot increments, below the depth of the auger bit with a rigmounted hammer. Record the standard penetration resistance. If the sample is pushed rather than driven, be sure to record the push force.
- 10. When drilling with air-driven drill rigs, collect soil samples for lithologic logging purposes from the cyclone separator discharge on the dual tube percussion hammer, which separates air from formation cuttings as the drive casing is advanced.
- 11. Have the soils classified in the field in approximate accordance with the visual-manual procedure of the Unified Soil Classification System (ASTM D-2488-90) and the Munsell Color Classification.
- 12. Prior to each sampling event, wash the split-spoon drive sampler and brass liners with high purity phosphate-free soap, and double-rinse them with deionized water and methanol and/or 0.1N nitric acid, as appropriate.
- 13. At each sampling interval, collect soil in one brass liner for potential laboratory analysis. Cover this sample in Teflon sheets, seal it with plastic caps, and wrap it with silicon tape. Place a completed sample label on the brass liner. Then see that the samples are placed in appropriate containers and stored at approximately 4°C.
- 14. As a field screening procedure (if applicable), at each sampling interval put the soil from one of the brass liners into an airtight container and allow it to equilibrate. After this, use an OVA to monitor the headspace in the container. If significant organic vapors are detected with the OVA, save the appropriate brass sample liners for potential laboratory analysis.
- 15. Complete chain-of-custody forms in the field and transport the samples in insulated containers, at an internal temperature of approximately 4 °C, to the selected laboratory.
- 16. If applicable, as described in the site safety plan, use an OVA to analyze in situ air samples from the breathing zone, the inside of the augers or casing, and other locations as necessary.

B.4 Installation and Testing of Isolation Casing

- 1. Upon completion of the initial small-diameter boring, use a rotary drill bit of appropriate diameter to ream the boring to a depth (to be determined). Use a bentonite mud mixture, in accordance with standard drilling practice, to maintain hole stability and to minimize infiltration and development of a mud cake on the borehole wall.
- 2. When reaming is completed, install isolation casing in the boring. Use conductor casing of an appropriate grade of 14-inch diameter steel with a wall thickness of 0.25 inch, per the following specifications:
 - a. Sections are 20, 10, or 5 feet in length.
 - b. Casing sections are beveled or butt-jointed.
 - c. Field joints are arc-welded with 70 percent weld penetration, having a minimum of two passes per circumference.
 - d. Welding rod is compatible with casing material.
 - e. Joints are watertight.
 - f. Casing centralizers are set on the bottom, middle, and top of the total casing length. Centralizers are installed in sets of four, spaced at 90°, and attached at the bottom by a tack weld. They are flanged 2 inches at the top and bottom to contact the borehole wall.
- 3. Make volumetric calculations prior to grouting, to estimate the total volume of grout required to fill the annular space. The amount of grout actually used must be compared with this estimate. Ensure that the grout meets the following specifications:
 - a. Volumes of grout used must be within 10 percent of estimated value.
 - The grout consists of ASTM C150 Type II cement and water at a ratio of 5 gallons of water per 94 lb sack of cement, weighing approximately 118 lbs per foot.
 Approximately 5 lb of powdered bentonite for each sack of cement is mixed into the grout.
- 4. Note that leakage tests or a bond log might be required to validate the grout seal.
- 5. Grout conductor casing into place by one of the following methods:
 - a. Pressure-grout from the bottom of the casing, using a packer or Braden-head to force the grout into the annular space between the conductor casing and the borehole wall.
 - b. Fill the casing with grout and use a spacer plug apparatus to force the grout into the annular space between the conductor casing and the borehole wall. The spacer plug must be composed of a material that can be left in the boring and later drilled through to complete it.

6. After allowing the grout to set, continue drilling with an appropriate diameter hollow stem auger. A rotary bit can be used initially to drill through any grout that might have hardened in, or directly below, the casing.

B. 5 Equipment Cleaning

- 1. Prior to drilling each boring, steamclean downhole equipment (augers, well casing, sampler).
- 2. Before collection of each drilling sample, steamclean or wash sampling equipment (sampler and brass liners) with a brush, in a solution of high purity phosphate-free soap and potable water. Rinse the equipment with potable water and methanol and/or 0.1N nitric acid, as appropriate. Follow this with double-rinsing using distilled water.
- 3. Before leaving the site at completion of drilling, steamclean downhole equipment and vehicles that require cleaning.

B.6 Investigation-Derived Residuals

Place soil cuttings and other residuals in appropriately labeled containers for disposition by the client. All soil samples transported to the laboratory must be returned to the client for disposition. Kennedy Jenks is available to assist the client with options for disposition of residuals.

Appendix B: Standard Operating Guideline SOG-6: Well Construction and Development

B.1 Introduction

This guideline describes procedures used by Kennedy Jenks personnel for well construction and development following completion of boring and soil sampling procedures (described in Standard Operating Guideline, Boring and Subsurface Soil Sampling).

B.2 Well Construction Materials

- 2-inch or 4-inch Schedule 40 PVC blank casing
- 2-inch or 4-inch Schedule 40 PVC slotted casing, of appropriate slot size
- 2-inch or 4-inch Schedule 40 PVC threaded and slip caps
- 2-inch or 4-inch Schedule 40 stainless steel blank casing
- 2-inch or 4-inch Schedule 40 stainless steel wire wrapped casing, of appropriate slot size
- 2-inch or 4-inch stainless steel threaded and slip caps
- Stainless steel well centralizers
- 12-inch x 0.25-inch mild steel isolation casing with welded centralizers
- Hasp-locking standpipes
- Ground-level traffic-rated watertight well housing enclosure
- Locking expansion plugs
- Combination or key lock
- Filter pack sand (refer to Standard Operating Guideline, Design of Filter Packs and Selection of Well Screens for Monitoring Wells)
- Type I or II Portland cement
- Concrete
- Bentonite powder
- 0.25-inch bentonite pellets or chips.

A.1 Well Development Equipment

- 2-inch or 4-inch-diameter vented surge block
- 1-inch dedicated PVC hose for monitoring well development and purging
- Centrifugal surface pump
- Submersible pump (4-inch-diameter wells or larger)
- 55-gallon DOT-approved drums
- Teflon, stainless steel or PVC bailer
- Teflon-coated bailer retrieval wire
- Airlift pump with foot valve and compressor
- Bladder pump (2-inch diameter wells only).

B.3 Typical Procedure

 Following completion of selected borings, install the monitoring well casing through the center of the hollow stem auger, drive casing, or open boring. The monitoring well consists of a PVC Schedule 40 slotted well casing of appropriate diameter and a blank casing with a threaded bottom cap and a slip or threaded top cap or watertight expansion plug. The casing string must be held in tension during initial installation.

- Place clean, well graded sand around the slotted section of the monitoring well to serve as the filter pack. The grade of sand is chosen on the basis of aquifer units encountered (refer to Standard Operating Guideline, Design of Filter Packs and Selection of Well Screens for Monitoring Wells). The filter pack is emplaced as the auger or temporary casing is removed from the boring.
- 3. Ensure that filter pack sand for the well extends to approximately 3 feet above the top of the screened interval.
- 4. If required in the well construction permit, notify the appropriate inspector prior to placing the well seal.
- 5. Place a 2- to 3-foot thick bentonite pellet seal above the sand pack, as the auger and/or casing is removed from the boring. If the seal is placed above the water table, the bentonite pellets must be hydrated with potable water prior to placement of the annular seal.
- 6. Fill the remainder of the annulus between the well casing and the borehole wall with cement/bentonite grout (with approximately 5 percent bentonite), or a high-solids bentonite slurry (11 to 13 pounds per gallon), to a depth of approximately 1 foot below ground surface. If the water level is higher than the seal, use a tremie pipe to place the grout.
- 7. Install either a threaded cap or a locking watertight expansion plug on the monitoring well. Place a steel hasp-locking well housing over the top of the well and cement it into the annulus of the boring.
- 8. Place a traffic-rated precast concrete or steel well enclosure approximately 1 to 2 inches above grade, and cement it into place with concrete. Have a concrete apron constructed around the well housing enclosure to facilitate runoff.
- 9. For aboveground completion, ensure that the well casing extends approximately 3 feet above ground surface. An 8-inch diameter hasp-locking steel well housing surrounds the well casing. Traffic bollards can be installed around the well housing as necessary.
- 10. Repeat Steps 1 through 9 for all monitoring wells at site.
- 11. Following the curing of the grout (approximately 24 hours), each monitoring well is developed. Prior to development activities, measure the depth in each well to static water level and total casing depth.
- 12. Also prior to well development, if applicable, check the water interface of each monitoring well for the presence of floating product (NAPL). Use a clear bailer or color indicator paste for the inspection.
- 13. If a monitoring well has a water level of less than 25 feet, it may be developed by using a centrifugal surface pump with dedicated 1-inch I.D. clear flex suction hose, placed with the hose intake placed temporarily at all levels of the screened interval. If the well is greater than 25 feet deep, a submersible pump or airlift pump with air filter is used for development. In either case, a

surge block of appropriate size can be moved up and down inside the screened section of the well casing to create a surging action that hydraulically stresses the filter pack.

- 14. During development of each well, ensure that field parameters and observations are recorded on a Kennedy Jenks purge and sample form (attached). Information to be recorded includes, but is not limited to, the following items:
 - a. Depth to water
 - b. Development time and volume
 - c. Development (flow) rate
 - d. pH, temperature, specific conductivity, and turbidity
 - e. Other observations, as appropriate (e.g., color, presence of odors, or sheen)
- 15. Develop each monitoring well until water of relatively low turbidity is removed from the casing.
- 16. When development of each well is discontinued, record the following field parameters/observations:
 - a. Depth to water
 - b. Temperature
 - c. pH
 - d. Specific conductance
 - e. Turbidity
 - f. Color.

B.4 Investigation-Derived Wastes

Place groundwater produced by well development in appropriately labeled containers for disposition by the client. Kennedy Jenks is available to assist the client with options for disposition of groundwater.

Appendix B: Standard Operating Guideline SOG-7: Measuring Groundwater Levels

B.1 Introduction

This guideline describes the field procedure typically followed by Kennedy Jenks when measuring groundwater levels. Groundwater levels in wells will be measured prior to commencing developing, purging, sampling, and pumping tests.

B.2 Equipment

- Electronic water level monitoring probe or other measuring device
- Decontamination supplies (e.g., buckets, Alconox, distilled water, squirt bottle)
- Field notebook
- Groundwater purge-and-sample form(s) if in conjunction with groundwater sampling
- Keys for locks (if necessary)
- Tools to open well covers (e.g., socket wrench, spanner wrench)
- Disposable gloves (as a minimum), and other protective clothing (as necessary).

B.3 Typical Procedure

- 1. If more than one well will be measured, begin depth measurement in the order in terms of lowest to highest chemical concentrations in the monitoring wells.
- 2. Remove well caps from all wells prior to initiation of water level measurement activities. This will allow wells to equilibrate, if necessary.
- 3. If the potential exists for floating product (LNAPL) to be present, use an electric oil-water interface probe or oil-sensitive paper to measure depth of the floating product and the electronic depth probe to measure the depth-to-water. Record both depths in field notebook and note the water depth as the "depth with oil layer present." Unless otherwise instructed, always measure depths to floating product layer and groundwater from the top of the north side of the well casing.
- 4. When floating product is not present, measure depth-to-water using a pre-cleaned water level probe from the top of the northern side of the well casing, unless otherwise instructed.
- 5. Repeat measurements a minimum of three times or have field partner confirm measurement.
- 6. Record time of day the measurement was taken using military time (e.g., 16:00).
- 7. Decontaminate water level and/or oil-water interface probe and line prior to reuse (refer to SOG-12, Equipment Cleaning).

Introduction

This Standard Operating Guideline (SOG) provides the procedures typically followed by Kennedy Jenks personnel during the collection of groundwater samples from monitoring wells. Groundwater sampling from temporary boreholes (e.g., grab groundwater samples collected from direct push borings) is not addressed by this SOG. This SOG provides guidance on procedures that are generally consistent with standard practices used in environmental sampling. Federal, state, and/or local regulatory agencies may require groundwater sampling procedures that differ from those described in this SOG and/or may require additional procedures. As guidance, this SOG does not constitute a specification of requirements for groundwater sampling. Deviations from, and additions to, the procedures described herein may be appropriate based on project-specific sampling objectives, site-specific conditions, and/or regulatory requirements. The user of this SOG should modify the sampling procedures used, as appropriate, to conform to the project-specific requirements and then document such deviations from this SOG in the project-specific documentation of groundwater sampling activities.

This SOG does not address Quality Assurance/Quality Control (QA/QC) procedures for groundwater sampling in detail. While some general QA/QC procedures are addressed, project-specific QA/QC procedures should be developed and presented in a Quality Assurance Project Plan (QAPP), field sampling and analysis work plan, or other project-or activity-specific document.

This SOG contains the following sections:

- Field Equipment/Material
- Typical Procedures for Monitoring Well purging and Groundwater Sampling
- Stabilization Criteria for Adequacy of Monitoring Well Purging
- Typical Procedures for Groundwater Sampling using Passive Diffusion Bags (PDBs)
- Quality Control Guidance
- Investigation-Derived Waste (IDW) Management
- References

Field Equipment/Materials

Material/equipment typically required for the collection of groundwater samples from monitoring wells may include:

- Electric water-level monitoring probe
- Multi-phase interface monitoring probe

- Bladder pump, peristaltic pump, pre-cleaned, disposable, 2- or 4-inch bailers with disposable cord, inertial pump, submersible pump, passive diffusion bags or other suitable apparatus for purging the well and sampling
- Flexible discharge tubing [polyethylene (PE), Teflon[™], or similar]
- Purge water collection container •
- Multi-parameter water quality meter (temperature, pH, specific conductance, • redox potential)
- Turbidity meter •
- Flow-through cell •
- Nitrocellulose filters (if conducting field filtering) •
- Sample containers (laboratory-supplied) with appropriate preservatives •
- Additional chemical preservatives (if necessary) •
- Watch or stopwatch •
- Sample labels, pens, field logbook, or other appropriate field forms (e.g., groundwater purge and sample forms, chain-of-custody forms), and access agreements and third-party sample receipts (if warranted)
- Previous purging and sampling data for monitoring wells to be sampled, including water levels, purging parameters, and laboratory analysis results.
- Monitoring well boring and construction log (including wellhead elevation survey • and reference point information)
- Personnel and equipment cleaning supplies
- Sample shipping and packaging supplies •
- Personal protective equipment as specified in the Health and Safety Plan • (HASP).

Typical Procedures for Monitoring Well Purging and Groundwater Sampling

- 1. <u>Pre-Purging Data Collection and Purging Equipment Placement.</u> Record the data and information collected during this procedure on a groundwater purge and sample form. Perform the following prior to groundwater sampling:
 - a. Calibrate the multi-parameter water quality meter, prior to beginning sampling and as necessary based on field conditions, in accordance with the instructions in the manufacturer's operation manual. Note that it may be appropriate to keep a written log of the calibration procedures and an instrument maintenance with the instrument.
 - b. Examine the monitoring well to be sampled and associated protective surface enclosure for any structural damage, poorly fitting caps, and leaks into the inner casing. If notable conditions exist, they should be recorded on the sampling log

for the well so that any necessary follow-up corrective actions can be planned and implemented.

- c. Record an initial measurement of the depth to water. Calculate the volume of water in the well casing if wetted-casing-volume-based purging is to be used to remove the so-called "stagnant water" from the well prior to sampling. The volume of water in the wetted well casing should be calculated using the formula: $V = (\pi r^2) x L$ where r is one half of the inner diameter of the well casing/screen and L is the length of wetted casing/screen (calculated by subtracting the depth to water from the total well depth). Total well depth should not be measured at the start of a sampling event (due to the potential to cause turbidity). Measure the total well depth after sample collection. Note that some regulatory agencies require that the calculated "stagnant water" volume include the water contained in the pores space of the wetted portion of the monitoring well filter pack in addition to the casing/screen. If this is a requirement, it should be defined in the project-specific sampling requirements.
- d. If light non-aqueous phase liquid (LNAPL) is potentially present, measure the depth and thickness of the LNAPL and the static water level using a multiphase interface monitoring probe. Use one of the following devices for purging:
- a. Bladder pump: adjust the pump intake at a depth approximately equal to the middle or just slightly below the middle of the well screen interval or water column unless another position is justified based on site-specific conditions.
- b. Peristaltic pump: place the pump intake at a depth equal to the approximate middle or just slightly above the middle of the well screen interval or water column unless another position is justified based on site-specific conditions. Note: If degassing of water is occurring when sampling with a peristaltic pump, alternative types of sampling equipment should be used for volatile organic compound (VOC) or volatile petroleum hydrocarbon (VPH) sample collection.
- c. Inertial pump: place the pump intake at a depth approximate to the middle or just slightly below the middle of the well screen interval or water column unless another position is justified based on site-specific conditions. Note: Some studies suggest that the use of inertial pumps for purging and/or sampling may produce a low bias when collecting samples for VOC and VPH analyses. This should be considered along with regulatory requirements when selecting an inertial pump for purging and/or sampling.
- d. Submersible pump: place the pump intake at a depth approximate to the middle or just slightly below the middle of the well screen interval unless another position is justified based on site-specific conditions.
- e. Pre-cleaned or disposable bailers. Note: The use of bailers for low-flow purging/sampling is not appropriate.
- f. Another suitable purging/sampling device may be selected for use depending upon project requirements.

- Monitoring Well Purging and Sampling. When purging of a monitoring well prior to sampling is appropriate and/or required, purge the well using either (a) wettedcasing-volume-based purging or (b) low-flow purging as described in the following sections. If a well exhibits evidence of slow recharge, or produces excessively silty water, etc., the well may need to be redeveloped.
 - a. Wetted-casing-volume-based purging.
 - (1) Establish a purging rate to pump or bail approximately three wetted-casing volumes of groundwater without dewatering the well.
 - (2) If using a pump, set-up the discharge tubing, flow-through cell, water quality meter, and purge water collection container. If turbidity is measured, collect the sample for turbidity measurement after groundwater passes through the flow-through cell in the vial provided with the turbidity meter. If using a bailer, maintain a clean plastic container next to the well for collecting observation samples. Begin purging the well.
 - (3) At the beginning of purging and periodically thereafter, record the following information and water quality parameters/observations on the groundwater purge and sample form: As guidance, field parameters may be measured after one purge volume is removed and every ½ purge volume thereafter.
 - Date and time
 - Purge volume and/or flow rate
 - Water depth
 - Temperature
 - pH
 - Specific conductance
 - Dissolved oxygen
 - Oxidation-reduction potential (ORP)
 - Other observations as appropriate (turbidity, color, presence of odors, sheen, etc.).
 - (4) Continue purging until water quality parameters have stabilized (refer to "Stabilization Criteria for Adequacy of Monitoring Well Purging" below) and/or a minimum of three wetted-casing volumes of water have been removed from the well. If a well purges dry, let it recover to 80 percent of original water column, then sample. If the well takes a very long time to recover (i.e., longer than 2 hours), try to sample the well at the end of day or first thing the next day.
 - (5) Collect the sample in pre-cleaned sample containers suitable for the laboratory analyses to be performed.
 - (6) If sampling using a bailer, use a bottom-emptying device or other technique to avoid sample agitation. If the collected water is very turbid, or a bottomemptying bailer is not used, properly transfer the water from the bailer into the appropriate sample containers. Be careful to avoid agitating the sample.

When sampling for VOCs, turn the bottle upside down after filling the container to identify possible headspace. If bubbles are present, top off the sample container or resample.

- b. Low-flow purging and sampling.
 - (1) Place the pump intake at a depth equal to the approximate middle or just slightly above the middle of the well screen interval or water column or otherwise as dictated by well-specific soil stratigraphy and project-specific requirements. For example, it may be appropriate that the pump intake be set opposite to any preferential flow pathways (i.e., zones of higher permeability).
 - (2) Place an electronic water-level indicator probe in the well, approximately 0.5 to 3 inches below the piezometric surface. If available, a transducer of sufficient accuracy can also be used to measure depth to water when purging.
 - (3) Connect the pump discharge tube to a flow-through cell housing a water quality parameter probe.
 - (4) Activate the pump for purging at a flow rate ranging from approximately 0.1 to 0.5 liters per minute (L/min) or other flow rate as dictated by projectspecific and/or site-specific requirements. (Note: Some regulatory agencies may require specific flow rates). Determine the flow rate by timing the rate at which the flow-through cell is filled.
 - (5) During purging, monitor the water level in the well to evaluate potential drawdown. The goal is to minimize drawdown to less than approximately 4 inches. If drawdown is observed (especially rapid drawdown at the beginning of purging), decrease the pumping rate.
 - (6) Measure water quality parameters at approximately 3- to 5-minute intervals during purging. Continue purging until water quality parameters have stabilized (refer to "Stabilization Criteria for Adequacy of Monitoring Well Purging" below).
 - (7) Immediately after purging, collect the sample in pre-cleaned sampled containers suitable for the laboratory analyses to be performed using the same flow rate that was used during purging unless it is necessary to decrease the rate to minimize aeration or turbulent filling of sample containers. If sampling for VOCs or VPH reduce the flow rate to 0.1 L/min or less.
- 3. <u>Sampling with LNAPL Present in a Monitoring Well.</u> Wells containing LNAPL are typically not sampled for dissolved phase constituents in groundwater due to the potential for entrainment of LNAPL in the aqueous sample matrix. If such sampling is required, and purging is not required, make sure the pump intake is placed in the upper 2 feet of water column and collect the samples without purging in a manner that reduces the potential for mixing of the groundwater sample with air or LNAPL. If groundwater sampling is required from wells containing LNAPL for the purposes of characterizing VOCs, and purging is required, purge the well prior to sampling unless or until LNAPL becomes entrained in the sampling apparatus. If LNAPL will likely become entrained in the groundwater, the sample should be collected without

purging. If LNAPL becomes entrained in the sampling apparatus then the sampling effort for VOCs should be aborted.

- 4. <u>Field Filtering Groundwater Samples.</u> Groundwater sample filtering and/or preservation should be performed in accordance with the requirements of the analytical method being specified and any other project-specific requirements. For example, samples collected for dissolved metals are typically filtered using a 0.45 µm filter.
- 5. <u>Sample Collection Considerations.</u> When multiple analyses will be performed, collect the samples in order of decreasing sensitivity to volatilization (i.e., VOC samples first and metals last). When sampling for VOCs, turn the sample container upside down after filling to identify possible headspace. If bubbles are present, top off the sample bottle or resample (do not reuse bottles, especially if they have been pre-preserved by the vendor or laboratory). If possible, the pump should not be moved or turned off between purging and sampling; however, the pump may need to be turned off for a very brief period (as a practical matter) so field personnel can handle samples and minimize the potential for water to splash on the ground surface. The ground surface should be protected from incidental splashing, especially if water from the well would be considered a hazardous waste for disposal purposes.
- Monitoring Wells with Slow Recharge. If a well purges dry, let it recover to 80 percent of original water column, then sample. If the well takes a very long time to recover (i.e., longer than 2 hours), try to sample the well at the end of day or first thing the next day.
- 7. <u>Sample Container Filling and Shipping.</u> Fill the appropriate containers for the analyses to be requested and ensure that the required label information is completely and accurately filled in. Follow sampling packaging, shipping, and chain-of-custody procedures (see applicable SOG).
- 8. <u>Cleaning.</u> Follow personnel and equipment cleaning procedures (see applicable SOG).

Stabilization Criteria for Adequacy of Monitoring Well Purging

Environmental Investigations Standard Operating Procedures and Quality Assurance Manual (EPA 2001) states that "with respect to groundwater chemistry, an adequate purge is achieved when pH, specific conductance, and temperature of groundwater have stabilized, and the turbidity has either stabilized or is below 10 Nephelometric Turbidity Units (NTUs). Wells should be considered stable when the criteria listed in the following table have been met for pH, specific conductance, temperature, and turbidity. Attempts should also be made to stabilize ORP and dissolved oxygen.

Field Parameters	Stabilization Criteria for Three or More Consecutive Readings	Notes
рН	Difference between three or more consecutive readings is within ±0.2 units	_
Temperature	Difference between three or more consecutive readings is constant	_

Field Parameters	Stabilization Criteria for Three or More Consecutive Readings	Notes
Specific Conductance	Difference between three or more consecutive readings is within ±3%	_
Turbidity	Difference between three or more consecutive readings is within ±10% or three consecutive readings below 10 NTUs	Generally, turbidity is the last parameter to stabilize. Attempts should be made to achieve stabilization; however, this may not be possible. It should be noted that natural turbidity in groundwater may exceed 10 NTUs. If turbidity is greater than 50 NTU, redevelopment of the well may be warranted.
ORP	Difference between three or more consecutive readings is within ±20mV	Very sensitive. Attempts should be made to achieve stabilization; however, due to parameter sensitivity this may not be possible.
Dissolved Oxygen	Difference between three or more consecutive readings is within ±10% or ±0.2 milligrams per liter (mg/L), whichever is greater	Very sensitive. Attempts should be made to achieve stabilization, especially when collecting samples of VOC analysis; however, due to parameter sensitivity this may not be possible.

Attempts should be made to achieve the stabilization criteria. Because of geochemical heterogeneities in the subsurface environment, stabilization of field parameters during purging may not always be achievable. If field parameter measurements do not indicate stabilization, continued conventional purging may be required until a minimum of three wetted-casing volumes have been removed. During low-flow purging of a well containing a large volume of casing water, it may be practical to discontinue low-flow purging and proceed with sampling if field parameters have not stabilized within a reasonable period. This judgment must be made on a site-specific/project-specific basis.

Typical Procedures for Groundwater Sampling Using Passive Diffusion Bags (PDBs)

Groundwater sampling using water-filled passive diffusion bag (PDB) samplers may be suitable for obtaining samples for VOC analysis. The suggested application of the method is for long-term monitoring of VOCs in groundwater wells at well characterized sites. (Note: The use of PDBs may not be suitable for the assessment of Tertiary Amyl Methyl Ether, methyl tert-butyl ether, methyl-isobutyl ketone, styrene, and acetone). The effectiveness of the use of a single PDB sampler in a well is dependent on the assumption that there is horizontal flow through the well screen and that the quality of the water in the well screen is representative of the groundwater in the aquifer directly adjacent to the screen. If there are vertical components of intrabore-hole flow, multiple intervals of the formation contributing to flow, or varying concentrations of VOCs vertically within the screened or open interval, then a multiple deployment of PDB samplers within a well may be more appropriate for sampling the well.

Typically, PDB samplers should not be used in wells having screened or open intervals longer than10 feet. If PDB samplers are to be used in wells with screened intervals of greater than 10 feet, then they are generally used in conjunction with borehole flow meters or other techniques to characterize vertical variability in hydraulic conductivity

and contaminant distribution or used strictly for qualitative reconnaissance purposes. In larger well screens or in wells that may have vertical flow, the use of baffles should be considered.

Following are the procedures for deploying a PDB sampler.

- <u>Acquire PDBs.</u> Obtain the pre-filled PDB samplers from the analytical laboratory. (The PDB samplers are prefilled at the laboratory with laboratory-grade deionized water. Unfilled PDB samplers can be obtained and filled in the field but this is not recommended.)
- 2. **Deploy PDBs in Monitoring Wells.** To deploy the PDB sampler in the well:
 - a. Measure the well depth and compare the measured depth with the reported depth to the bottom of the well screen from well-construction records. This is to check whether sediment has accumulated in the bottom of the well, whether there is a non-screened section of pipe (sediment sump) below the well screen, and the accuracy of well-construction records.
 - Attach the PDB sampler to a weighted line. (Sufficient weight should be added to counterbalance the buoyancy of the PDB sampler.) (Note: Stainless-steel or Teflon-coated stainless-steel wire is preferable, but rope can be used if it is of sufficient strength, non-buoyant, and subject to minimal stretching. However, the rope should not be reused due to the potential for cross contamination.) Additionally, to prevent cross-contamination, the weighted lines should not be reused in different wells.
 - c. To prevent cross-contamination, he PDB samplers should not contact non-aqueous phase liquid (NAPL) during deployment or retrieval.
 - d. Calculate the distance from the bottom of the well, or top of the sediment in the well, up to the point where the PDB sampler is to be placed.
 - e. Attach the PDB sampler to the weight or weighted line at the target depth.
 - 1) For the field-fillable type of PDB sampler, the sampler is equipped with a hanger assembly and weight that can be slid over the sampler body until it rests securely near the bottom of the sampler.
 - 2) If using a coated stainless-steel wire as a weighted line, make loops at appropriate points to attach the upper and lower ends of PDB sampler.
 - 3) Where the PDB sampler position varies between sampling events, movable clamps with rings can be used.
 - 4) When using rope as a weighted line, tie knots or attach clasps at the appropriate depths. Nylon cable ties or stainless-steel clips inserted through the knots can be used to attach the PDB samplers.
 - f. Lower the weight and weighted line down the well until the weight rests on the bottom of the well and the line above the weight is taut. The PDB samplers should now be positioned at the expected depth. (The depth can be checked by placing a knot or mark on the line at the correct distance from the top knot/loop of the PDB sampler to the top of the well casing and checking to make sure that the mark aligns with the lip of the casing after deployment.)

- g. Secure the assembly. (A suggested method is to attach the weighted line to a hook on the inside of the well cap.)
- h. Reattach the well cap. The well should be sealed in such a way as to prevent surface-water in-flow into the well.
- i. Allow the system to remain undisturbed until the PDB sampler equilibrates. Laboratory and field data suggest that a 2-week equilibration time is probably adequate for most applications. Note: In less-permeable formations, longer equilibration times may be required.
- 3. **<u>Recovering the PDBs.</u>** Following the equilibration time, recover the PDB sampler from the monitoring well.
 - a. Remove the PDB samplers from the well by using the attached line. The PDB samplers should not be exposed to heat or agitated.
 - b. Examine the surface of the PDB sampler for evidence of algae, iron or other coatings, and for tears in the membrane. Note the observations in a sampling field book. If there are tears in the membrane, the sample should be rejected. If there is evidence that the PDB sampler exhibits a coating, then this should be noted in the report.
 - c. Detach and remove the PDB sampler from the weighted line. Remove the excess liquid from the exterior of the bag to minimize the potential for cross contamination.
- 4. <u>Sample Container Filling and Shipping.</u> Transfer the water from the PDB sampler to sample container. This is typically accomplished by carefully cutting a small hole in the bag and directing the flow into the sample container. Some commercially available PDB samplers provide a discharge device that can be inserted into the sampler. When transferring the sample to the sample container, minimize agitation. Ensure that the required label information is completely and accurately filled in. Follow sampling packaging, shipping, and chain-of-custody procedures (see applicable SOG).
- 5. <u>Cleaning.</u> Follow personnel and equipment cleaning procedures (see applicable SOG).

Quality Control Guidance

Follow the quality control requirements specified in the Quality Assurance Project Plan (QAPP), project-specific field sampling and analysis work plan, and/or project-specific regulatory requirements, as applicable. The following may be used as guidelines.

 Approximately one duplicate sample should be obtained for each sampling event or for each batch of samples (a batch is typically defined as 20 samples). Collect duplicate samples immediately after the original samples are collected. Purging is not performed between original sample collection and collection of duplicate samples. Original and duplicate samples are collected sequentially, without appreciable delay between collection cycles. Duplicate samples are to be submitted to the laboratory blind (i.e., not identified as a duplicate sample).
- 2. Typically, at least one type of field blank sample (rinsate or transfer) should be collected per day of water sampling. All field blank samples are to be collected, preserved, labeled, and treated like any other sample. Field blank samples are to be sent blind to the laboratory (i.e., not identified as a field blank). Record in the field notebook the collection of any blank sample (rinsate, transfer, trip). The types of field blank samples are discussed below.
 - a. Rinsate blank samples. If rinsate field blank samples are required, prepare the sample by pouring deionized water over, around, and through the various reusable sampling implements contacting a natural sample. Rinsate blanks need not be collected when dedicated sampling equipment is used for purging and sampling the well. Rinsate blank samples are to be analyzed for the same parameters as the environmental samples.
 - b. Transfer blank samples. Transfer blank samples are routinely prepared when no rinsate blank samples are collected. (The purpose of a transfer blank sample is to monitor for entrainment of contaminants into the sample from existing atmospheric conditions at the sampling location during the sample collection process.) A transfer blank sample is prepared by filling a sample container(s) with distilled or deionized water at a given sampling location. Transfer blank samples are to be analyzed for the same parameters as the environmental samples.
 - c. Trip blank samples. Trip blank samples are submitted for VOC analysis to monitor for possible sampling contamination during shipment as volatile organic samples are susceptible to contamination by diffusion of organic contaminants through the Teflon-faced silicone rubber septum of the sample vial. Trip blank samples are prepared by the laboratory by filling VOA vials from organic-free water and shipped with field sample containers. Trip blank samples accompany the sample bottles through collection and shipment to the laboratory and are stored with the samples. It is suggested that a trip blank sample be included in each cooler of samples submitted for VOC analysis.

Investigation-Derived Waste (IDW) Management

Purge water is to be contained onsite in an appropriate labeled container for disposition by the client unless other project-specific procedures are defined. Other investigationderived wastes, such as personal protective equipment, are to be properly handled and disposed. Preferably, PPE IDW should also be containerized and left onsite for disposal by the client. As a matter of practice, any waste, or potential waste, generated onsite, should remain onsite. Refer to the IDW SOG.

REFERENCES

ASTM. 1999. Designation: D 6452 - 99. Standard Guide for Purging Methods for Wells Used for Ground-Water Quality Investigations. Copyright ASTM, West Conshocken, PA.

ASTM International. 2002. Designation D 6771 – 02. Standard Practice for Low-Flow Purging and Sampling for Wells and Devices Used for Ground-Water Quality Investigations. Copyright ASTM International, West Conshocken, PA.

U.S. Environmental Protection Agency. 2001. *Environmental Investigations Standard Operating Procedures and Quality Assurance Manual (EISOPQAM)*. Dated November 2001. U.S. EPA Region 4.

Vroblesky, Dan A. 2001. U.S. Geological Survey, User's Guide for Polyethylene Based Passive Diffusion Bag Samplers to Obtain Volatile Organic Compound Concentrations in Wells. Part 1: Deployment, Recovery, Data Interpretation, and Quality Control and Assurance. Water-Resources Investigations Report 01-4060. Columbia, South Carolina.

Appendix B: Standard Operating Guideline SOG-9: Field Measurement of Dissolved Oxygen

B.1 Introduction

This guideline describes the procedures that will typically be followed by Kennedy Jenks personnel during field measurement of dissolved oxygen.

B.2 Equipment

- Yellow Springs Instruments' dissolved oxygen meter
- Spare membranes
- Electrolyte solution
- Deionized water
- Sodium sulfite solution (zero O₂ solution)
- D.O. bottle (BOD bottle).

B.3 Procedure

- Inspect dissolved oxygen meter for damage. Inspect probe for sufficient electrolyte and to determine if oxygen sensor membrane is in good condition. Field Services will replace the membrane if torn or wrinkled. Inspect for air bubbles beneath the membrane. If bubbles are present, remove membrane and add electrolyte solution. Replace membrane so no air bubbles are entrapped.
- 2. Rinse probe with deionized water.
- 3. Calibrate probe and meter according to manufacturer's instruction.
- 4. Take a grab sample, using a D.O. bottle so it is filled without headspace, flush water by inserting tube into bottle or fill bottle while submerged. Insert probe into bottle, allow time for stabilization.
- 5. Read and record dissolved oxygen concentration.

B.1 Introduction

This guideline describes the procedure that will be used by Kennedy Jenks personnel during performance of field pH measurements.

B.2 Equipment

- Portable pH meter with potassium chloride (KCI) probe and temperature probe
- Extra KCI filling solution
- 50 ml plastic jar or other suitable container
- Squirt bottle and supply of deionized (DI) water
- pH 7, 10, and 4 buffer solutions.

B.3 Typical Procedures

- 1. Calibrate meter according to manufacturer's instructions. Prior to first measurement, check calibration against pH 7 buffer and again periodically over the course of the day, and recalibrate if the reading is more than 0.1 units from 7.
- 2. Use 50 ml plastic jar or other suitable containers for measurement readings. Rinse sample test container with sample water three times prior to measurement.
- 3. Immerse pH probe and temperature electrode in sample water. Gently stir sample for thorough mixing. Read and record pH to nearest 0.1 unit once pH reading has stabilized. Many pH meters possess an automatic feature which indicates final stabilized measurement.
- 4. Rinse or bathe pH and temperature probes with DI water or soak in DI water between measurements. Changing DI water bath between measurement stations increases accuracy of measurements.

B.4 Instrument Calibration - General Procedure

- 1. Calibrate pH meter in the field at the beginning of each day of field work and when the standard check is out of calibration.
- 2. Rinse pH and temperature probes in DI water.
- 3. Turn on meter and immerse pH and temperature probe in a pH 7 buffer solution. Calibrate meter to pH 7, allowing enough time for meter to stabilize.
- 4. Rinse pH and temperature probe with DI water.

- 5. Immerse pH and temperature probe in either a pH 4 or a pH 10 buffer solution, depending on whether expected pH of samples is above or below pH 7. If expected sample pH is above pH 7, use pH 10 solution for the second calibration. If expected sample pH is below pH 7, use pH 4 for the second calibration. Calibrate meter to second pH solution, allowing enough time for meter to stabilize.
- 6. Rinse pH and temperature probe with DI water.
- Perform occasional rechecking of meter calibration to pH 7 calibration solution during usage. Repeat the calibration process (Steps 2-4) if value for final pH check is more than 0.1 unit from pH 7.0.

B.5 Maintenance

- 1. Store meter in case with pH electrode immersed in a pH 7 buffer solution.
- 2. Inspect pH and temperature probes for cracks and scratches.
- 3. Inspect pH probe for containing adequate amount of KCl solution. If amount is low, refill as needed.
- 4. Carry spare batteries and screwdriver in the meter case.
- 5. Carry a copy of the instruction manual with meter.

Appendix B: Standard Operating Guideline SOG-9: Field Measurement of Redox Potential (EH)

B.1 Introduction

This guideline describes the procedures that will typically be used by Kennedy Jenks personnel during field measurement of redox potential (eH).

B.2 Equipment

- Portable pH meter capable of output in millivolts
- eH and KCI reference probe
- Quinhydrone
- pH 4, 7, and 10 buffers
- 125 ml plastic jars
- Deionized water

B.3 Procedure

- 1. Calibrate instrument in accordance with manufacturer's recommendations immediately prior to making measurements.
- 2. Rinse decontaminated glass beaker with approximately 50 ml of sample water three times.
- 3. Rinse eH electrode with deionized water.
- 4. Fill beaker with sample water, minimize aeration.
- 5. Turn on meter. Immerse electrode in sample and allow several minutes for the probe to equilibrate with the water. Obtain reading to nearest 10 mv. Use a consistent amount of time for reading to stabilize.
- 6. Record reading on standardized field forms or in the field book. Note any problems (e.g., erratic readings).
- 7. Rinse probe with deionized water and store according to manufacturer's directions.

B.4 References

Standard Method 2580, Standard Methods for the Examination of Water and Wastewater, 18th ed., APHA/AWWA/WEF 1992.

Appendix B: Standard Operating Guideline SOG-9: Field Measurement of Temperature and Specific Conductance

B.1 Introduction

This guideline provides procedures for measuring specific conductance and temperature using a Yellow Springs Instruments (YSI) conductivity meter.

B.2 Equipment

- YSI conductivity meter
- Standard conductivity solutions (1,000; 10,000 and 100,000 μmho/cm)
- Deionized water in squirt bottle
- Pint plastic jar
- Small brush

B.3 Field Procedures

This guideline describes the procedures that will typically be used by Kennedy Jenks personnel during performance of field temperature and specific conductance measurements.

- 1. Check red line and zero point on meter. Adjust meter needle to read zero in the off position using adjustment screw below needle. Adjust meter to red line in the red line position using the red-line knob. Replace batteries if meter will not adjust to the red line.
- 2. Rinse sample cup (500 ml plastic) beaker with sample water three times.
- 3. Fill sample cup with water sample.
- 4. Rinse conductivity probe with deionized water then with sample water and place probe in sample cup.
- 5. Submerge conductivity probe in sample so that flow cell holes are immersed. Pump probe up and down a few times to dislodge bubbles. Do not submerge to bottom, for this causes false high readings. Turn instrument on to highest scale multiplier and downscale to appropriate scale for sample reading. Multiply reading on scale by the correct multiplier from the dial and record to the nearest half-increment between marks. Turn function knob to the Temp position. Read sample temperature to the nearest 0.5 degrees C after temperature has equilibrated (about one minute).
- 6. Remove probe from sample and rinse with deionized water (soak).
- 7. Report conductivity and temperature so temperature correction can be applied if necessary.

B.4 Calibration of Conductivity Meter

The probe correction factor should be determined at the beginning and end of each sampling day as follows:

- 1. Check red line and zero point on meter and adjust if necessary.
- 2. Rinse probe with deionized water.
- 3. Calculate probe correction factor for each standard and average the two values. The probe correction factor is the ratio of the computed conductivity to the measured conductivity of the standard solution.

B.5 Monthly Calibration Procedure

- 1. Measure and graph the conductivity meter probe response to known standards throughout the range of response.
- 2. If a linear response is observed, two calibration standards can be used in the field.
- 3. If a nonlinear response is observed, more than two field calibration standards will be necessary in the field.

B.6 Maintenance

- 1. Store meter in case during transport. Immerse probe in deionized water for storage.
- 2. Check batteries before taking meter into the field. Carry spare batteries and deionized water for rinsing probe.
- 3. If meter readings are erratic, use a bottle brush and mild acid to clean holes in probe, otherwise, return meter and probe to factory for repair.

Appendix B: Standard Operating Guideline SOG-10: Collecting Field Duplicates

B.1 Introduction

Duplicate analysis is a measure of precision for all sources of variability in the field and the laboratory. Laboratory replicates attempt to eliminate all sources external of imprecision, so that the difference between field duplicates and laboratory replicates is the error introduced by field techniques.

B.2 Equipment

Any equipment needed to collect samples is required. Additional containers for duplicates are needed. A system for generating and tracking blind field duplicates (a permanent notebook).

B.2.1 Sources of Imprecision in the Field

- Sampling techniques.
- Actual inhomogeneity of samples.

B.2.2 Sources of Imprecision in the Laboratory

- Sample preparation how well mixed and measured out.
- Analysis inherent noise of analytical procedure.

B.2.3 Separating Precision Errors

Field duplicates vs. laboratory replicates:

- Try to segregate sources of variation from field and laboratory.
- Laboratory replicates are known by the analyst to be similar (possible unconscious bias).
- Field duplicates should be "blind" to the laboratory.
- Laboratory replicates are deliberately homogenized.
- Field duplicates may be spatially or temporally separated, but logically connected supposed to be same for some reason. For example:
 - o Collecting a waste stream at different times of day
 - Collecting solids from different areas of a drum

B.3 Typical Procedures

Field duplicates and laboratory replicates should be collected as follows.

B.3.1 Collecting Duplicates and Replicates for Solids:

- 1. Laboratory replicates should be collected:
 - a. From same area avoid obvious inhomogeneity.

- b. Fill one large container with enough sample for <u>triplicate</u> analysis (the lab does replicate and spike analysis).
- c. The analyst will remove large rocks, nuts and bolts, etc., and grind or screen the sample.
- 2. When collecting field duplicates:
 - a. You must be clear on what constitutes your definition of "all the same stuff."
 - b. If it is inhomogeneous, consider compositing in duplicate.
 - c. Make the sample truly "blind" to the laboratory by using:
 - 1) Field identification numbers that are similar to other samples.
 - 2) Do not mark both samples with exactly the same time.
 - 3) Keep track of what sample the duplicate is for; keep careful notes in a permanent notebook.

B.3.2 Collecting Duplicates and Replicates for Liquids

- 1. Laboratory replicates are actually collected in triplicates for spiking.
 - a. Liquid samples are often collected in separate containers and the analysts do not mix the contents before analysis since liquids are typically homogenous, and because the volume is difficult to work with.
 - b. Try to fill like containers from the same bailer pull, or the sample tap at the same time (e.g., line up and fill all VOC vials first, then all liters, etc.).
 - c. List all samples with same identification and time (or time period) to avoid confusion at sample log in. Mark chain-of-custody and analysis request to indicate these samples are for "Lab QC".
- 2. Field duplicates have the same considerations as for solids above.
 - a. You may want to use separate sampling equipment to prove there is no bias from contaminated device.
 - b. You may also want to collect the sample at a different time (re-purging wells is an option, or you may want to determine if time of sampling after purging has an effect).
 - c. Fill whole sets of containers for one sample, then fill duplicate set.
- 3. Spikes are rarely done in the field since there are too many potential sources of error to identify the reason for poor recoveries. But, consider using "travel spikes" for volatiles.

B.4 Interpretation of Results

- For laboratory replicates, there are two ways inhomogeneity can invalidate analysis: precision and accuracy can be affected.
 - There are statistically derived limits for laboratory replicates

industrial statistic =

$$[(A - B / A + B) * 100]$$

- This value describes inherent variability of analytical method.
- For field duplicates there are no control limits established, but if the industrial statistic is within laboratory limits, it is safe to assume the samples are essentially the same.

Significant variation does not necessarily invalidate a field effort, just the assumption that the particular samples are representing the same source. Control checks could be established for a large field sampling project.

- Finally, quality assurance data should be considered as a whole.
 - 1. Field blanks and laboratory blanks.
 - 2. Field duplicates and laboratory replicates.
 - 3. Laboratory replicates and laboratory spikes.

They are often helpful in pinpointing a problem. For example, if duplicates do not make sense and a travel blank is contaminated, the source of imprecision may be outside contamination.

Appendix B: Standard Operating Guideline SOG-11: Sample Packaging and Shipping

B.1 Introduction

This guideline presents methods for shipping non-hazardous materials, including most environmental samples via United Parcel Service (UPS), Federal Express, and Greyhound. Many local laboratories offer courier service as well.

B.2 Equipment

- Coolers or ice chests
- Sorbent material
- Bubble-wrap
- Strapping tape
- Labels and pens
- Chain-of-Custody forms
- Chain-of-Custody seals
- UPS, Federal Express, or Greyhound manifests

Samples shipped to each analytical laboratory can be sent by UPS or Federal Express on a nextday basis unless other arrangements are made. Greyhound bus service should only be used if there is direct service (e.g., Sacramento or Bakersfield to San Francisco). Ice chests, used to refrigerate perishable items, can be used to convey non-hazardous samples to the analytical laboratory.

Absorbent pads should be placed in the bottom of the shipping container to absorb liquids in the event of sample container breakage. Transportation regulations require absorbent capacity of the material to equal the amount of liquid being shipped; each pad absorbs approximately 1 quart of liquid. Liquid samples in glass jars or bottles should also be wrapped in plastic bubble wrap. A small amount of air space is desirable in filled plastic containers. This often prevents the cap of the container from coming off should the container undergo compression. Volatile organics analysis (VOA) vials should be packed in sponge holders. Additionally, exposure of filled VOA vials to other types of sample containers, by placement in the same shipping container, is not recommended. Various non-VOA sample containers are solvent-rinsed which may contaminate the VOA vials before or after sample collection. Therefore, a separate shipping container for VOA vials is recommended. An equal weight of ice substitute should be used to keep the samples below 4 degrees Centigrade for the duration of the shipment (up to 48 hours). Care in choosing a method of sample chilling should be observed so that the collected samples are not physically or chemically damaged. Re-usable blue ice blocks, block ice, ice cubes, or dry-ice are suitable for keeping samples chilled. Labels of samples may get wet. Use of waterproof pens and labels is desirable for identification of sample containers. Use of clear tape to cover each affixed sample label is helpful in ensuring sample identification. Strong adhesive tape should be used to band the coolers closed. Additionally, it is recommended that the drain plug be covered with adhesive tape to prevent any liquid from escaping.

Specific requirements for packaging materials may apply if the samples being shipped are known to be hazardous materials as defined in 49 CFR 171.8 (samples are not considered hazardous waste

and therefore manifest requirements do not apply). UPS holds shippers responsible for damage occurring in the event of accidents when a hazardous material is shipped as a non-hazardous material. Samples which obviously are hazardous materials should therefore be shipped as such, and samples which most likely are not hazardous materials should be shipped in coolers. Guidelines for shipping hazardous materials by UPS are provided in the *Guide for Shipping Hazardous Materials* available from UPS. Specific labels for shipping of hazardous materials are available.

Chain-of-custody documentation should accompany shipments of samples to the analytical laboratory. Often, the chain-of-custody document contains an analytical request section which may be completed following sample collection. Chronological listing of collected samples is desirable. A copy of the completed chain-of-custody form should be retained in the event that the original form is lost or destroyed.

It should be noted that samples retained by the analytical laboratory which are not chosen for analysis may be assessed a fee for disposal. Often a disposal fee is assigned to a sample, typically soil, that has been retained beyond standard analytical holding periods. Therefore, consultation with project management is recommended to determine which samples may be of interest. Contacting the selected analytical laboratory regarding disposal policies is also recommended. Arrangements may be made with the analytical laboratory for return of the unanalyzed samples for later disposal to the area of origin.

Introduction

This guideline describes field procedures typically followed by Kennedy Jenks personnel during the cleaning of sampling and monitoring equipment. Proper cleaning procedures minimize the potential for cross-contamination among sampling points on a single site or between separate sites.

Equipment

- Two or three containers (e.g., 5-gallon buckets, or 5- or 10-gallon plastic tubs) for dip rinsing, washing, and collection of rinse water.
- Two or three utility brushes or test tube brushes for removal of visible contamination. A test tube brush (or similar) can be stapled to the end of a dowel and used to clean the inside of a bailer.
- Non-phosphate Alconox, Liquinox, or trisodiumphosphate (TSP) to be mixed with potable or distilled water.
- Rinse solutions, such as methyl alcohol (methanol), dilute nitric acid (0.1 molar), deionized or distilled water, and/or tap water. Deionized water is preferable to distilled water because the deionization process typically results in greater removal of organic compounds as discussed below:
 - 1. Acid rinse (inorganic desorption) 10% nitric or hydrochloric acid solution reagent grade nitric or hydrochloric acid and deionized water (1% to be used for low carbon steel equipment).
 - 2. Solvent rinse (organic desorption isopropanol, acetone, or methanol; pesticide grade).
 - 3. Deionized water is preferable to distilled water because the deionization process typically results in greater removal of organic compounds.
- Multi-gallon storage containers filled with potable water to be used for rinsing or washing.
- Spray bottles, squirt bottles, or garden sprayers to apply rinse liquid. A separate bottle should be used for each liquid.
- Solvex or neoprene gloves that extend, as a minimum, halfway up the forearm. In cooler weather, it is advisable to use different resistant chemicals neoprene gloves that provide better insulation against cold temperatures.
- Paper towels to wipe off gross contamination.
- Garbage bags, or other plastic bags, and aluminum foil to wrap clean sampling equipment after cleaning, to store sampling equipment or and to dispose of cleaning debris.

- Sample bottles for rinsate blanks. For these blanks, Laboratory Type II (millipore) water should be used. Purified water from the selected analytical laboratory is recommended. This water is often filtered and boiled to remove impurities.
- DOT-approved container (e.g., 55-gallon drum) to store contaminated wash and rinse water. Contained cleaning should be labeled appropriately.
- Steamcleaner with power source and water supply.

Procedures

In most cases, the following procedures are adequate to remove contamination.

- 1. Preclean sampling equipment. If there is gross contamination on equipment, wipe it off with paper towels and/or rinse it off with water. Additional internal cleaning may be possible by circulation of water or cleaning solutions.
- 2. Wash all parts of equipment with detergent water and scrub with brushes. Take equipment apart when appropriate to remove visible contamination.
- 3. Steamclean sampling equipment. The steamcleaner is effective in removing contamination, especially volatile hydrocarbons. Steamcleaning is highly recommended in most cases and sometimes is the only method for cleaning equipment that is grossly contaminated with hydrocarbons.
- 4. Rinse equipment by dipping in rinse solution, spraying, or pouring solution over it. Dip rinsing can introduce contaminants into solution. Spraying might not allow a thorough rinsing of the equipment, but it is a more efficient rinsing method because less rinse solution is used. Appropriate rinsing solutions are specified in the project sampling and analysis plan. Some typical solutions are indicated in the equipment section of this SOG.
 - 1. Methanol (used to remove organic compounds)
 - 2. Dilute acids (used to remove metals and other cations)
 - 3. Tap water
 - 4. Deionized/distilled water.
- 5. Rinse the sampler with generous amounts of deionized water. Pouring water over the sampler is best, although spraying or using a squirt bottle to apply rinse water might be adequate if you are trying to minimize waste.
- 6. Prepare rinsate blanks. To ensure proper cleaning, submit a rinsate blank for analysis. It is best to do this just before sampling. The blank should be analyzed for the same chemicals the samples are being checked for and for the chemical used to clean equipment, if appropriate.

[Note: The heading for this section indicates procedures to remove contamination.]

To prepare a rinsate blank, pour millipore analyte-free water through or over the into the sampler. Collect the rinsate water in a clean bottle. Pour the collected rinsate water into the

appropriate sample container(s). It is advisable to prepare one rinsate blank every day in the field. Use water specifically for blank preparation.

- 7. Wipe sampling equipment with a paper towel or allow it to air dry.
- 8. Place samplers in clean plastic bags or sealed containers, or wrap them in aluminum foil for storage in an undisturbed location that is free of contamination.

Investigation-Derived Residuals

For details of handling investigation-derived residuals, refer to the project sampling and analysis plan.

Special Notes

- To reduce the potential for cross-contamination, samples should be collected so that the least contaminated stations areas are sampled first. Subsequent sampling should be completed in the order of increasing contamination. Areas that typically have lower levels of contamination include those upgradient of source, background areas, and the periphery of the contaminated area.
- Prepare rinsate blanks. To ensure proper cleaning, submit a rinsate blank for analysis. It is best to do this just before sampling. The blank should be analyzed for the same chemicals the samples are being checked for and for the chemical used to clean equipment, if appropriate.
- To prepare a rinsate blank, pour analyte-free water through or into the sampler. Pour the collected rinsate water into the appropriate sample container(s). It is advisable to prepare one rinsate blank every day in the field. Use water specifically for blank preparation.
- Monitoring instruments that come into contact with sampled materials must be cleaned, along with sampling devices. They should be washed, or at least rinsed before monitoring other sampling sites.
- As determined from analysis of rinsate blanks, cleaning using soap and water is adequate in removing detectable quantities of contaminants. This type of cleaning has been compared to laboratory procedures for cleaning sampling bottles. Using methanol as a rinse does help in cases of contamination with organic compounds.

References

- U.S. Environmental Protection Agency. 1987. *Handbook: Groundwater*. U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio.
- Washington Department of Ecology. 1982. *Methods for Obtaining Waste Samples*. Ch. 173-303 WAC. Washington State Department of Ecology, Olympia, Washington.

B.1 Introduction

This guideline describes field procedures typically followed by Kennedy Jenks for personnel cleaning. Cleaning of personnel is critical to health and safety during and after environmental fieldwork. It protects personnel from hazardous substances that can contaminate and eventually permeate protective clothing, respiratory equipment, tools, vehicles, and other equipment used onsite. Cleaning reduces exposure of site personnel to such substances by minimizing the transfer of harmful materials into clean areas and preventing the mixing of incompatible chemicals. It also protects the community by preventing uncontrolled transportation of contaminants from the site.

B.2 Equipment

The materials, equipment, and facilities described in the following list are not required in every case of personnel cleaning. However, they represent all that might be required for sites where maximum cleaning procedures are necessary.

- Drop cloths (plastic or other suitable material) on which heavily contaminated equipment and outer protective clothing can be deposited.
- Collection containers, such as drums or suitably lined trash cans, for storing disposable clothing, heavily contaminated personal protective clothing, or equipment that must be discarded.
- Lined box with absorbent for wiping or rinsing off gross contaminants and liquid contaminants.
- Large tubs to hold wash and rinse solutions; tubs should be at least large enough to hold a worker's booted foot and allow full access for washing.
- Non-phosphate wash solutions (e.g., Alconox, Liquinox) to wash off debris and chemicals and reduce hazards associated with any contaminants.
- Rinse solutions (e.g., potable or distilled water) to remove contaminants and contaminated wash solutions.
- Long-handled soft-bristled brushes to wash and rinse off contaminants.
- Paper or cloth towels for drying protective clothing and equipment.
- Lockers or containers for storage of cleaned non-disposable clothing (e.g., hard hat, boots) and equipment.
- Department of Transportation (DOT)-approved containers for contaminated wash and rinse solutions.
- Plastic sheeting, sealed pads with drains, or other appropriate means of secondary containment of contaminated wash and rinse solutions that might be spilled during cleaning.

- Shower facilities for full body wash or, at a minimum, wash sinks available to personnel.
- Soap or wash solution, wash cloths, and towels for personnel.
- Lockers or containers for clean clothing and personal item storage.

B.3 Cleaning Procedures

B.3.1 Level C

At a minimum, the following procedures apply when operating in a Level C exclusion zone:

- 1. Deposit items used onsite on plastic drop cloth. Segregation at the drop site reduces the probability of cross-contamination.
- 2. Scrub outer boots, gloves, and splash suit with cleaning solution or detergent water. Rinse items with generous amounts of water. Follow this step scrupulously for protective clothing that is not disposable.
- 3. Remove outer boots and gloves; deposit or discard them in container with plastic liner.
- 4. To continue cleaning outside the exclusion zone, change canister or mask when leaving the zone. Upon re-entering, remember to gear up again.
- 5. Remove boots, chemical-resistant splash suit, and inner gloves and deposit them in separate containers lined with plastic.
- 6. Remove respirator by taking off facepiece. Avoid touching the face with the fingers. Deposit the facepiece on a plastic sheet.
- 7. As a field wash, clean hands and face thoroughly and shower as soon as possible. Wash respirator facepiece with respirator cleaning solution.
- 8. Ensure that all cleaning procedures are in accordance with the project sampling and analysis plan and Kennedy Jenks Standard Operating Guideline, Investigation-Derived Residuals (Unit 9.0).

B.3.2 Level D

If operating in a Level D area, perform the following procedures before leaving the site:

- 1. Wash and rinse all reusable equipment and garments. If gear is to be used elsewhere, wash it with detergent and then rinse with generous amounts of water.
- 2. If grossly contaminated, discard disposable protective clothing in appropriate container.
- 3. Wash hands and face thoroughly, and shower as soon as possible.

B.4 Special Notes

When working in an exclusion zone, be sure that the cleaning area is placed in an upwind direction (plus or minus 20 degrees) from the site.

B.5 Investigation-Derived Wastes

Refer to the specific project sampling and analysis plan for details of disposition of investigationderived wastes.

B.6 Emergency Cleaning Procedures

- 1. If the cleaning procedure is essential to the lifesaving process, cleaning must be performed immediately.
- 2. If a heat-related illness develops, protective clothing should be removed as soon as possible. Protective clothing and equipment should be washed, rinsed, and/or cut off.
- 3. If medical treatment is required to save a life, cleaning should be delayed until the victim is stabilized or until cleaning will not interfere with medical treatment.
- 4. Dispose of contaminated clothing and equipment properly.
- 5. Alert medical personnel to the emergency.
- 6. Instruct medical personnel about potential contamination.
- 7. Instruct medical personnel about specific cleaning procedures.

B.7 References

- NIOSH/OSHA/USCG/EPA. 1985. Occupational Safety and Health Guidance Manual for Hazardous Waste Site Activities. Washington, DC. Federal Way.
- U.S. Environmental Protection Agency. 1988. *Standard Operating Safety Guidelines*. United States Environmental Protection Agency, Office of Emergency and Remedial Response, Washington, DC.

Appendix B. Standard Operating Guideline SOG-14: Handling and Disposal of Investigation-Derived Waste

B.1 Introduction

Environmental site investigations usually result in generation of some regulated waste, particularly if the project involves drilling and construction of monitoring wells. Any potentially hazardous or dangerous material that is generated during a site investigation must be handled and disposed of in accordance with applicable regulations (22 CCR, Chapter 30). This guideline provides a procedure to be used for dealing with investigation-derived wastes that have the potential of being classified as hazardous or dangerous, including soil cuttings, well development water, and decontamination water.

B.2 Equipment

- DOT-approved packaging (typically DOT 17E or 17H drums)
- Funnel
- Bushing wrench
- 15/16-inch socket wrench
- Shovel
- Appropriate markers (spray paint, paint pen)
- Plastic sheeting
- Drip pans
- Pallets

B.3 Typical Procedures

B.3.1 Preparing Containers

- 1. Place each container on a pallet if it is to be moved with a fork lift after it is full.
- 2. Place plastic sheeting under containers for soil and drip pans under containers used to hold water.
- 3. Ensure that packaging materials are compatible with the wastes to be stored in them. Bung-type drums should be used to contain liquids. If a liquid is corrosive, a plastic or polymer drum should be used.
- 4. Solids should be placed in open-top drums. Liners are placed in the drums if the solid material is corrosive or contains free liquids. Gaskets are also used on open-top drums.

B.3.2 Storing Wastes

- 1. As waste materials are generated, place them directly into storage containers.
- 2. Do not fill storage drums completely. Provide sufficient outage so that the containers will not be overfull if their contents expand.

- 3. After filling a storage drum, seal it securely, using a bung wrench or socket wrench, for a bungtype or open-top drum, respectively.
- 4. Label drums or other packages containing hazardous or dangerous materials and mark them for storage or shipment. To comply with marking and labeling requirements, affix a properly filled out yellow hazardous waste marker and a DOT hazard class label to each waste container. Do not mark drums with Kennedy Jenks' name. All waste belongs to the client. Mark accumulation start date.
- 5. During an ongoing investigation, use a paint marker to mark the contents, station number, date, and quantity of material on each drum or other container. Do not mix investigation-derived wastes with one another or with other materials. <u>Do not</u> place items such as Tyvek, gloves, equipment, or trash into drums containing soils or liquids, and <u>do not</u> mix water and soil. Disposable protective clothing, trash, soil, and water materials should be disposed of in separate containers.
- 6. Upon completion of field work, or the portion of the project that generates wastes, notify the client as to the location, number, contents, and waste type of waste containers. Remind the client of the obligation to dispose of wastes in a timely manner and in accordance with applicable regulations.

B.4 Regulations

- 22 CCR, Chapter 30 California Hazardous Waste Regulations.
- 49 CFR 100-177, Federal Transportation of Hazardous Materials Regulations.
- EPA Region X, Technical Assistance Team. 1984. *Manual for Sampling, Packaging, and Shipping Hazardous Materials*. Seattle, WA: EPA.

Appendix B

Previous Investigation Environmental Data Tables

											TPH						То	tal Meta	s					
							Total	Total																
				_			Dissolved	Organic	Oil &								_							
OA	Sample ID	Sample Date	рН	Temperature	Turbidity	Conductivity	Solids	Carbon	Grease	GRO	DRO	ORO	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Silver	Selenium	Zinc	Ammonia /
2004 0:1		Units		٦F	NIU	umhos/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	μg/L	µg/L	μg/L	µg/L	mg/L
2004 OII :	Spill at woodmill Demolition Site (a)	2/10/2004	7.4	NA	2	NIA	NIA	NIA	NIA	NIA	NIA	NLA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NLA	NIA
A1	Woodmill Creek	2/10/2004	7.4	NA	Z	NA	NA	NA	NA ZE	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1 	Woodmill Creek	2/11/2004	7.7	NA	4	NA	NA	NA	< <u>5</u>	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Δ1	Woodmill Creek	2/12/2004	7.2	NA	4 Q	NA	ΝA	ΝA	<5 NA	ΝA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΑ	NA
Δ1	Woodmill Creek	2/15/2004	68	NA	11	NA	NΔ	NΔ	<5	ΝΔ	ΝA	NA	NA	NΔ	NA	ΝA	NA	NΔ	NA	NA	NA	NΔ	NΔ	NΔ
Δ1	Woodmill Creek	2/17/2004	7.4	NA	10	NA	NA	ΝA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NΔ	ΝA
A1	Woodmill Creek	2/18/2004	7.4	NA	13	NA	NΔ	NΔ	<5	ΝΔ	NΔ	NA	NA	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NA	NA	NΔ	NΔ	NΔ
A1	Woodmill Creek	2/19/2004	7.5	NA	4	NA	NΔ	NΔ	NA	ΝΔ	NΔ	NA	NA	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NA	NΔ	NΔ	NΔ
A1	Woodmill Creek	2/20/2004	73	NA	4	NA	NA	NA	<5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	2/23/2004	7.5	NA	4	NA	NA	NA	<5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	2/24/2004	7.2	NA	24	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	2/25/2004	7.1	NA	16	NA	NA	NA	<5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	2/26/2004	7	NA	23	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	2/27/2004	7	NA	23	NA	NA	NA	<5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	4/1/2004	8.5	NA	3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	4/2/2004	8.6	NA	3	NA	NA	NA	<5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	4/22/2004	8	NA	7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2012 Bla	ck Liquor Release from No. 4 Swing 1	rank																						
B1	B-1	5/22/2012	DRY	NA	NA	DRY	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B1	B-2	5/22/2012	8.77	NA	NA	1110	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B1	B-3	5/22/2012	8.15	NA	NA	650	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2015 Bla	ck Liquor Basement Release																							
B1	B-1	5/22/2012	8.16	46	NA	1270	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B1	B-2	5/22/2012	8.41	49	NA	1930	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B1	B-3	5/22/2012	8.28	46	NA	1230	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2015 Wo	odmill Hydrocarbon Investigation by	/ Arcadis																						
A1	B1	10/8/2015	NA	NA	NA	NA	NA	NA	NA	0.07	1.2	3.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	B2	10/8/2015	NA	NA	NA	NA	NA	NA	NA	<0.05	0.58	0.93	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Δ1										<0.05 /	0.34 /	0.3 /												
	B3	10/8/2015	NA	NA	NA	NA	NA	NA	NA	<0.05	0.35	0.28	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	B4	10/8/2015	NA	NA	NA	NA	NA	NA	NA	<0.05	0.48	0.53	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	B5	10/8/2015	NA	NA	NA	NA	NA	NA	NA	0.063	0.27	<0.28	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2018 Util	ity Pole Installation Petroleum Hydr	ocarbon Discovery																						
C3	Telpole-20181026	10/26/2018		NA	NA	NA	NA	NA	NA	< 0.25	2.5	2.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1996 Lad	y Island Seep Analysis																							
D1	Acid Ditch	8/15/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	388	< 50	22	33	< 50	NA	< 20	< 10	NA	470	NA
D1	Acid Ditch	9/30/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	380	< 50	8	15	< 50	NA	< 20	< 10	NA	109	NA
D1	Clarifier Outlet	8/15/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	24	< 50	< 5	13	< 50	NA	< 20	< 10	NA	25	NA
D1	Clarifier Outlet	9/30/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	39	< 50	< 5	< 10	< 50	NA	< 20	< 10	NA	22	NA
D1	East Seep	9/30/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	354	< 50	< 5	< 10	< 50	NA	< 20	< 10	NA	< 10	NA
D1	West Seep	9/30/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	701	< 50	< 5	< 10	< 50	NA	< 20	< 10	NA	< 20	NA

																	VO	Cs				
													1,1,1,2-	1,1,1-	1,1,2,2-	1,1,2-	1,1-	1,1-	1,1-	1,2,3-	1,2,3-	1,2,4-
													Tetrachlor	Trichloroe	Tetrachlor	Trichloroe	Dichloroe	Dichloroe	Dichlorop	Trichlorob	Trichlorop	 Trichlorob
OA	Sample ID	Sample Date	Boron	Calcium	Chloride	Iron	Magnesium	Manganese	Nitrate	Potassium	Sodium	Sulfate	oethane	hane	oethane	thane	thane	thene	ropene	enzene	ropane	enzene
		Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	µg/L	µg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
2004 Oil	Spill at Woodmill Demolition Site (a)	2/12/2021																				
A1	Woodmill Creek	2/10/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	2/11/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	2/12/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	2/13/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	2/16/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
A1 	Woodmill Creek	2/17/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1 A1	Woodmill Creek	2/18/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Δ1	Woodmill Creek	2/19/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Δ1	Woodmill Creek	2/20/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	2/23/2004	NA	NΔ	NΔ	NΔ	NA	NA	NΔ	NA	NΔ	NΔ	ΝΔ	NΔ	NΔ	NΔ	NΔ	ΝΔ	NΔ	ΝΔ	NA	NA
A1	Woodmill Creek	2/25/2004	NA	NΔ	NΔ	NΔ	NA	NA	NΔ	NA	NΔ	NΔ	ΝΔ	NΔ	NΔ	NΔ	NΔ	ΝΔ	NΔ	ΝΔ	NA	NA
A1	Woodmill Creek	2/25/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	2/27/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	4/1/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	4/2/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	4/22/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2012 Bla	ack Liquor Release from No. 4 Swing Ta	ink																				
B1	B-1	5/22/2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B1	B-2	5/22/2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B1	В-3	5/22/2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2015 Bla	ack Liquor Basement Release																					
B1	B-1	5/22/2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B1	B-2	5/22/2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B1	B-3	5/22/2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2015 W	oodmill Hydrocarbon Investigation by A	Arcadis																				
A1	B1	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	B2	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1																						
	B3	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
<u>A1</u>	B4	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	B5	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2018 Ut	Talvala 20101020	carbon Discovery	D L A	NLA	NLA	NLA	NIA	NIA	NLA	NIA	NLA	NLA	NLA	NLA	NIA	NLA	NI A		NLA	N	NI A	NIA
1000 100	Telpole-20181026	10/26/2018	NA	NA	NA	NA	NA	INA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1330 F30		Q/1E/1006	NIA	211	NIA	2 4	CA.	2.01	NIA	NIA	626	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA
D1		0/20/1006	NA	211	NA	3.4	104	2.91	NA	NA	020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	Clarifier Outlet	8/15/100C	NA	215	NA	1./9	±04 c	1.3/	NA	NA NA	10/	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA
D1		0/20/1006	NA	214	NA	0.2	7 55	0.00	NA	NA NA	104 85 3	NA	NA	NA	NIA	NA	NA	NA	NA	NA	NA	NA
D1	Fast Seen	9/30/1990	NA	198	NA	70 5	65 1	8 67	NA	ΝΔ	82 5	ΝA	ΝA	ΝA	NΔ	NΔ	NΔ	NA	NΔ	NA	NA	NA
D1	West Seen	9/30/1996	NA	297	NΔ	112	1/12	3 08	ΝA	ΝΔ	52.6	ΝA	NA	NA	NΔ	NΔ	NΔ	NA	ΝA	NA	NA	NIA
	west seep	5/ 50/ 1990	11/71	231	1 N/~\	110	140	5.00	1 11/71	11/71	52.0	1 1/71	11/71	11/71	1.1/21	1474	1 1/71	1474	1 11/71	1 1/71	11/11	11/71

													VOCs										
				1,2-																			
				Dibromo-													4-Methyl-						
			1,2,4-	3-	1,2-	1,2-	1,2-	1,3,5-	1,3-	1,4-	2,2-		2-		4-	4-	2-					Bromochl	Bromodic
			Trimethyl	chloropro	Dichlorob	Dichloroe	Dichlorop	r Trimethyl	Dichloropr	Dichlorobe	Dichloropr	2-	Chlorotol	2-	isopropylt	Chlorotol	pentanon		Acrylonitri		Bromober	n orometha	hloromet
OA	Sample ID	Sample Date	benzene	pane	enzene	thane	opane	benzene	opane	nzene	opane	Butanone	uene	Hexanone	oluene	uene	е	Acetone	le	Benzene	zene	ne	hane
		Units	s μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
2004 Oil	Spill at Woodmill Demolition Site (a)																						
A1	Woodmill Creek	2/10/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	2/11/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	2/12/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	2/13/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	2/16/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
<u>A1</u>	Woodmill Creek	2/17/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	2/18/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	2/19/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	2/20/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1 	Woodmill Creek	2/23/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1 	Woodmill Crock	2/24/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Δ1	Woodmill Creek	2/25/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Δ1	Woodmill Creek	2/20/2004	ΝA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ΝA	NA	NA	NA	NA	ΝA	NA	NA	NA	NA	NA
Δ1	Woodmill Creek	4/1/2004	NΔ	ΝΔ	ΝA	ΝΔ	ΝΔ	NA	NΔ	ΝA	ΝΔ	NΔ	NΔ	NΔ	NA	NΔ	NΔ	NΔ	NΔ	NΔ	ΝA	ΝA	ΝΔ
A1	Woodmill Creek	4/2/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	4/22/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2012 Bla	ck Liquor Release from No. 4 Swing Tar	nk																					
B1	B-1	5/22/2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B1	B-2	5/22/2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B1	B-3	5/22/2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2015 Bla	ck Liquor Basement Release																						
B1	B-1	5/22/2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B1	B-2	5/22/2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B1	В-3	5/22/2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2015 Wo	odmill Hydrocarbon Investigation by A	rcadis																					
A1	B1	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	B2	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1																							
	B3	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	B4	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	B5	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2018 Util	Ity Pole Installation Petroleum Hydroca	arbon Discovery	NI A	NLA	NLA	NLA	NLA	NLA	NLA	NLA	NLA	NLA	NLA.	NLA	NLA	NLA	NLA	NLA	NLA	12.0	NLA	NLA	NLA
1000 Lod	Telpole-20181026	10/26/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 3.0	NA	NA	NA
1990 Lad	Acid Ditch	8/15/1006	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NA	NIA	NA	NA	NA	NIA	NIA	NIA	NIA
D1	Acid Ditch	0/30/1006	NIA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
D1	Clarifier Outlet	8/15/1006	NΔ	NΔ	NΔ	NΔ	ΝA	NA	NΔ	NΔ	NΔ	NΔ	NΔ	ΝΔ	NΔ	NΔ	NΔ	NΔ	NA	NΔ	ΝA	NA	NΔ
D1	Clarifier Outlet	9/30/1996	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ
D1	Fast Seen	9/30/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	West Seep	9/30/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
51		5/ 50/ 1550	1.1/~1	14/74	14/74	14/74	11/7	11/71	1.1/7	11/7	14/74	14/7	14/7	14/7	1.4/73	14/74	1.1/7	11/71	11/71	11/7	1 1/71	11/7	11/7

													VOCs										
						Carbon					cis-1,2-	cis-1,3-	Dibromoc		Dichlorodi		Hexachlor		Methyl			n-	
			Bromofor	Bromome	Carbon	tetrachlor	Chlorobe	Chloroeth	Chlorofor	Chlorome	Dichloroe	Dichlorop	r hlorometh	Dibromo	fluoromet	Ethylben	z obutadien	Isopropyl	tert-butyl	Methylen	Naphthal	Butylbenz	n-Propyl
OA	Sample ID	Sample Date	m	thane	Disulfide	ide	nzene	ane	m	thane	thene	opene	ane	methane	hane	ene	е	benzene	ether	e Chloride	ene	ene	benzene
		Units	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
2004 Oi	Spill at Woodmill Demolition Site (a)																						
A1	Woodmill Creek	2/10/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	2/11/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	2/12/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	2/13/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
<u>A1</u>	Woodmill Creek	2/16/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	2/17/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	2/18/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	2/19/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	2/20/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	2/23/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1 	Woodmill Creek	2/24/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Δ1	Woodmill Creek	2/25/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
<u>A1</u>	Woodmill Creek	2/20/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Δ1	Woodmill Creek	4/1/2004	ΝΔ	ΝA	NΔ	NΔ	NA	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	ΝΔ	NΔ	NA	NA	NΔ	NA	ΝΔ
Δ1	Woodmill Creek	4/2/2004	ΝΔ	NA	NΔ	NΔ	NA	NΔ	NΔ	NΔ	NΔ	ΝΔ	NΔ	NΔ	NΔ	NΔ	ΝΔ	NΔ	NA	NA	NΔ	NA	ΝΔ
A1	Woodmill Creek	4/22/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2012 Bla	ack Liquor Release from No. 4 Swing Tan	k			1 07 1		1.0.1																
B1	B-1	5/22/2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B1	B-2	5/22/2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B1	B-3	5/22/2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2015 Bla	ack Liquor Basement Release																						
B1	B-1	5/22/2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B1	B-2	5/22/2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B1	В-3	5/22/2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2015 W	oodmill Hydrocarbon Investigation by Ar	rcadis																					
A1	B1	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	B2	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1																							
	B3	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	B4	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	B5	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2018 Ut	ility Pole Installation Petroleum Hydroca	arbon Discovery																					
<u>C3</u>	Telpole-20181026	10/26/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 3.0	NA	NA	NA	NA	<4.0	NA	NA
1996 La	dy Island Seep Analysis	0/15/1000	NLA	NLA	NLA	NLA	NLA	NIA	NLO.	NLA	NIA	NLA	NI A	NLA.	NLA	NLA	NLA	NLA	NLA	NLA	NLA	NIA	NI A
		8/15/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		3/30/1990	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		0/20/1006	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
	Fact Seen	9/30/1990	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA
	West Seen	9/30/1990	NA	NA	NIA	NIA	NIA	NIA	NIA	NA	NIA	NA	NIA	NIA	NIA	NIA	NA	NA	NIA	NIA	ΝA	NIA	NA
	west seeh	9/ 50/ 1990	IN/A	IN/A	INA	IN/A	IN/A	1 MPA	INH	NA	IN/A	INA	IN PA	1 V PA	INA	INPA	INA	INA	IN/A	N/A	IN/A	IN/A	INA

									VOCs										PA	Hs			
			sec-	tert-			trans-1,2-	trans-1,3-		Trichlorofl	Trichloro	m-Xylene									Benzo(b)	Benzo(a,h	Benzo(k)
			Butylbenz	Butylbenz	Tetrachlor		Dichloroe	Dichlorop	Trichloroe	e uorometh	trifluoroet	& p-			Vinyl	Acenapht	Acenapht	Anthracen	Benzo(a)a	Benzo(a)	Fluoranth	,i)perylen	Fluoranth
OA	Sample ID	Sample Date	ene	ene	oethene	Toluene	thene	ropene	thene	ane	hane	Xylene	o-Xylene	Styrene	chloride	hene	hylene	е	nthracene	Pyrene	ene	е	ene
		Units	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	µg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
2004 Oil	Spill at Woodmill Demolition Site (a)																						
A1	Woodmill Creek	2/10/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	2/11/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	2/12/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	2/13/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	2/16/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	2/17/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	2/18/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	2/19/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	2/20/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AI	Woodmill Creek	2/23/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	2/24/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	2/25/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	2/20/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	Woodmill Creek	2/2//2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1 	Woodmill Creek	4/1/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Δ1	Woodmill Creek	4/22/2004	NΔ	NΔ	ΝΔ	NΔ	NA	ΝΔ	NA	NA	NA	NΔ	NA	NΔ	ΝA	NA	NΔ	NΔ	ΝΔ	NΔ	NA	NΔ	NA
2012 Bla	ck Liquor Release from No. 4 Swing Tan			N/A	11/5	N/A	11/3	11/7	N/A	11/7	N/A	N/A	11/7	N/A	N/A	N/A	N/A	n/A	11/1	N/A	INA	N/A	N/A
B1	B-1	5/22/2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B1	B-2	5/22/2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B1	B-3	5/22/2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2015 Bla	ck Liguor Basement Release	-, , -																					
B1	B-1	5/22/2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B1	B-2	5/22/2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B1	B-3	5/22/2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2015 Wo	odmill Hydrocarbon Investigation by A	rcadis																					
A1	B1	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.044	<0.021	<0.021	<0.021	<0.021	<0.021	<0.021	<0.021
A1	B2	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
۸1																<0.020 /	<0.020/	<0.020/	<0.020/	<0.020/	<0.020/	<0.020/	<0.020/
A1	B3	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.021	<0.021	<0.021	<0.021	<0.021	<0.021	<0.021	<0.021
A1	B4	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.021	<0.021	<0.021	<0.021	<0.021	<0.021	<0.021	<0.021
A1	B5	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.069	<0.021	<0.021	<0.021	<0.021	<0.021	<0.021	<0.021
2018 Uti	lity Pole Installation Petroleum Hydroca	arbon Discovery																					
C3	Telpole-20181026	10/26/2018	NA	NA	NA	<2.0	NA	NA	NA	NA	NA	< 3.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1996 Lac	y Island Seep Analysis																						
D1	Acid Ditch	8/15/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	Acid Ditch	9/30/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	Clarifier Outlet	8/15/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	Clarifier Outlet	9/30/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	East Seep	9/30/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	west Seep	9/30/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Partial Sector Like									PAHs						PCBs			
DASample DiaSymple DiaOptimal Pice					Dibenzo(a ,h)anthrac	Fluorant		Indeno(1 ,2,3- cd)pyren	Total Naphthal	Naphthal	Phenant		1- Methyln aphthale	2- Methyln aohthale		Bicarbonate (as CaCO3)	Biochemical Oxygen Demand	Chemical Oxygen Demand
bit big/h b	OA	Sample ID	Sample Date	Chrysene	ene	hene	Fluorene	е	ene	ene	hrene	Pyrene	ne	ne	PCBs	(mg/L)	(mg/L)	(mg/L)
2020 01 30 Visional Visional Creek 21/1/2001 NA			Units	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	mg/L	mg/L	mg/L
AL Woodmill Creek 21/0/204 NA NA <th< td=""><td>2004 Oil</td><td>Spill at Woodmill Demolition Site (a)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	2004 Oil	Spill at Woodmill Demolition Site (a)																
Al Woodmil Creek 2/12/2064 HA NA NA <th< td=""><td>A1</td><td>Woodmill Creek</td><td>2/10/2004</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></th<>	A1	Woodmill Creek	2/10/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1 Woodmill Creek 2/12/2004 HA NA NA <t< td=""><td>A1</td><td>Woodmill Creek</td><td>2/11/2004</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></t<>	A1	Woodmill Creek	2/11/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1 Woodmil Creek 2/13/2004 NA NA <th< td=""><td>A1</td><td>Woodmill Creek</td><td>2/12/2004</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></th<>	A1	Woodmill Creek	2/12/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Al Woodmill Creek 2/16/2004 NA NA <t< td=""><td>A1</td><td>Woodmill Creek</td><td>2/13/2004</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></t<>	A1	Woodmill Creek	2/13/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
All Woodmill Creek 2/17/2004 NA <	A1	Woodmill Creek	2/16/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1 Woodmill Creek 2/18/2004 NA NA <t< td=""><td>A1</td><td>Woodmill Creek</td><td>2/17/2004</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></t<>	A1	Woodmill Creek	2/17/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
All Woodmill Creek 2/19/2004 NA <	A1	Woodmill Creek	2/18/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
All Woodmill Creek 2/20/204 NA NA <t< td=""><td>A1</td><td>Woodmill Creek</td><td>2/19/2004</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></t<>	A1	Woodmill Creek	2/19/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
All Woodmill Creek 2/23/2044 NA <	A1	Woodmill Creek	2/20/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Al. Woodmill Creek 2/24/204 NA NA <t< td=""><td>A1</td><td>Woodmill Creek</td><td>2/23/2004</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></t<>	A1	Woodmill Creek	2/23/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
All Woodmill Creek 2/23/2004 NA NA<	A1	Woodmill Creek	2/24/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
All Woodmill Creek 2/26/2004 NA <	A1	Woodmill Creek	2/25/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1 Woodmill Creek 2/2//2004 NA NA <t< td=""><td>A1</td><td>Woodmill Creek</td><td>2/26/2004</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></t<>	A1	Woodmill Creek	2/26/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1 Woodmill Creek 4/1/2004 NA NA <th< td=""><td>A1</td><td>Woodmill Creek</td><td>2/2//2004</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></th<>	A1	Woodmill Creek	2/2//2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1 W00dmill Creek 4/22/2004 NA NA <t< td=""><td>A1</td><td>Woodmill Creek</td><td>4/1/2004</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></t<>	A1	Woodmill Creek	4/1/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1 Woodmin Urble Feel I/A <	A1	Woodmill Creek	4/2/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2012 black tiquor Release from No. 4 SWing Tank NA	A1	woodmill Creek	4/22/2004	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B1 B-2 5/22/2012 NA	ZUIZ DIA	CK Liquor Release from No. 4 Swing Tai	E /22 /2012	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NLA	NIA	NIA
B1 B-3 5/22/2012 NA		B-1 P-2	5/22/2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1 D3 D/2/2/2012 NA		D-2	5/22/2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Bit B-1 5/22/2012 NA	2015 Bla	ck Liquor Basement Pelease	5/22/2012	NA	NA	NA	NA	NA	NA	NA	INA	INA	NA	NA	NA	NA	NA	NA
D1 D12 D12 D12 D12 D13 D14 D14 <thd14< th=""> <thd14< th=""> <thd14< th=""></thd14<></thd14<></thd14<>	R1	B-1	5/22/2012	NΔ	ΝΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NA	NΔ	NΔ
D12 D12 D12 D12 D13 D14 D14 <thd14< th=""> <thd14< th=""> <thd14< th=""></thd14<></thd14<></thd14<>	 B1	B-2	5/22/2012	ΝΔ	NΔ	ΝΔ	ΝΔ	ΝΔ	ΝA	NΔ	NΔ	NΔ	ΝΔ	NΔ	ΝΔ	NA	NA	NA
2015 Woodmill Hydrocarbon Investigation by Arcadis NA	B1	B-3	5/22/2012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1 B1 10/8/2015 <0.021 <0.021 <0.021 0.08 <0.021 1.463 0.028 0.041 <0.021 1.4 0.035 NA	2015 Wo	odmill Hydrocarbon Investigation by A	rcadis	1 1 7 7	147.4	1474	1 17 1	1 17 1	1474	1473	1473	1 1/1	1473	147.4	1473	147 1	1 177	11/1
A1 B2 10/8/2015 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.020 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021	A1	B1	10/8/2015	<0.021	<0.021	<0.021	0.08	<0.021	1.463	0.028	0.041	<0.021	1.4	0.035	NA	NA	NA	NA
A1 B3 10/8/2015 <0.020 / <0.020 / <0.020 / <0.020 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.021 / <0.021 <0.02	A1	B2	10/8/2015	<0.020	<0.020	<0.020	<0.020	<0.020	0.042	0.022	<0.020	<0.020	<0.020	<0.020	NA	NA	NA	NA
A1 B3 10/8/2015 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021				<0.020 /	<0.020 /	<0.020 /	<0.020 /	<0.020 /	0.063 /	0.043 /	0.021 /	<0.020 /	<0.020 /	<0.020 /				
A1 B4 10/8/2015 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021 <0.021	A1	В3	10/8/2015	<0.021	<0.021	<0.021	<0.021	<0.021	0.102	0.078	0.029	<0.021	<0.021	<0.027	NA	NA	NA	NA
A1 B5 10/8/2015 <0.021 <0.021 <0.021 0.805 0.035 0.024 <0.021 0.49 0.28 NA NA NA NA 2018 Utility Pole Installation Petroleum Hydrocarbon Discovery C3 Telpole-20181026 10/26/2018 NA NA <td>A1</td> <td>B4</td> <td>10/8/2015</td> <td><0.021</td> <td><0.021</td> <td><0.021</td> <td><0.021</td> <td><0.021</td> <td>0.035</td> <td><0.021</td> <td><0.021</td> <td><0.021</td> <td><0.021</td> <td><0.028</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td>	A1	B4	10/8/2015	<0.021	<0.021	<0.021	<0.021	<0.021	0.035	<0.021	<0.021	<0.021	<0.021	<0.028	NA	NA	NA	NA
2018 Utility Pole Installation Petroleum Hydrocarbon Discovery C3 Telpole-20181026 10/26/2018 NA	A1	B5	10/8/2015	<0.021	<0.021	<0.021	0.07	<0.021	0.805	0.035	0.024	<0.021	0.49	0.28	NA	NA	NA	NA
C3Telpole-2018102610/26/2018NA <td>2018 Uti</td> <td>lity Pole Installation Petroleum Hydroc</td> <td>arbon Discovery</td> <td></td>	2018 Uti	lity Pole Installation Petroleum Hydroc	arbon Discovery															
1996 Lady Island Seep Analysis D1 Acid Ditch 8/15/1996 NA <	C3	Telpole-20181026	10/26/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1Acid Ditch8/15/1996NA	1996 Lac	ly Island Seep Analysis																
D1Acid Ditch9/30/1996NA	D1	Acid Ditch	8/15/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1Clarifier Outlet8/15/1996NA	D1	Acid Ditch	9/30/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1Clarifier Outlet9/30/1996NA	D1	Clarifier Outlet	8/15/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1 East Seep 9/30/1996 NA NA NA NA NA NA NA NA NA D1 Worth Scop 9/20/1005 NA	D1	Clarifier Outlet	9/30/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1 Wast Seen 0/20/1006 NA	D1	East Seep	9/30/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
DT MEST SEEN 3/20/1230 INV	D1	West Seep	9/30/1996	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

____ _____ ____ ____ _____ _____

												TPH						То	tal Meta	s					
																								I	
								Total	Total															I	
								Dissolved	Organic	Oil &														I	
OA		Sample ID	Sample Date	рН	Temperature	Turbidity	Conductivity	Solids	Carbon	Grease	GRO	DRO	ORO	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Silver	Selenium	Zinc	Ammonia
			Units		°F	NTU	umhos/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	mg/L
CBC Are	a Groundw	vater Data																							
F1	MW-1		8/25/2000	NA	NA	NA	NA	NA	NA	NA	<0.250	<0.630	<0.630	<1	3.62	<1	<1	NA	<1	<1.25	NA	<1	<1	NA	NA
F1	MW-1		7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	MW-1		3/18/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	MW-2		8/25/2000	NA	NA	NA	NA	NA	NA	NA	0.732	<0.630	<0.630	2.68	62.5	<1	3.44	NA	3.67	<1.25	NA	<1	1.33	NA	NA
F1	MW-2		7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	MW-2		3/18/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	MW-3		8/25/2000	NA	NA	NA	NA	NA	NA	NA	<0.250	<0.630	<0.630	<1	7.77	<1	<1	NA	<1	<1.25	NA	<1	<1	NA	NA
F1	MW-3		7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	MW-3		3/18/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	MW-4		11/10/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	MW-4		7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	MW-4		3/18/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	MW-5		11/10/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	MW-5		7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	MW-5		3/18/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-6(GW	/)	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lady Isla	nd Landfil	l Permit Monitoring (b)																							
D1	NW 102	2	3/26/2020	6.69	55	NA	589	381	9.51	NA	NA	NA	NA	NA	56.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.312
D1	NW 102	2	5/26/2020	7.02	58	NA	592	1310	9.86	NA	NA	NA	NA	NA	91.9	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.722
D1	NW 102	2	7/28/2020	6.87	61	NA	815	419	9.09	NA	NA	NA	NA	NA	76.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.587
D1	NW 102	2	11/10/2020	6.74	57	NA	809	486	8.81	NA	NA	NA	NA	NA	68.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.964
D1	NW 102	2	12/17/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NW 102	2	3/17/2021	6.7	56	NA	365	340	9.96	NA	NA	NA	NA	NA	69.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.536
D1	NW 102	2	6/9/2021	8.52	61	NA	761	298	6.9	NA	NA	NA	NA	NA	86.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.587
D1	NW 102	2	9/14/2021	7.82	57	NA	653	1020	6.7	NA	NA	NA	NA	NA	110	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.56
D1	NW 102	2	12/8/2021	7.53	54	NA	404	294	6.5	NA	NA	NA	NA	NA	69.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.442
D1	NW 102	2	3/22/2022	7.47	59	NA	475	300	8.1	NA	NA	NA	NA	NA	49.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.332
D1	NW 102	2	6/15/2022	7.53	60	NA	808	322	9.2	NA	NA	NA	NA	NA	28.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.562
D1	NW 102	2	9/8/2022	7.78	66	NA	849	390	8.8	NA	NA	NA	NA	NA	44.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.17
D1	NW 102	2	11/28/2022	6.93	55	NA	720	326	8.40 J+	NA	NA	NA	NA	NA	55.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.612
D1	SW 107		3/26/2020	6.56	57	NA	1729	1110	17.3	NA	NA	NA	NA	NA	260	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.34
D1	SW 107		5/26/2020	6.65	57	NA	1641	397	16.4	NA	NA	NA	NA	NA	28.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.29
D1	SW 107		7/28/2020	6.55	63	NA	1964	1190	16.6	NA	NA	NA	NA	NA	257	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.14
D1	SW 107		11/10/2020	6.56	57	NA	1837	1180	15.5	NA	NA	NA	NA	NA	250	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.51
D1	SW 107		12/17/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107		3/17/2021	6.63	63	NA	951	1080	16	NA	NA	NA	NA	NA	328	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.39
D1	SW 107		6/9/2021	7.31	61	NA	1883	1080	14.9	NA	NA	NA	NA	NA	262	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.54
D1	SW 107		9/14/2021	8.18	64	NA	1739	1130	14.2	NA	NA	NA	NA	NA	273	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.95
D1	SW 107		12/8/2021	7.03	53	NA	1329	1130	15.1	NA	NA	NA	NA	NA	253	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.82
<u>D1</u>	SW 107		3/22/2022	7.67	55	NA	1728	1100	15.7	NA	NA	NA	NA	NA	321	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.72
	SW 107	,	6/15/2022	7.56	60	NA	2013	1130	14.5	NA	NA	NA	NA	NA	299	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.07
	SW 107	,	9/8/2022	/.83	64	NA	2266	1140	14.8	NA	NA	NA	NA	NA	282	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.1
	SW 107		11/28/2022	6.83	55	NA	21/6	1110	15	NA	NA	NA	NA	NA	268	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.99
	NE 201		3/26/2020	6.58	56	NA	989	975		NA	NA	NA	NA	NA	80.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.84
D1	NE 201		5/26/2020	6.83	58	NA	1006	900	18.8	NA	NA	NA	NA	NA	34.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.13
<u>D1</u>	NE 201		//28/2020	6.64	60	NA	1340	946	20.1	NA	NA	NA	NA	NA	71.9	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.35
	NE 201		11/10/2020	6.64	56	NA	1219	998	21.7	NA	NA	NA	NA	NA	63.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	2
	NE 201		12/1//2020	NA	NA	NA	NA	NA 1040	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NE 201		3/17/2021	6.7	55	NA	545	1040	21.1	NA	NA	NA	NA	NA	78	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.83

																	VO	Cs				
													1112-	111-	1122-	112-	1 1-	1 1-	1 1-	1 2 3-	1 2 3-	124-
													Tetrachlor	Trichloroe	Tetrachlor	Trichloroe	Dichloroe	Dichloroe	Dichloron	Trichloroh	Trichloron	a Trichlorol
OA	Sample ID	Sample Date	Boron	Calcium	Chloride	Iron	Magnesium	Manganese	Nitrate	Potassium	Sodium	Sulfate	oethane	hane	oethane	thane	thane	thene	ronene	enzene	ronane	enzene
	Sample 15	Units	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l										
CBC Area	Groundwater Data	01110						8/ =		8/ =			P-6/ =	ro/ =	P*0/ =	- 104	ro/ =	ro/ =	P*0/ =	ro/ =	<u>~6/ =</u>	- 104
F1	MW-1	8/25/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<1.00	NA	NA	NA	<1.00	NA	NA	NA	NA
F1	MW-1	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<1.00	8.32	<1.00	<1.00	<1.00	4.54	<1.00	<1.00	<1.00	<1.00
F1	MW-1	3/18/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.50	NA	NA	NA	<0.50	NA	NA	NA	NA
F1	MW-2	8/25/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.71	NA	NA	NA	<1.00	NA	NA	NA	NA
F1	MW-2	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
F1	MW-2	3/18/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.50	NA	NA	NA	< 0.50	NA	NA	NA	NA
F1	MW-3	8/25/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<1.0	NA	NA	NA	<1.00	NA	NA	NA	NA
F1	MW-3	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<1.00	<1.00	<1.00	<1.00	<1.00	1.19	<1.00	<1.00	<1.00	<1.00
F1	MW-3	3/18/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.50	NA	NA	NA	1.2	NA	NA	NA	NA
F1	MW-4	11/10/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<1.0	NA	NA	NA	<1.0	NA	NA	NA	NA
F1	MW-4	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
F1	MW-4	3/18/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.50	NA	NA	NA	< 0.50	NA	NA	NA	NA
F1	MW-5	11/10/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<1.00	NA	NA	NA	<1.00	NA	NA	NA	NA
F1	MW-5	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
F1	MW-5	3/18/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.50	NA	NA	NA	<0.50	NA	NA	NA	NA
F1	B-6(GW)	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
Lady Isla	nd Landfill Permit Monitoring (b)	, ,																				
D1	NW 102	3/26/2020	0.035	55.2	13.8	15	30.5	4.17	0.1	2.01	20	1.98	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NW 102	5/26/2020	<0.021	216	84.5	<0.021	123	9.25	<0.1	3.85	54	0.64	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NW 102	7/28/2020	0.028	69	17.2	32.9	35.1	4.42	0.38	2.19	20.3	0.53	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NW 102	11/10/2020	0.027	69	19.4	23	35.6	4.3	<0.1	2.15	20.3	<0.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NW 102	12/17/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NW 102	3/17/2021	0.059	54.6	12.2	20	27.4	5.83	<0.1	2.26	17	1.47	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NW 102	6/9/2021	0.06	NA	10.8	1.4	24.7	3.19	<0.1	2.37	15.6	2.29	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NW 102	9/14/2021	<0.021	NA	21	34.2	38.5	4.16	<0.1	1.97	19.1	1.27	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NW 102	12/8/2021	0.058	NA	12.1	<0.021	24.9	3.37	<0.1	2.23	17.5	1.54	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NW 102	3/22/2022	0.0537	44.6	10.6	5.44	24.6	5.95	<0.050	1.82	17.4	3.01	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NW 102	6/15/2022	0.0393	59.2	12.8	44.7	29.9	4.34	<0.10	1.91	20.2	2.66	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NW 102	9/8/2022	0.0291 J	68.9	17	30.9	32.4	4.12	<0.10	1.77	18.6	0.22	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NW 102	11/28/2022	0.0518	49.3	11.1	22.3	27.5	4.06	<0.10	1.86	17	4.26	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107	3/26/2020	<0.021	211	86.3	44	124	10.4	<0.1	4.12	57.5	0.51	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107	5/26/2020	<0.021	61.4	15.5	<0.021	32.5	4.21	<0.1	1.95	19.4	0.87	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107	7/28/2020	<0.021	221	83.6	41.4	116	10.1	1.04	4.1	53.1	<0.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107	11/10/2020	0.024	219	86.4	42.4	113	9.58	<0.1	3.89	52.7	0.61	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107	12/17/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107	3/17/2021	<0.021	203	80.6	27.1	106	8.49	<0.1	4.76	54.3	0.77	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107	6/9/2021	<0.021	NA	86.5	2.79	111	7.34	<0.1	4.61	45.9	1.44	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107	9/14/2021	0.163	NA	86.4	16	107	7.8	<0.1	4.15	40.4	4.12	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107	12/8/2021	<0.021	NA	86.8	<0.021	124	9.85	<0.1	4.21	40.3	2.09	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107	3/22/2022	0.0163	204	88.9	39.9	112	9.34	<0.10	3.61	35	0.48	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107	6/15/2022	0.0145 J+	- 187	94.5	1.54	105	7.01	<0.10	4.67	41.7	1.81	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107	9/8/2022	0.0165	220	88.5	3.69	106	6.92	<0.10	3.99	39.2	1.9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107	11/28/2022	0.0301	200	81.3	39.2	110	8.83	<0.10	5	33.9	0.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NE 201	3/26/2020	<0.021	128	7.28	70.4	55.6	5.28	<0.1	2.47	52.2	392	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NE 201	5/26/2020	<0.021	127	7.28	3.06	53.3	4.77	<0.1	2.27	49.4	330	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NE 201	7/28/2020	0.031	131	7.47	103	58.5	5.42	0.24	2.8	55.4	352	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NE 201	11/10/2020	0.026	121	7.12	91.5	50	5.28	<0.1	2.74	50.5	403	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NE 201	12/17/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NE 201	3/17/2021	0.022	131	7.26	91.6	53.1	5.76	<0.1	2.85	48.1	442	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
-																						

														VOCs										
					1,2-																			
					Dibromo-													4-Methyl-						
				1,2,4-	3-	1,2-	1,2-	1,2-	1,3,5-	1,3-	1,4-	2,2-		2-		4-	4-	2-					Bromochl	Bromodic
				Trimethyl	chloropro	Dichlorob	Dichloroe	Dichlorop	⁻ Trimethyl	Dichloropr	Dichlorobe	Dichloropr	2-	Chlorotol	2-	isopropylt	Chlorotol	pentanon		Acrylonitr	i	Bromoben	orometha	hloromet
OA		Sample ID	Sample Date	benzene	pane	enzene	thane	opane	benzene	opane	nzene	opane	Butanone	uene	Hexanone	oluene	uene	е	Acetone	le	Benzene	zene	ne	hane
			Units	s μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
CBC Are	a Groundw	ater Data																						
F1	MW-1		8/25/2000	NA	NA	76.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<1.00	NA	NA	NA
F1	MW-1		7/19/2016	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<10.0	<1.00	<10.0	<1.00	<1.00	<20.0	<50.0	<5.00	<0.300	<1.00	<1.00	<1.00
F1	MW-1		3/18/2021	NA	NA	<0.50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.50	NA	NA	NA
F1	MW-2		8/25/2000	NA	NA	<1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<1.00	NA	NA	NA
F1	MW-2		7/19/2016	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<10.0	<1.00	<10.0	<1.00	<1.00	<20.0	<50.0	<5.00	<0.300	<1.00	<1.00	<1.00
F1	MW-2		3/18/2021	NA	NA	< 0.50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.50	NA	NA	NA
F1	MW-3		8/25/2000	NA	NA	<1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<1.00	NA	NA	NA
F1	MW-3		7/19/2016	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<10.0	<1.00	<10.0	<1.00	<1.00	<20.0	<50.0	<5.00	<0.300	<1.00	<1.00	<1.00
F1	MW-3		3/18/2021	NA	NA	<0.50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.50	NA	NA	NA
F1	IVI VV-4		11/10/2000	NA	NA	8.46	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<1.00	NA	NA	NA
F1	IVI VV-4		//19/2016	<1.00	<1.00	1.85	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<10.0	<1.00	<10.0	<1.00	<1.00	<20.0	<50.0	<5.00	<0.300	<1.00	<1.00	<1.00
F1 F1			3/18/2021	NA	NA	<0.50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.50	NA	NA	NA
F1 F1	IVI VV-5		7/20/2000	NA	NA 11.00	<1.00	NA	NA	NA (1.00	NA	NA	NA	NA	NA 1.00	NA	NA	NA	NA (20.0	NA	NA	<1.00	NA	NA	NA (1.00
F1	IVI VV-5		2/18/2021	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<10.0	<1.00	<10.0	<1.00	<1.00	<20.0	<50.0	<5.00	<0.300	<1.00	<1.00	<1.00
F1 F1		١	3/18/2021	<1.00	NA <1.00	<0.50	<1 00	1 00	<1.00	<1 00	<1.00	NA <1.00	NA <10.0	<1.00	<10.0	<1.00	NA	<00 0	<eq.0< th=""><th></th><th><0.50</th><th><1 00</th><th><1.00</th><th><1 00</th></eq.0<>		<0.50	<1 00	<1.00	<1 00
	D-0(GW	Pormit Monitoring (h)	//20/2010	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<10.0	<1.00	<10.0	<1.00	<1.00	<20.0	<50.0	<5.00	0.4	<1.00	<1.00	<1.00
D1			3/26/2020	ΝΔ	NΔ	NΔ	NΔ	NΔ	NΔ	ΝΔ	NΔ	ΝΔ	NΔ	NΔ	NΔ	ΝΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	ΝA	NΔ
	NW 102	I	5/26/2020	NA	NA	NA	NA	NA	NA	NA	NA	ΝA	NA	NA	NA	ΝA	NA	NA	NA	NA	NA	NA	NA	ΝA
D1	NW 102	·	7/28/2020	NA	NA	NΔ	NA	NA	NA	NA	NΔ	NΔ	NΔ	NA	NA	NΔ	NΔ	NΔ	NA	NA	NA	NA	NA	ΝΔ
D1	NW 102		11/10/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NW 102		12/17/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NW 102		3/17/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NW 102		6/9/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NW 102		9/14/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NW 102		12/8/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NW 102		3/22/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NW 102		6/15/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NW 102		9/8/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NW 102		11/28/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107		3/26/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107		5/26/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107		7/28/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107		11/10/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107		12/17/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107		3/17/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107		6/9/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107		9/14/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107		12/8/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107		3/22/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107		6/15/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107		9/8/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107		11/28/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NE 201		3/26/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NE 201		5/26/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NE 201		7/28/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NE 201		11/10/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NE 201		12/17/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NE 201		3/17/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

													VOCs										
						Carbon					cis-1,2-	cis-1,3-	Dibromoc		Dichlorodi		Hexachlor		Methyl			n-	
			Bromofor	Bromome	Carbon	tetrachlor	Chlorobe	Chloroeth	Chlorofor	Chlorome	Dichloroe	Dichlorop	r hlorometh	Dibromo	fluoromet	Ethylbenz	obutadien	Isopropyl	tert-butyl	l Methylen	Naphthal	Butylbenz	n-Propyl
OA	Sample ID	Sample Date	m	thane	Disulfide	ide	nzene	ane	m	thane	thene	opene	ane	methane	hane	ene	е	benzene	ether	e Chloride	ene	ene	benzene
		Unit	s µg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
CBC Area	Groundwater Data																						
F1	MW-1	8/25/2000	NA	NA	NA	NA	11.1	NA	NA	NA	2.39	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	MW-1	7/19/2016	<1.00	<1.00	<2.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<20.0	<1.00	<1.00	<1.00
F1	MW-1	3/18/2021	NA	NA	NA	NA	<0.50	NA	NA	NA	<0.50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	MW-2	8/25/2000	NA	NA	NA	NA	<1.0	NA	NA	NA	<1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	MW-2	7/19/2016	<1.00	<1.00	<2.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
F1	MW-2	3/18/2021	NA	NA	NA	NA	<0.50	NA	NA	NA	<0.50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	MW-3	8/25/2000	NA	NA	NA	NA	<1.0	NA	NA	NA	<1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	MW-3	7/19/2016	<1.00	<1.00	<2.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<20.0	<1.00	<1.00	<1.00
F1	MW-3	3/18/2021	NA	NA	NA	NA	<0.50	NA	NA	NA	<0.50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	MW-4	11/10/2000	NA	NA	NA	NA	3.36	NA	NA	NA	<1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	MW-4	7/19/2016	<1.00	<1.00	<2.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<20.0	<1.00	<1.00	<1.00
F1	MW-4	3/18/2021	NA	NA	NA	NA	<0.50	NA	NA	NA	<0.50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	MW-5	11/10/2000	NA	NA	NA	NA	<1.00	NA	NA	NA	<1.00	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	MW-5	7/20/2016	<1.00	<1.00	<2.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<20.0	<1.00	<1.00	<1.00
F1	MW-5	3/18/2021	NA	NA	NA	NA	<0.50	NA	NA	NA	0.51	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-6(GW)	//20/2016	<1.00	<1.00	<2.00	<1.00	3.84	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<20.0	<1.00	<1.00	<1.00
Lady Isla	nd Landfill Permit Monito	ring (b)			b L A	51.0	D.L.A.	b L A	D.L.A	51.0	51.0		21.0	b.L.A				51.0					
D1	NVV 102	3/26/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	NVV 102	5/26/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	NVV 102	11/10/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		11/10/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	NW 102	3/17/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	NW 102	6/9/2021	ΝA	ΝA	NA	ΝA	NA	NA	NA	ΝA	ΝA	NA	NA	NA	NA	ΝA	ΝA	NA	NA	NA	NA	NA	ΝA
D1	NW 102	9/14/2021	ΝΔ	NΔ	NA	NΔ	NA	NA	NA	ΝΔ	NΔ	NA	NΔ	NA	NA	ΝΔ	ΝΔ	NΔ	NA	NA	NA	NA	ΝΔ
D1	NW 102	12/8/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NW 102	3/22/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NW 102	6/15/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
 D1	NW 102	9/8/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NW 102	11/28/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107	3/26/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107	5/26/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107	7/28/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107	11/10/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107	12/17/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107	3/17/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107	6/9/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107	9/14/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107	12/8/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107	3/22/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107	6/15/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107	9/8/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107	11/28/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NE 201	3/26/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NE 201	5/26/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NE 201	7/28/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NE 201	11/10/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NE 201	12/17/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NE 201	3/17/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

									VOCs										PAI	Hs			
																					- "	_ / .	
			sec-	tert-			trans-1,2-	- trans-1,3-		Trichlorofl	Trichloro	m-Xylene							- / >		Benzo(b)	Benzo(a,h	Benzo(k)
~ ~ ~			Butylbenz	Butylbenz	z Tetrachlor	T 1	Dichloroe	Dichlorop	Trichloroe	uorometh	trifluoroet	& p-	I	<u>.</u>	Vinyl	Acenapht	Acenapht	Anthrace	n Benzo(a)a	Benzo(a)	Fluoranth	,i)perylen	Fluoranth
0A	Sample ID	Sample Date	ene	ene	oethene	Toluene	thene	ropene	thene	ane	hane	Xylene	o-Xylene	Styrene	chloride	hene	hylene	e	nthracene	Pyrene	ene	e	ene
CDC Are		Units	µg/L	µg/L	μg/L	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L	μg/L	µg/L	μg/L	µg/L	μg/L	µg/L	µg/L	µg/L	μg/L
	a Groundwater Data	8/25/2000	NIA	NIA	22.0	NLA	NIA	NIA	<1.00	NIA	NIA	NIA	NLA	NLA	<1.00	NLA	NIA	NLA	NLA	NIA	NLA	NIA	NIA
F1 F1		7/10/2016	<1.00	<1.00	23.0	NA	<1.00	NA	<1.00	-1 00	<1.00	<pre>NA </pre>	NA	NA	<1.00	NA	NA	NA	NA	NA	NA	NA	
F1 F1	<u>M</u> W-1	2/18/2010	<1.00	<1.00	0.9/	<1.00	<1.00	<1.00	<0.50	<1.00	<1.00	<2.00	<1.00	<1.00	<0.50	NA	NA NA	NA	NA	NA	NA	NA	NA
F1 F1	<u>MW-2</u>	8/25/2000	NA	NA	2 22	NA	NA	NA	<1.00	NA	NA	NA	NA	NA	<1.00	NA	NA	NA	NA	NA	NA	NA	NA
F1 F1	MW-2	7/10/2016	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1 00	<2.00	<1 00	<1 00	<1.00	NA	NA	NA	NA	NA	NA	NA	NA
F1	MW-2	2/18/2010	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<0.50	<1.00	NA	NA	<1.00 NA	<1.00	<0.50	NA	NA	NA	NA	NA	NA	NA	NA
F1	MW-3	8/25/2021	NA	NA	<1.0	NA	ΝA	ΝA	17 5	NA	ΝA	ΝA	NΑ	ΝA	<1.00	ΝA	ΝA	NA	NA	ΝA	NA	NA	NA
F1	MW-3	7/19/2016	<1.00	<1.00	<1.0	<1.00	<1.00	<1.00	6.23	<1.00	<1.00	<2.00	<1.00	<1.00	<1.00	NΔ	NΔ	NΔ	NA	NΔ	NΔ	ΝΔ	ΝΔ
F1	MW-3	3/18/2021	NA	NA	<0.50	NA	NA	NA NA	8.2	NA	NA NA	NA	NA	NA	<0.50	NA	NA	NA	NA	NA	NA	NA	NA
F1	MW-4	11/10/2000	NA	NA	<1.0	NA	NA	NA	<1.0	NA	NA	NA	NA	NA	<1.00	NA	NA	NA	NA	NA	NA	NA	NA
F1	MW-4	7/19/2016	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<2.00	<1.00	<1.00	<1.00	NA	NA	NA	NA	NA	NA	NA	NA
F1	MW-4	3/18/2021	NA	NA	<0.50	NA	NA	NA	<0.50	NA	NA	NA	NA	NA	<0.50	NA	NA	NA	NA	NA	NA	NA	NA
F1	MW-5	11/10/2000	NA	NA	<1.00	NA	NA	NA	<1.00	NA	NA	NA	NA	NA	<1.00	NA	NA	NA	NA	NA	NA	NA	NA
F1	MW-5	7/20/2016	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	1.25	<1.00	<1.00	<2.00	<1.00	<1.00	<1.00	NA	NA	NA	NA	NA	NA	NA	NA
F1	MW-5	3/18/2021	NA	NA	< 0.50	NA	NA	NA	1.2	NA	NA	NA	NA	NA	<0.50	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-6(GW)	7/20/2016	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<2.00	<1.00	<1.00	<1.00	NA	NA	NA	NA	NA	NA	NA	NA
Lady Isla	and Landfill Permit Monitoring (I	b)																					
D1	NW 102	3/26/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NW 102	5/26/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NW 102	7/28/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NW 102	11/10/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NW 102	12/17/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NW 102	3/17/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NW 102	6/9/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NW 102	9/14/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NW 102	12/8/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NW 102	3/22/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NW 102	6/15/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NW 102	9/8/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NW 102	11/28/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107	3/26/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107	5/26/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107	7/28/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107	11/10/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	SW 107	2/17/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	SW 107	3/1//2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	SW 107	0/9/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	SW 107	12/8/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	SW 107	2/22/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SW 107	6/15/2022	NIA	NΔ	NA	NIA	ΝA	NA	NIA	NΔ	NΔ	ΝA	NA	NA	ΝA	NIΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ
D1	SW 107	9/8/2022	NA	NΔ	NA	NA	NΔ	NΔ	NA	NΔ	NΔ	NA	NA	NΔ	NΔ	NΔ	NΔ	NΔ	NA	NA	NA	NA	NA
D1	SW 107	11/28/2022	NA	NΔ	NA	NA	NΔ	NΔ	NA	NΔ	NΔ	NA	NA	NΔ	NΔ	NΔ	NΔ	NΔ	NA	NA	NA	NA	NA
D1	NF 201	3/26/2020	NA	NΔ	NΔ	NA	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NA	NΔ	NΔ	NA	NΔ	NΔ	NA	NA	NA	NA	NA
D1	NF 201	5/26/2020	NA	NΔ	NΔ	NA	NΔ	NΔ	NA	NΔ	NΔ	NΔ	NA	NΔ	NΔ	NA	NΔ	NΔ	NA	NA	NA	NA	NA
D1	NE 201	7/28/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
 D1	NE 201	11/10/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
 D1	NE 201	12/17/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NE 201	3/17/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
																-							

								PAHs						PCBs			
04	Sample ID	Samnle Date	Chrysene	Dibenzo(a ,h)anthrac	Fluorant	Fluorene	Indeno(1 ,2,3- cd)pyren	Total Naphthal	Naphthal	Phenant	Pyrene	1- Methyln aphthale	2- Methyln aohthale	PCBs	Bicarbonate (as CaCO3) (mg/L)	Biochemical Oxygen Demand (mg/l)	Chemical Oxygen Demand
	Sumple ib	Units	μg/L	μg/L	μg/L	μg/L	<u>μg/L</u>	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	mg/L	mg/L	mg/L
CBC Area	a Groundwater Data		- 101	- 101	F*0/ -	- 101	P*0/ -	P-0/ -	P-0/ -	P'0/ -	P-0/ -	P'0/ -	F*8/ -	F-0/ -			
F1	MW-1	8/25/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.5	NA	NA	NA
F1	MW-1	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	MW-1	3/18/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	MW-2	8/25/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.5	NA	NA	NA
F1	MW-2	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	MW-2	3/18/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	MW-3	8/25/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.5	NA	NA	NA
F1 F1	NIW-3	//19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1 F1	NIVV-3	3/18/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1 F1	MW-4	7/10/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
 F1	MW-4	3/18/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	MW-5	11/10/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	MW-5	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	MW-5	3/18/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-6(GW)	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lady Isla	nd Landfill Permit Monitoring (b)																
D1	NW 102	3/26/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	279	<4	27
D1	NW 102	5/26/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	298	<4	28
D1	NW 102	7/28/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	318	<4	24
D1	NW 102	11/10/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	363	NA	24
D1	NW 102	12/17/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<4	NA
D1	NW 102	3/17/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	275	<30	28
D1	NW 102	6/9/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	250	NA	NA
D1	NW 102	9/14/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	403	NA	NA
D1	NW 102	12/8/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	254	NA	NA
D1	NW 102	3/22/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	241	NA	NA
D1	NW 102	6/15/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	246	NA	NA
	NW/ 102	11/28/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	472 J	NA	NA
	SW 107	3/26/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1040	NA -1	18
D1	SW 107	5/26/2020	NΔ	NΑ	NΔ	NΔ	NΑ	NA	NA	NΑ	NA	NΑ	NΔ	NA	1040	<4	48
D1	SW 107	7/28/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1040	<4	43
D1	SW 107	11/10/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1040	NA	46
D1	SW 107	12/17/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<4	NA
D1	SW 107	3/17/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1010	<30	41
D1	SW 107	6/9/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	990	NA	NA
D1	SW 107	9/14/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1000	NA	NA
D1	SW 107	12/8/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1050	NA	NA
D1	SW 107	3/22/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1020	NA	NA
D1	SW 107	6/15/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	918	NA	NA
D1	SW 107	9/8/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	988	NA	NA
D1	SW 107	11/28/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	983	NA	NA
D1	NE 201	3/26/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	259	5.2	60
D1	NE 201	5/26/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	272	<4	48
D1	NE 201	7/28/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	249	4.3	62
D1	NE 201	11/10/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	228	NA	65
<u>D1</u>	NE 201	12/17/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	6.6	NA
D1	NE 201	3/17/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	216	<30	63

____ ____ ____ ____ ____ ____ ____ ____ ____ _ ____ ____ _ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ _ _ ____ ____ ____ _ _ ____ ____ ____ ____ ____

												TPH		Total Metals											
								Total	Total																
~ .								Dissolved	Organic	Oil &					. .	.	<u>.</u>					C 'I	с. I		
OA		Sample ID	Sample Date	рН	Temperature	Turbidity	/ Conductivity	/ Solids	Carbon	Grease	GRO	DRO	ORO	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Silver	Selenium	Zinc	Ammonia
	d Londfil	Dormit Monitoring (b)	Units		- F	NIU	umnos/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	µg/L	μg/L	µg/L	µg/L	µg/L	μg/L	µg/L	μg/L	µg/L	µg/L	mg/L
	NE 201	i Permit Monitoring (b)	6/9/2021	8.01	60	ΝΔ	1377	793	18	NΔ	NΔ	ΝΔ	NΔ	NΔ	45.6	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NA	1 56
D1	NF 201		9/14/2021	7 28	58	NA	1009	1030	19.2	NA	NA	NA	NA	NA	66.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.14
D1	NF 201		12/8/2021	7.56	52	NA	914	802	19.8	NA	NA	NA	NA	NA	37.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.17
D1	NE 201		3/22/2022	7.42	59	NA	1179	926	20.2	NA	NA	NA	NA	NA	109	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.2
D1	NE 201		6/15/2022	7.1	55	NA	945	3810	13.6	NA	NA	NA	NA	NA	105	NA	NA	NA	NA	NA	NA	NA	NA	NA	5.64
D1	NE 201		9/8/2022	7.27	66	NA	923	931	20.4	NA	NA	NA	NA	NA	61.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.38
D1	NE 201		11/28/2022	6.85	53	NA	1330	787	20	NA	NA	NA	NA	NA	61.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.09
D1	E 202		3/26/2020	6.75	56	NA	650	494	16.5	NA	NA	NA	NA	NA	104	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.62
D1	E 202		5/26/2020	6.7	59	NA	697	574	19.7	NA	NA	NA	NA	NA	24.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.81
D1	E 202		7/28/2020	6.71	64	NA	960	586	19.4	NA	NA	NA	NA	NA	101	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.63
D1	E 202		11/10/2020	6.67	59	NA	898	608	24	NA	NA	NA	NA	NA	120	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.2
D1	E 202		12/17/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202		3/16/2021	6.79	56	NA	523	549	19.4	NA	NA	NA	NA	NA	91.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.05
D1	E 202		6/9/2021	8.01	61	NA	963	636	17.7	NA	NA	NA	NA	NA	108	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.37
D1	E 202		9/14/2021	7.18	64	NA	719	632	16.7	NA	NA	NA	NA	NA	118	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.34
D1	E 202		12/8/2021	8.59	55	NA	615	587	21.8	NA	NA	NA	NA	NA	77	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.44
D1	E 202		3/22/2022	7.41	53	NA	860	633	14.6	NA	NA	NA	NA	NA	135	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.4
D1	E 202		6/15/2022	7.53	60	NA	1223	760	11.7	NA	NA	NA	NA	NA	172	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.66
D1	E 202		9/8/2022	7.78	63	NA	1141	686	12.1	NA	NA	NA	NA	NA	150	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.59
D1	E 202		11/28/2022	6.95	58	NA	1069	671	12.3	NA	NA	NA	NA	NA	159	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.64
D1	SE 203		3/26/2020	6.74	53	NA	980	901	74	NA	NA	NA	NA	NA	98.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.05
D1	SE 203		5/26/2020	6.81	56	NA	688	595	2.1	NA	NA	NA	NA	NA	57.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.05
D1	SE 203		7/28/2020	6.67	58	NA	952	731	41.6	NA	NA	NA	NA	NA	76.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.05
D1	SE 203		11/10/2020	6.62	62	NA	498	316	7.75	NA	NA	NA	NA	NA	41.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.05
D1	SE 203		12/17/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203		3/17/2021	6.43	52	NA	462	694	45.3	NA	NA	NA	NA	NA	68.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.05
D1	SE 203		6/9/2021	8.02	60	NA	973	663	53.5	NA	NA	NA	NA	NA	58.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.05
D1	SE 203		9/14/2021	7.5	61	NA	491	632	34	NA	NA	NA	NA	NA	53	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.06
D1	SE 203		12/8/2021	8.18	53	NA	926	1010	30.5	NA	NA	NA	NA	NA	116	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.05
D1	SE 203		3/22/2022	6.74	53	NA	866	1490	59.6	NA	NA	NA	NA	NA	204	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.050
D1	SE 203		6/15/2022	7.85	58	NA	1914	1120	40.5	NA	NA	NA	NA	NA	199	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.077
D1	SE 203		9/8/2022	7.64	60	NA	1789	1100	44	NA	NA	NA	NA	NA	148	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.058
D1	SE 203		11/28/2022	6.98	54	NA	948	602	32.6	NA	NA	NA	NA	NA	106	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.072

Notes:

(a) Woodmill Creek is an uncontrolled stream with intermittent flow that contains urban stormwater and groundwater from the south side of Tidland Heights (estimated drainage area 14.5 acres). (b) The most recent three years of monitoring data for the existing Lady Island Landfill (LILF) monitoring wells are provided in this table. Additional data is available in the LILF Groundwater Monitoring Reports.

													VOCs									
													1,1,1,2-	1,1,1-	1,1,2,2-	1,1,2-	1,1-	1,1-	1,1-	1,2,3- Trichlorob	1,2,3-	1,2,4-
04	Sample ID	Sample Date	Boron	Calcium	Chlorida	Iron	Magnesium	Manganese	Nitrato	Potassium	Sodium	Sulfato	oethane	hane	oethane	thane	thane	thene	ropene	007000	ronane	007000
	Sample ib		mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l										
Lady Isla	and Landfill Permit Monitoring (b)	011113	111 <u>6</u> / E	116/ 2	1116/ E	1116/ 2	1116/ 2	1116/ 2	111 <u>6</u> / E	1116/ 2	111 <u>6</u> / E	1116/ L	P6/ L	µ6/ ⊑	₩6/ Ľ	µ6/ ⊑	µ6/ ⊑	µ6/ ⊑	<u>46/ 5</u>	μ6/ L	μ <u>6</u> / Ε	µ6/ ⊑
D1	NE 201	6/9/2021	<0.021	NA	7.2	41.6	50.3	4.98	1.71	2.62	46.2	316	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NE 201	9/14/2021	<0.021	NA	6.49	118	53	5.97	<0.1	2.74	48	389	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NE 201	12/8/2021	<0.021	NA	5.95	0.026	47.8	4.84	<0.1	2.6	48.4	318	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NE 201	3/22/2022	0.022	121	7.11	100	50.2	5.53	<0.10	2.51	44.6	463	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NE 201	6/15/2022	0.0381	230	6.67	553	105	16.1	<0.10	6.27	68.5	2240	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NE 201	9/8/2022	0.0236	132	6.59	86.6	48.4	4.89	<0.10	2.39	44.5	370	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NE 201	11/28/2022	0.0187	109	5.8	80.4	48.5	4.75	<0.10	2.35	42.8	303	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202	3/26/2020	0.061	81.7	4.85	17.2	23.2	3.68	<0.1	2.47	37.6	33.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202	5/26/2020	0.06	90.5	5.02	2.57	24.5	3.84	0.12	2.09	35.7	53.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202	7/28/2020	0.073	97.7	5.93	27.5	27.4	4.24	0.3	2.55	40.9	50.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202	11/10/2020	0.079	100	6.42	29.3	26.4	4.57	<0.1	2.54	40.5	35.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202	12/17/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202	3/16/2021	0.08	101	5.54	27.3	26.5	4.61	<0.1	2.65	34.5	54.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202	6/9/2021	0.061	NA	6.5	26.2	29.3	4.86	0.17	2.44	34.7	79.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202	9/14/2021	0.068	NA	6.95	26.8	30.3	5.08	0.15	2.76	38.4	71.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202	12/8/2021	0.08	NA	6.91	9.88	29.5	4.98	0.17	2.8	40	23.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202	3/22/2022	0.0617	109	6.52	25.7	29.5	5.28	<0.10	2.52	38.1	118	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202	6/15/2022	0.0951	128	8.28	7.46	36	5.22	<0.10	4.11	44.7	195	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202	9/8/2022	0.0727	133	6.85	1.69	31.6	4.69	<0.10	2.76	44.6	152	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202	11/28/2022	0.0668	120	6.7	23.4	35.7	5.56	1.1	2.79	45.2	146	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203	3/26/2020	0.156	158	48.8	0.041	50.3	0.521	3.19	14.7	24.6	149	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203	5/26/2020	0.126	110	32.8	<0.021	32.8	0.0589	2.62	12.4	15.7	69.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203	7/28/2020	0.146	136	32.4	0.05	42.4	0.488	0.4	14.5	27.2	77.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203	11/10/2020	0.089	59.7	4.37	<0.021	17.5	0.0084	4.6	11.8	10.4	14	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203	12/17/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203	3/17/2021	0.112	114	34.3	0.032	33.1	0.191	6.5	13.9	17.1	116	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203	6/9/2021	0.15	NA	37.3	0.03	32.4	0.0734	0.19	14.1	15.6	120	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203	9/14/2021	0.128	NA	30.8	0.062	33.7	0.176	<0.1	12	20	85.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203	12/8/2021	0.174	NA	69	<0.021	50.7	0.0671	21.7	19.1	19.3	226	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203	3/22/2022	1.11	301	70.5	2.84 J	74.5	1.49 J	2.1	27.2	65.7	43	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203	6/15/2022	0.644	217	43.7	0.163	68.5	3.2	<0.10	21.6	56.5	20.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203	9/8/2022	0.775	232	42.4	0.0377 J+	59.9	4.09	<0.10	19.2	56.4	42.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203	11/28/2022	0.17	112	24.2	1.69	29.8	0.747	5.7	17.1	18.9	95.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Table B1: Data Summary Table - Groundwater

														VOCs										
					1,2-																			
					Dibromo-													4-Methyl-						
				1,2,4-	3-	1,2-	1,2-	1,2-	1,3,5-	1,3-	1,4-	2,2-		2-		4-	4-	2-					Bromochl	Bromodic
				Trimethyl	chloropro	Dichlorob	Dichloroe	Dichlorop	⁻ Trimethyl	Dichloropr	Dichlorobe	Dichloropr	2-	Chlorotol	2-	isopropylt	Chlorotol	pentanon		Acrylonitri		Bromober	1 orometha	hloromet
OA		Sample ID	Sample Date	benzene	pane	enzene	thane	opane	benzene	opane	nzene	opane	Butanone	uene	Hexanone	oluene	uene	е	Acetone	le	Benzene	zene	ne	hane
			Unit	s μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Lady Isla	nd Landfill	Permit Monitoring (b)																						
D1	NE 201		6/9/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NE 201		9/14/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NE 201		12/8/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NE 201		3/22/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NE 201		6/15/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NE 201		9/8/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NE 201		11/28/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202		3/26/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202		5/26/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202		7/28/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202		11/10/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202		12/17/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202		3/16/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202		6/9/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202		9/14/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	E 202		2/22/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	E 202		5/22/2022 6/15/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	E 202		0/13/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	E 202		11/28/2022	NA	NA	ΝA	NA	NA	NA	NA	NA	ΝA	ΝA	ΝA	NA	NA	NA	ΝA	NA	NA	NA	NA	ΝA	NA
	SF 202		3/26/2022	NA	NA	NΔ	NA	NA	NA	NA	NA	ΝA	NΔ	NΔ	NA	NA	NA	ΝA	NA	NA	NA	NA	NA	NA
D1	SE 203		5/26/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203		7/28/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203		11/10/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
 D1	SE 203		12/17/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203		3/17/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203		6/9/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203		9/14/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203		12/8/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203		3/22/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203		6/15/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203		9/8/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203		11/28/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

														VUUS										
							Carbon					cis-1 2-	cis-1 3-	Dibromoc		Dichlorodi		Hexachlor		Methyl			n-	
				Bromofor	r Bromome	Carbon	tetrachlor	Chlorohe	Chloroeth	Chlorofor	Chlorome	Dichloroe	Dichloron	r hlorometh	Dibromo	fluoromet	Fthylhenz	obutadien	Isonronvl	tert-hutvl	Methylen	Nanhthal	Butylhenz	n-Pronvl
OA		Sample ID	Sample Date	m	thane	Disulfide	ide	nzene	ane	m	thane	thene	onene	ane	methane	hane	ene	P	henzene	ether	e Chloride	ene	ene	henzene
		Sumple ib	Units	σ/Ι				1120110	 σ/I				ορείιε 						110/1				 /Ι	
Lady Isla	nd Landfill P	Permit Monitoring (b)	01110	µ6/ ⊑	<u>₩6/ ⊑</u>	μ6/ L	<u>₩6/ ⊑</u>	μ6/ L	µ6/ ⊑	<u>₩6/ ⊑</u>	μ6/ L	₩6/ L	µ6/ ⊑	₩6/ L	μ6/ L	µ6/ ⊑	μ6/ L	µ6/ ⊑	μ6/ L	μ6/ L	µ6/ ⊑	₩6/ L	μ6/ Ε	µ6/ ⊑
D1	NF 201		6/9/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
 D1	NE 201		9/14/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
 D1	NE 201		12/8/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NE 201		3/22/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NE 201		6/15/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NE 201		9/8/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NE 201		11/28/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202		3/26/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202		5/26/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202		7/28/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202		11/10/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202		12/17/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202		3/16/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202		6/9/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202		9/14/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202		12/8/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202		3/22/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202		6/15/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202		9/8/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202		11/28/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203		3/26/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203		5/26/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203		7/28/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203		11/10/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203		12/17/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203		3/17/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203		6/9/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203		9/14/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203		12/8/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203		3/22/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203		6/15/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203		9/8/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203		11/28/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

										VOCs										PA	Hs			
				sec- Butylbenz	tert- Butylbenz	Tetrachlor		trans-1,2- Dichloroe	trans-1,3- Dichloron	Trichloroe	Trichlorofl	Trichloro	m-Xylene & n-			Vinvl	Acenanht	Acenanht	Anthracer	n Benzo(a)a	Benzo(a)	Benzo(b) Fluoranth	Benzo(a,h	Benzo(k) Eluoranth
٥A		Sample ID	Sample Date	ene	ene	oethene	Toluene	thene	ronene	thene	ane	hane	Xvlene	o-Xvlene	Styrene	chloride	hene	hylene	م م	nthracene	Pyrene	ene	,ijperyien	ene
		Sumple ib	Unit																					
Lady Isla	nd Landfill	Permit Monitoring (b)	01111	- <u>60 -</u>	r-6/ =	<u>~0/ -</u>	P= /0~	P-0/ -	mo/ =	P0/ =	- 104	- 104	P-0/ -	P-0/ -	- 10 ^m	P6/ =	- /0~	P6/ =	mo/ =	<u>~0/ =</u>	r-6/ =	r-0/ =	- 104	
D1	NE 201		6/9/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NE 201		9/14/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NE 201		12/8/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NE 201		3/22/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NE 201		6/15/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NE 201		9/8/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NE 201		11/28/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202		3/26/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202		5/26/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202		7/28/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202		11/10/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202		12/17/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202		3/16/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202		6/9/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202		9/14/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202		12/8/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202		3/22/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202		6/15/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202		9/8/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	E 202		11/28/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1 D1	SE 203		3/26/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	SE 203		5/20/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	SE 205		11/10/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	SE 203		12/17/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203		3/17/2020	NA	NA	NA	ΝA	NA	NA	NΔ	NA	ΝΔ	NA	NA	NΔ	NA	NΔ	NA	ΝA	ΝΔ	NΔ	NΔ	ΝΔ	NA
D1	SE 203		6/9/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203		9/14/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203		12/8/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203		3/22/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203		6/15/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203		9/8/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SE 203		11/28/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
																	•							

Table B1: Data Summary Table - Groundwater

									PAHs						PCBs			
								Indeno(1					1-	2-			Biochemical	Chemical
					Dibenzo(a			,2,3-	Total				Methyln	Methyln		Bicarbonate	Oxygen	Oxygen
					,h)anthrac	Fluorant		cd)pyren	Naphthal	Naphthal	Phenant	_	aphthale	aohthale		(as CaCO3)	Demand	Demand
OA		Sample ID	Sample Date	Chrysene	ene	hene	Fluorene	е "	ene	ene	hrene	Pyrene	ne	ne	PCBs	(mg/L)	(mg/L)	(mg/L)
			Units	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	µg/L	mg/L	mg/L	mg/L
Lady Isla		ermit ivionitoring (b)	C/0/2021	NLA	NLA	NI A	NLA	NIA	NL A	NIA	NIA	D.L.O.	NLA	NLA	NLA	254	NIA	NIA
D1	NE 201		6/9/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	251	NA	NA
	NE 201		9/14/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	230	NA	NA
	NE 201		2/22/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	300	NA	NA
	NE 201		6/15/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	270 84.3	NA	NA
D1	NE 201		0/13/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	245	NA	NA
D1	NF 201		11/28/2022	NΔ	NΑ	NA	NΔ	NΑ	NΑ	NA	NA	NΔ	NΔ	NA	NΔ	245	NA	NA
D1	F 202		3/26/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	348	<4	51
D1	E 202		5/26/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	355	<4	59
D1	E 202		7/28/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	376	<4	57
D1	E 202		11/10/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	405	NA	69
D1	E 202		12/17/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	10.4	NA
D1	E 202		3/16/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	405	<30	53
D1	E 202		6/9/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	402	NA	NA
D1	E 202		9/14/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	418	NA	NA
D1	E 202		12/8/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	455	NA	NA
D1	E 202		3/22/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	409	NA	NA
D1	E 202		6/15/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	379	NA	NA
D1	E 202		9/8/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	370	NA	NA
D1	E 202		11/28/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	395	NA	NA
D1	SE 203		3/26/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	392	<4	209
D1	SE 203		5/26/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	299	<4	110
D1	SE 203		7/28/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	398	<4	99
D1	SE 203		11/10/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	214	NA	22
D1	SE 203		12/17/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<4	NA
D1	SE 203		3/17/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	262	<30	46
D1	SE 203		6/9/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	278	NA	NA
D1	SE 203		9/14/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	338	NA	NA
D1	SE 203		12/8/2021	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	264	NA	NA
D1	SE 203		3/22/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1210	NA	NA
D1	SE 203		6/15/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	902	NA	NA
D1	SE 203		9/8/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	848	NA	NA
D1	SE 203		11/28/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	306	NA	NA

____ _____ ____ ____ _____ _____ ____ ____ ____ ____ ____

Table B2: Data Summary Table - Soil

									трн			Extractal	ble Petroleur	n Hydrocarb	ons (FPH) by	Method NW	ТРН/ГРН	
												Extractar		in right occurs.			,	
~ .					Total	Percent	Percent				C10-C12	C12-C16	C16-C21	C21-C34	C10-C12	C12-C16	C16-C21	C21-C34
OA	Sample ID	Sample Method or Type	Sample Depth	Sample Date	Solids	Solids	Moisture	GRO	DRO	ORO	Aromatics	Aromatics	Aromatics	Aromatics	Aliphatics	Aliphatics	Aliphatics	Aliphatics
1991 Gas Sta	tion LIST Removal		it bgs	Units	%	%	%	тів/кв	тів/кв	тів/кв	mg/kg	тів/кв	mg/ kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/ kg
F1	service station soil (sidewall)	grah	NA	8/14/1992	82.90	NA	NA	< 5	16	126	NA	NA	NA	NA	NA	NA	NA	NA
	service station (bottom of	6100	1.47.5	0/1//1002	02.50	147.1	147.			120	147 (147 (147 (1474	1474	147 (1474	
E1	excavation)	grab	NA	3/10/1992	NA	NA	NA	< 5	< 25	NA	NA	NA	NA	NA	NA	NA	NA	NA
2015 Woodn	nill Hydrocarbon Investigation by A	rcadis																
A1	B1	soil boring	3.0 - 3.5	10/8/2015	NA	NA	6.8	46	110	25 H	NA	NA	NA	NA	NA	NA	NA	NA
A1	B2	soil boring	4.5 - 5.0	10/8/2015	NA	NA	18	420	2500	19	<60	<60	<60	120	<60	<60	96	610
A1	B3	soil boring	4.5 - 5.0	10/8/2015	NA	NA	4.5	<26	<51	<8	NA	NA	NA	NA	NA	NA	NA	NA
A1	B5	soil boring	2.0 - 5.0	10/8/2015	NA	NA	16	130	740	<7.8	NA	NA	NA	NA	NA	NA	NA	NA
A1	BD-1	duplicate (B5)		10/8/2015	NA	NA	16	0.35	0.25	<0.050	NA	NA	NA	NA	NA	NA	NA	NA
2000, 2002, 8	CD1	coil boring	2.5	8/1/2000	NLA	0.2	NIA	<20	<50	<100	NIA	NLA	NLA	NLA	NLA	NLA	NLA	NIA
<u>F1</u>		soil boring	2.5	8/1/2000	NA	83 97.0	NA	<20	<50	<100	NA	NA	NA	NA	NA	NA	NA	NA
F1	GP2D GP3	soil boring	1/	8/2/2000	NA	67.9 77.4	ΝA	<20	<50	<100	ΝA	ΝA	ΝA	NA	NA	NA	ΝA	NA
F1	GP/	soil boring	14	8/1/2000	NA	75.6	NA	<20	<50	<100	NA	NA	NA	NA	NA	NΑ	NA	NA
F1	GP5	soil boring	4.5	8/1/2000	NA	87.1	NA	<20	<50	<100	NA	NA	NA	NA	NA	NA	NA	NA
F1	GP6	soil boring	17.5	8/1/2000	NA	73.9	NA	<20	<50	<100	NA	NA	NA	NA	NA	NA	NA	NA
F1	GP7C	soil boring	6	8/1/2000	NA	89.8	NA	<20	<50	<100	NA	NA	NA	NA	NA	NA	NA	NA
F1	GP8	soil boring	31.5	8/1/2000	NA	75.9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	GP9	soil boring	12	8/1/2000	NA	74.8	NA	<20	<50	<100	NA	NA	NA	NA	NA	NA	NA	NA
F1	GP9	soil boring	27.5	8/1/2000	NA	83	NA	<20	<50	<100	NA	NA	NA	NA	NA	NA	NA	NA
F1	GP10	soil boring	21.5	8/1/2000	NA	65.6	NA	<20	<50	<100	NA	NA	NA	NA	NA	NA	NA	NA
F1	GP11	soil boring	10.5	8/1/2000	NA	82.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	GP12	soil boring	14.5	8/2/2000	NA	77.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	GP13	soil boring	6.5	8/2/2000	NA	88.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	GP14	soil boring	8	8/2/2000	NA	81.9	NA	<20	<50	<100	NA	NA	NA	NA	NA	NA	NA	NA
F1	GP15	soil boring	7.5	8/2/2000	NA	80.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	GP16	soil boring	2.7	8/3/2000	NA	87.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	GP17	soil boring	6	8/2/2000	NA	70.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	GP1/C	soil boring	11.5	8/2/2000	NA	/9.9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1		soil boring	1.5	8/3/2000	NA	84 97 E	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
<u>F1</u>	GP19 GP20	soil boring	5.5	8/3/2000	NA	07.5 77.5	NA	<20	<50	<100	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-1(1')	soil boring	1	7/19/2000	NA	NA	ΝA	< <u>20</u>	< <u></u> NA	<100 NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-1(13')	soil boring	13	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-1(26')	soil boring	26	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-1B(28')	soil boring	28	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-2(2')	soil boring	2	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-2(40')	soil boring	40	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-3(1')	soil boring	1	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-3B(10')	soil boring	10	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-4(2')	soil boring	2	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-4(12')	soil boring	12	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-4(37')	soil boring	37	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-5(3')	soil boring	3	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-5(10')	soil boring	10	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-5B(1')	soil boring	1	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
<u>+1</u>	B-5B(6 [°])	soil boring	6	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
<u>F1</u>	B-D(31)	soil boring	31	7/10/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
<u>F1</u>	D-7A(1)	soil boring		7/10/2016	NA	INA NIA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1 1			5	1/19/2010	NA	NA	NA	INA	INA	INA	NA	INA	INA	NA	INA	NA	INA	INA

Table B2: Data Summary Table - Soil

					Vo	latile Petrole	eum Hydroca	arbons (VPH)) by Metho	od NWTPH/V	РН					Tota	al Metals					
									-													
					C10-C12	C5-C6	C6-C8	C8-C10	Total	C10-C12	C8-C10											
OA	Sample ID	Sample Method or Type	Sample Depth	Sample Date	Aliphatics	Aliphatics	Aliphatics	Aliphatics	VPH	Aromatics	Aromatics	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Silver	Selenium	Zinc
1991 Gas Sta	tion UST Removal		ft bgs	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
E1	service station soil (sidewall)	grab	NA	8/14/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	service station (bottom of	0																				
E1	excavation)	grab	NA	3/10/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2015 Woodn	nill Hydrocarbon Investigation by A	rcadis																				
A1	B1	soil boring	3.0 - 3.5	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	B2	soil boring	4.5 - 5.0	10/8/2015	<24	<24	<24	<24	<170	<24	<24	NA	NA	NA	NA	NA	12	NA	NA	NA	NA	NA
A1	B3	soil boring	4.5 - 5.0	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AL 	B5 BD_1	duplicate (B5)	2.0 - 5.0	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2000. 2002.	and 2016 CBC Sampling	uupiicate (B3)		10/8/2013	INA	NA	NA	NA	NA	NA	NA	NA	NA	INA	NA	NA	NA	NA	NA	NA	NA	NA
F1	GP1	soil boring	2.5	8/1/2000	NA	NA	NA	NA	NA	NA	NA	5.2	145	0.542	20.7	NA	<10.0	<0.1	NA	<1	0.988	NA
F1	GP2B	soil boring	7.5	8/2/2000	NA	NA	NA	NA	NA	NA	NA	1.29	143	<0.5	23	NA	<10	<0.1	NA	<1	0.637	NA
F1	GP3	soil boring	14	8/1/2000	NA	NA	NA	NA	NA	NA	NA	6.46	114	<0.5	24.8	NA	14.5	<0.1	NA	<1	0.588	NA
F1	GP4	soil boring	19	8/1/2000	NA	NA	NA	NA	NA	NA	NA	5.76	155	<0.5	48.3	NA	17.7	<0.1	NA	<1	0.939	NA
F1	GP5	soil boring	4.5	8/1/2000	NA	NA	NA	NA	NA	NA	NA	1.32	91.9	<0.5	4.54	NA	<10	<0.1	NA	<1	1.37	NA
F1	GP6	soil boring	17.5	8/1/2000	NA	NA	NA	NA	NA	NA	NA	5.46	126	<0.5	29.4	NA	12.5	<0.1	NA	<1	0.921	NA
F1	GP7C	soil boring	6	8/1/2000	NA	NA	NA	NA	NA	NA	NA	0.629	53	<0.5	3.01	NA	<10.0	0.442	NA	<1	0.824	NA
F1 F1		soil boring	31.5	8/1/2000	NA	NA	NA	NA	NA	NA	NA	NA 13	104	NA ZO E	NA 00 0	NA	10.4	NA <0.1	NA	NA 1	NA 0 760	NA
F1 F1	GP9	soil boring	27.5	8/1/2000	NΑ	NΑ	NΑ	NΑ	NA	NΑ	NΑ	0.687	74 1	<0.5	59	NΑ	10.4	<0.1	NΑ	<1	0.769	NA
F1	GP10	soil boring	21.5	8/1/2000	NA	NA	NA	NA	NA	NA	NA	<0.5	120	<0.5	116	NA	<10.0	<0.1	NA	<1	1.06	NA
F1	GP11	soil boring	10.5	8/1/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	GP12	soil boring	14.5	8/2/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	GP13	soil boring	6.5	8/2/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	GP14	soil boring	8	8/2/2000	NA	NA	NA	NA	NA	NA	NA	<0.5	41.8	<0.5	1.4	NA	<10.0	<0.1	NA	<1	<0.5	NA
F1	GP15	soil boring	7.5	8/2/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	GP16	soil boring	2.7	8/3/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
<u>F1</u>	GP17	soil boring	6	8/2/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1 F1		soil boring	11.5	8/2/2000	NA	NA	NA	NA	NA	NA	NA	NA 4.04	100	1 72	10 2	NA		0.676	NA	NA 1	NA 0 EC	NA
F1 F1	GP10 GP19	soil boring	1.5	8/3/2000	NΑ	NΑ	NΑ	NΑ	NA	NΑ	NΑ	4.04	499	1.75	23.6	NΑ	29.6	0.878	NΑ	<1	0.50	NA
F1	GP20	soil boring	5.5	8/3/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-1(1')	soil boring	1	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-1(13')	soil boring	13	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-1(26')	soil boring	26	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-1B(28')	soil boring	28	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-2(2')	soil boring	2	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-2(40')	soil boring	40	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-3(1')	soil boring	1	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1 F1	B-3B(10) B-4(2')	soil boring	10	7/10/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-4(12')	soil boring	12	7/19/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-4(37')	soil boring	37	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-5(3')	soil boring	3	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-5(10')	soil boring	10	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-5B(1')	soil boring	1	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-5B(6')	soil boring	6	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-6(31')	soil boring	31	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-7A(1')	soil boring	1	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-7A(5')	soil boring	5	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

													vo	Cs								
																1 2-						
					1112-	111-	1122-	112-	1 1-	1 1-	1 1-	123-	123-	124-	124-	L,2- Dibromo-3-	1 2-	1 2-	1 2-	1 2-	135-	1 3-
					Tetrachlor	Trichloroet	Tetrachlor	Trichloroe	Dichloroe	Dichloroe	Dichlorop	Trichloro	Trichloro	Trichloro	Trimethyl	Chloropro	Dibromoe	Dichlorob	Dichloroe	Dichlorop	Trimethyl	Dichlorob
OA	Sample ID	Sample Method or Type	Sample Depth	Sample Date	oethane	hane	oethane	thane	thane	thene	ropene	benzene	propane	benzene	benzene	pane	thane	enzene	thane	ropane	benzene	enzene
	•		ft bgs	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ng/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1991 Gas Sta	ation UST Removal																					
E1	service station soil (sidewall)	grab	NA	8/14/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	service station (bottom of																					
	excavation)	grab	NA	3/10/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2015 Woodr	nill Hydrocarbon Investigation by A	Arcadis																				
A1	B1	soil boring	3.0 - 3.5	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	B2	soil boring	4.5 - 5.0	10/8/2015	<0.001 H	<0.0021 H	<0.0041 H	<0.0021 H	<0.001 H	<0.0052 H	<0.0021 H	<0.0031 H	<0.0021 H	<0.0021 H	<0.0021 H	<0.01 H	<0.001 H	<0.0021 H	<0.001 H	<0.0021 H	<0.0052 H	<0.0021 H
A1	B3	soil boring	4.5 - 5.0	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1 		duplicato (PE)	2.0 - 5.0	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2000 2002	and 2016 CBC Sampling	duplicate (BS)		10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	GP1	soil horing	2.5	8/1/2000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
F1	GP2B	soil boring	7.5	8/2/2000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
F1	GP3	soil boring	14	8/1/2000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
F1	GP4	soil boring	19	8/1/2000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
F1	GP5	soil boring	4.5	8/1/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	GP6	soil boring	17.5	8/1/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	GP7C	soil boring	6	8/1/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	GP8	soil boring	31.5	8/1/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	GP9	soil boring	12	8/1/2000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
F1	GP9	soil boring	27.5	8/1/2000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
F1	GP10	soil boring	21.5	8/1/2000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
F1	GP11	soil boring	10.5	8/1/2000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
F1	GP12	soil boring	14.5	8/2/2000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
F1	GP13	soil boring	6.5	8/2/2000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
F1	GP14	soil boring	8	8/2/2000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
<u>F1</u>	GP15	soil boring	7.5	8/2/2000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
F1		soil boring	2.7	8/3/2000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
F1 F1	GP17C	soil boring	11 5	8/2/2000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	0 292	<0.1	<0.1	<0.1	<0.1
F1	GP18	soil boring	11.5	8/2/2000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.302	<0.1	<0.1	<0.1	<0.1
F1	GP19	soil boring	1.5	8/3/2000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
F1	GP20	soil boring	5.5	8/3/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-1(1')	soil boring	1	7/19/2016	< 0.0114	< 0.0114	<0.0114	<0.0114	< 0.0114	< 0.0114	<0.0114	< 0.0114	< 0.0114	< 0.0114	< 0.0114	<0.0114	< 0.0114	<0.0114	<0.0114	< 0.0114	<0.0114	< 0.0114
F1	B-1(13')	soil boring	13	7/19/2016	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128
F1	B-1(26')	soil boring	26	7/19/2016	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164
F1	B-1B(28')	soil boring	28	7/20/2016	<0.0147	<0.0147	<0.0147	<0.0147	<0.0147	<0.0147	<0.0147	<0.0147	<0.0147	<0.0147	<0.0147	<0.0147	<0.0147	<0.0147	<0.0147	<0.0147	<0.0147	<0.0147
F1	B-2(2')	soil boring	2	7/19/2016	<0.0139	<0.0139	<0.0139	<0.0139	<0.0139	<0.0139	<0.0139	<0.0139	<0.0139	<0.0139	<0.0139	<0.0139	<0.0139	<0.0139	<0.0139	<0.0139	<0.0139	<0.0139
F1	B-2(40')	soil boring	40	7/19/2016	<0.0103	<0.0103	<0.0103	<0.0103	<0.0103	<0.0103	<0.0103	<0.0103	<0.0103	<0.0103	<0.0103	<0.0103	<0.0103	<0.0103	<0.0103	<0.0103	<0.0103	<0.0103
F1	B-3(1')	soil boring	1	7/19/2016	<0.0168	<0.0168	<0.0168	<0.0168	<0.0168	<0.0168	<0.0168	<0.0168	<0.0168	<0.0168	<0.0168	<0.0168	<0.0168	<0.0168	<0.0168	<0.0168	<0.0168	<0.0168
F1	B-3B(10')	soil boring	10	7/20/2016	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134
F1	B-4(2')	soil boring	2	7/19/2016	<0.0125	<0.0125	<0.0125	<0.0125	<0.0125	<0.0125	<0.0125	<0.0125	<0.0125	<0.0125	<0.0125	<0.0125	<0.0125	<0.0125	<0.0125	<0.0125	<0.0125	<0.0125
F1	B-4(12')	soil boring	12	7/19/2016	<0.0129	<0.0129	<0.0129	<0.0129	<0.0129	<0.0129	<0.0129	<0.0129	<0.0129	<0.0129	<0.0129	<0.0129	<0.0129	<0.0129	<0.0129	<0.0129	<0.0129	<0.0129
<u>F1</u>	B-4(37')	soil boring	37	7/19/2016	<0.0140	<0.0140	< 0.0140	<0.0140	<0.0140	<0.0140	<0.0140	<0.0140	<0.0140	< 0.0140	<0.0140	<0.0140	< 0.0140	<0.0140	<0.0140	<0.0140	<0.0140	<0.0140
F1	B-5(3')	soil boring	3	7/19/2016	<0.0130	<0.0130	<0.0130	<0.0130	<0.0130	<0.0130	<0.0130	<0.0130	<0.0130	<0.0130	<0.0130	<0.0130	<0.0130	<0.0130	<0.0130	<0.0130	<0.0130	<0.0130
F1	B-5(10')	soil boring	10	7/19/2016	<0.0333	<0.0333	<0.0333	<0.0333	<0.0333	<0.0333	<0.0333	<0.0333	<0.0333	<0.0333	<0.0333	<0.0333	<0.0333	<0.0333	<0.0333	<0.0333	<0.0333	<0.0333
	B-2B(1)	soil boring	1	7/20/2016	<0.0109	<0.0105	<0.0105	<0.0105	<0.0105	<0.0105	<0.0105	<0.0105	<0.0105	<0.0105	<0.0109	<0.0105	<0.0105	<0.0105	<0.0105	<0.0105	<0.0105	<0.0105
		soil boring	21	7/20/2016	<0.0135	<0.0135	<0.0135	<0.0135	<0.0135	<0.0135	<0.0135	<0.0135	<0.0135	<0.0135	<0.0135	<0.0135	<0.0135	<0.0135	<0.0135	<0.0135	<0.0135	<0.0135
F1	B-74(1')	soil boring	<u> </u>	7/10/2010	<0.0134	<0.0134	<0.0134 <0.0128	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134
<u>F1</u>	B-7A(5')	soil horing	<u> </u>	7/19/2016	<0.0120	<0.0120	<0.0120	<0.0120	<0.0120	<0.0120	<0.0120	<0.0120	<0.0120	<0.0120	<0.0120	<0.0120	<0.0120	<0.0120	<0.0120	<0.0120	<0.0120	<0.0120
· +		3011 001116	5	,, 10,2010	-0.0271	-0.0271	-0.0271	-0.0271	.0.0271	-0.0271	-0.0271	-0.0271	-0.0271	-0.0271	-0.0271	-0.0271	-0.0271	-0.0271	-0.0271	-0.0271	-0.0271	-0.0271

													V	OCs								
												4 Mothul										
					1 2	1 /	2.2	2		Λ	Λ	4-ivietriyi-				Promochl	Promodic				n	
					I,J- Dichloron	1,4- Dichloroh	Z,Z- Dichloron	2- Chlorotol	2-	4- Chlorotol	4- Isopropylt	2- nentanon			Bromohe	orometha	bloromet	Bromofor	Bromome	2_	II- Butylbonz	Carbon
$\cap \Delta$	Sample ID	Sample Method or Type	Sample Denth	Sample Date	ronane	enzene	ronane		Z- Hevanone	LIENE	oluene		Acetone	Renzene	nzene	ne	hane	m	thane	2- Butanone	ene	disulfide
	Sample ID	Sample Wethou of Type	ft høs	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mø/kø	mg/kg	mø/kø	mg/kg	mg/kg	mø/kø	mg/kg	mø/kø	mg/kg	mø/kø	mg/kg
1991 Gas Sta	ation UST Removal		11 080	01110	116/16						116/16	116/16	1116/116			0,00		116/16				1116/116
E1	service station soil (sidewall)	grab	NA	8/14/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.05	NA	NA	NA	NA	NA	NA	NA	NA
	service station (bottom of	8.44		-,,																		
E1	excavation)	grab	NA	3/10/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2015 Woodn	nill Hydrocarbon Investigation by A	rcadis																				
A1	B1	soil boring	3.0 - 3.5	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	B2	soil boring	4.5 - 5.0	10/8/2015	<0.0021 H	<0.001 H	<0.0052 H	<0.0021 H	NA	<0.0021 H	<0.0021 H	NA	NA	<0.0021 H	<0.01 H	<0.0021 H	<0.001 H	<0.0021 H	<0.001 H	NA	NA	NA
A1	B3	soil boring	4.5 - 5.0	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	B5	soil boring	2.0 - 5.0	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	BD-1	duplicate (B5)		10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2000, 2002,	and 2016 CBC Sampling																					
F1	GP1	soil boring	2.5	8/1/2000	<0.1	<0.1	<0.1	<0.1	<1.0	<0.1	NA	<0.5	<1.0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<1.0	<0.5	<1.0
F1	GP2B	soil boring	7.5	8/2/2000	<0.1	<0.1	<0.1	<0.1	<1.0	<0.1	NA	<0.5	<1.0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<1.0	<0.5	<1.0
F1	GP3	soil boring	14	8/1/2000	<0.1	<0.1	<0.1	<0.1	<1.0	<0.1	NA	<0.5	<1.0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<1.0	<0.5	<1.0
F1	GP4	soil boring	19	8/1/2000	<0.1	<0.1	<0.1	<0.1	<1.0	<0.1	NA	<0.5	<1.0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<1.0	<0.5	<1.0
<u>F1</u>		soil boring	4.5	8/1/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
<u>F1</u>	GP0 GP7C	soil boring	17.5 6	8/1/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA
F1		soil boring	21 5	8/1/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	GP9	soil boring	12	8/1/2000	<0.1	<0.1	<0.1	<0.1	<10	<0.1	NA	<0.5	<1.0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<1.0	<0.5	<1.0
F1	GP9	soil boring	27.5	8/1/2000	<0.1	<0.1	<0.1	<0.1	<1.0	<0.1	NA	<0.5	<1.0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<1.0	<0.5	<1.0
F1	GP10	soil boring	21.5	8/1/2000	<0.1	<0.1	<0.1	<0.1	<1.0	<0.1	NA	<0.5	<1.0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<1.0	<0.5	<1.0
F1	GP11	soil boring	10.5	8/1/2000	<0.1	<0.1	<0.1	<0.1	<1.0	<0.1	NA	<0.5	<1.0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<1.0	<0.5	<1.0
F1	GP12	soil boring	14.5	8/2/2000	<0.1	<0.1	<0.1	<0.1	<1.0	<0.1	NA	<0.5	<1.0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<1.0	<0.5	<1.0
F1	GP13	soil boring	6.5	8/2/2000	<0.1	<0.1	<0.1	<0.1	<1.0	<0.1	NA	<0.5	<1.0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<1.0	<0.5	<1.0
F1	GP14	soil boring	8	8/2/2000	<0.1	<0.1	<0.1	<0.1	<1.0	<0.1	NA	<0.5	<1.0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<1.0	<0.5	<1.0
F1	GP15	soil boring	7.5	8/2/2000	<0.1	<0.1	<0.1	<0.1	<1.0	<0.1	NA	<0.5	<1.0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<1.0	<0.5	<1.0
F1	GP16	soil boring	2.7	8/3/2000	<0.1	<0.1	<0.1	<0.1	<1.0	<0.1	NA	<0.5	<1.0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<1.0	<0.5	<1.0
F1	GP17	soil boring	6	8/2/2000	<0.1	1.1	<0.1	<0.1	<1.0	<0.1	NA	<0.5	5.13	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<1.0	<0.5	<1.0
F1	GP17C	soil boring	11.5	8/2/2000	<0.1	<0.1	<0.1	<0.1	<1.0	<0.1	NA	<0.5	<1.0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<1.0	<0.5	<1.0
F1	GP18	soil boring	1.5	8/3/2000	<0.1	<0.1	<0.1	<0.1	<1.0	<0.1	NA	<0.5	<1.0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<1.0	<0.5	<1.0
F1	GP19	soil boring	1.5	8/3/2000	<0.1	<0.1	<0.1	<0.1	<1.0	<0.1	NA	<0.5	<1.0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.5	<1.0	<0.5	<1.0
F1	GP20	soil boring	5.5	8/3/2000	NA	NA	NA	NA		NA	NA		NA	NA	NA	NA	NA	NA	NA			
<u>F1</u>	B-1(1')	soil boring	1	7/19/2016	<0.0114	<0.0114	<0.0114	<0.0114	<0.0228	<0.0114	<0.0114	<0.0456	<0.114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0456	<0.0114	<0.0114
	B-1(13')	soil boring	13	7/19/2016	<0.0128	<0.0128	<0.0128	<0.0128	<0.0256	<0.0128	<0.0128	<0.0511	<0.128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0511	<0.0128	<0.0128
F1 E1	B-1(20)	soil boring	26	7/19/2016	<0.0164	<0.0164	<0.0164	<0.0164	<0.0327	<0.0164	<0.0164	<0.0655	<0.164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0655	<0.0164	<0.0164
<u>F1</u>		soil boring	20	7/10/2016	<0.0147	<0.0147	<0.0147	<0.0147	<0.0294	<0.0147	<0.0147		<0.147	<0.0147	<0.0147	<0.0147	<0.0147	<0.0147	<0.0147		<0.0147	<0.0147
F1	B-2(2) B-2(40')	soil boring	40	7/19/2010	<0.0139	<0.0133	<0.0139	<0.0139		<0.0139	<0.0139	<0.0337	<0.139	<0.0139	<0.0139	<0.0133	<0.0139	<0.0139	<0.0139	<0.0337	<0.0139	<0.0139
F1	B-3(1')	soil boring	1	7/19/2016	<0.0103	<0.0103	<0.0103	<0.0103	<0.0207	<0.0103	<0.0103	<0.0414	<0.103	<0.0103	<0.0103	<0.0103	<0.0103	<0.0103	<0.0103	<0.0414	<0.0103	<0.0103
 F1	B-3B(10')	soil boring	10	7/20/2016	<0.0134	<0.0134	<0.0134	<0.0134	<0.0268	<0.0134	<0.0134	<0.0536	<0.134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0536	<0.0134	<0.0134
F1	B-4(2')	soil boring	2	7/19/2016	<0.0125	<0.0125	<0.0125	<0.0125	<0.0251	<0.0125	<0.0125	<0.0502	<0.125	<0.0125	<0.0125	<0.0125	<0.0125	<0.0125	<0.0125	<0.0502	<0.0125	<0.0125
F1	B-4(12')	soil boring	12	7/19/2016	<0.0129	<0.0129	<0.0129	<0.0129	<0.0259	< 0.0129	<0.0129	< 0.0517	<0.129	<0.0129	<0.0129	< 0.0129	<0.0129	< 0.0129	<0.0129	< 0.0517	<0.0129	<0.0129
F1	B-4(37')	soil boring	37	7/19/2016	<0.0140	<0.0140	<0.0140	<0.0140	<0.0279	<0.0140	<0.0140	<0.0559	<0.140	<0.0140	<0.0140	<0.0140	<0.0140	<0.0140	<0.0140	<0.0559	<0.0140	<0.0140
F1	B-5(3')	soil boring	3	7/19/2016	<0.0130	<0.0130	<0.0130	<0.0130	<0.026	<0.0130	<0.0130	<0.0519	<0.130	<0.0130	<0.0130	<0.0130	<0.0130	<0.0130	<0.0130	<0.0519	<0.0130	<0.0130
F1	B-5(10')	soil boring	10	7/19/2016	<0.0333	<0.0333	<0.0333	<0.0333	<0.0665	<0.0333	<0.0333	<0.133	<0.333	<0.0333	<0.0333	<0.0333	<0.0333	<0.0333	<0.0333	<0.133	<0.0333	<0.0333
F1	B-5B(1')	soil boring	1	7/20/2016	<0.0169	<0.0169	<0.0169	<0.0169	<0.0338	<0.0169	<0.0169	<0.0677	<0.169	<0.0169	<0.0169	<0.0169	<0.0169	<0.0169	<0.0169	<0.0677	<0.0169	<0.0169
F1	B-5B(6')	soil boring	6	7/20/2016	<0.0135	<0.0135	<0.0135	<0.0135	<0.0269	<0.0135	<0.0135	<0.0539	<0.135	<0.0135	<0.0135	<0.0135	<0.0135	<0.0135	<0.0135	<0.0539	<0.0135	<0.0135
F1	B-6(31')	soil boring	31	7/20/2016	< 0.0134	<0.0134	<0.0134	<0.0134	<0.0267	<0.0134	< 0.0134	< 0.0534	<0.134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134
F1	B-7A(1')	soil boring	1	7/19/2016	<0.0128	<0.0128	<0.0128	<0.0128	<0.0255	<0.0128	<0.0128	<0.051	<0.128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.051	<0.0128	<0.0128
F1	B-7A(5')	soil boring	5	7/19/2016	<0.0271	<0.0271	<0.0271	<0.0271	<0.0543	<0.0271	<0.0271	<0.109	<0.271	<0.0271	<0.0271	<0.0271	<0.0271	<0.0271	<0.0271	<0.109	<0.0271	<0.0271

													١	/OCs								
					Carbon					cis-1,2-	cis-1,3-	Dibromoc	:	Dichlorod		Hexachlor				m-Xylene		n-
					tetrachlor	Chlorobe	Chloroeth	Chlorofor	Chlorome	Dichloroe	Dichlorop	hloromet	Dibromo	ifluorome	Ethyl	obutadien	lsopropyl	Methyl	Methylene	& Р-	Naphthal	Butylbenz
OA	Sample ID	Sample Method or Type	Sample Depth	Sample Date	ide	nzene	ane	m	thane	thene	ropene	hane	methane	thane	benzene	е	benzene	tert-butyl	Chloride	Xylene	ene	ene
			ft bgs	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1991 Gas Sta	ation UST Removal																					
E1	service station soil (sidewall)	grab	NA	8/14/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.1	NA	NA	NA	NA	<0.1	NA	NA
E 1	service station (bottom of																					
	excavation)	grab	NA	3/10/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2015 Woodr	mill Hydrocarbon Investigation by A	Arcadis																				
A1	B1	soil boring	3.0 - 3.5	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	B2	soil boring	4.5 - 5.0	10/8/2015	<0.0021 H	<0.0021 H	<0.0021 H	<0.0021 H	<0.001 H	<0.0021 H	<0.001 H	<0.0021 H	<0.001 H	<0.0021 H	<0.0021 H	<0.0031 H	<0.0021 H	<0.0021 H	<0.016 H	<0.0021 H	<0.01 H	<0.0021 H
A1	B3	soil boring	4.5 - 5.0	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	B5	soil boring	2.0 - 5.0	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	BD-1	duplicate (B5)		10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2000, 2002,	and 2016 CBC Sampling		2.5	0/1/2000	-0.1	10.1	-0.1	-0.1	-0 F	-0.1	10.1	-0.1	-0.1	-0 F	-0.1	-0.2	(0.2	-0.1	-0 F			NIA.
F1	GP1	soil boring	2.5	8/1/2000	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.2	<0.2	<0.1	<0.5	<0.2	<0.2	NA
F1 51	GP2B	soil boring	1.5	8/2/2000	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.2	<0.2	<0.1	<0.5	<0.2	<0.2	NA
<u></u>	GP4	soil boring	14	8/1/2000	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.2	<0.2	<0.1	<0.5	<0.2	<0.2	NA
F1	GP5	soil boring	19	8/1/2000	NA	NA	NA	NA	NA	NA	NA	NA	N/A	NA	NA	NA	NIA	NA	NA	NIA	NA	NA
F1		soil boring	17.5	8/1/2000	NA	NA	ΝA	ΝA	NA	NA	NA	NA	NA	ΝA	NA	ΝA	NA	NA	ΝA	NA	NA	NA
F1	GP7C	soil boring	6	8/1/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	GP8	soil boring	31 5	8/1/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	GP9	soil boring	12	8/1/2000	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.2	<0.2	<0.1	<0.5	<0.2	<0.2	NA
F1	GP9	soil boring	27.5	8/1/2000	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.2	<0.2	<0.1	< 0.5	<0.2	<0.2	NA
F1	GP10	soil boring	21.5	8/1/2000	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.2	<0.2	<0.1	<0.5	<0.2	<0.2	NA
F1	GP11	soil boring	10.5	8/1/2000	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.2	<0.2	<0.1	<0.5	<0.2	<0.2	NA
F1	GP12	soil boring	14.5	8/2/2000	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.2	<0.2	<0.1	<0.5	<0.2	<0.2	NA
F1	GP13	soil boring	6.5	8/2/2000	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.2	<0.2	<0.1	<0.5	<0.2	<0.2	NA
F1	GP14	soil boring	8	8/2/2000	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.2	<0.2	<0.1	<0.5	<0.2	<0.2	NA
F1	GP15	soil boring	7.5	8/2/2000	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.2	<0.2	<0.1	<0.5	<0.2	<0.2	NA
F1	GP16	soil boring	2.7	8/3/2000	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.2	<0.2	<0.1	<0.5	<0.2	<0.2	NA
F1	GP17	soil boring	6	8/2/2000	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.2	<0.2	<0.1	0.75	<0.2	<0.2	NA
F1	GP17C	soil boring	11.5	8/2/2000	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.2	<0.2	<0.1	<0.5	<0.2	<0.2	NA
F1	GP18	soil boring	1.5	8/3/2000	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.2	<0.2	<0.1	<0.5	<0.2	<0.2	NA
F1	GP19	soil boring	1.5	8/3/2000	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5	<0.1	<0.2	<0.2	<0.1	<0.5	<0.2	<0.2	NA
F1	GP20	soil boring	5.5	8/3/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
<u>F1</u>	B-1(1')	soil boring	1	7/19/2016	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	< 0.0569	<0.0228	<0.0114	<0.0114
F1	B-1(13')	soil boring	13	7/19/2016	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0639	<0.0256	<0.0128	<0.0128
F1	B-1(26 [°])	soil boring	26	7/19/2016	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0818	<0.0327	<0.0164	<0.0164
F1	B-1B(28)	soil boring	28	7/20/2016	<0.0147	<0.0147	<0.0147	<0.0147	<0.0147	<0.0147	<0.0147	<0.0147	<0.0147	<0.0147	<0.0147	<0.0147	<0.0147	<0.0147	<0.0734	<0.0294	<0.0147	<0.0147
	B-2(2)	soil boring	<u> </u>	7/19/2016	<0.0139	<0.0139	<0.0139	<0.0139	<0.0139	<0.0139	<0.0139	<0.0139	<0.0139	<0.0139	<0.0139	<0.0139	<0.0139	<0.0139	<0.0696	<0.0278	<0.0139	<0.0139
F1	B-2(40)	soil boring	40	7/19/2010	<0.0103	<0.0103	<0.0103	<0.0103	<0.0103	<0.0103	<0.0103	<0.0103	<0.0103	<0.0103	<0.0103	<0.0103	<0.0103	<0.0103	<0.0317	<0.0207	<0.0103	<0.0103
F1	B-3B(10')	soil boring	10	7/20/2016	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0071	<0.0330	<0.0100	<0.0100
F1	B-4(2')	soil boring	2	7/19/2016	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0070	<0.0200	<0.0134	<0.0134
F1	B-4(12')	soil boring	12	7/19/2016	<0.0129	<0.0129	<0.0129	<0.0129	<0.0129	<0.0123	<0.0129	<0.0129	<0.0129	<0.0129	<0.0129	<0.0123	<0.0129	<0.0123	<0.0027	<0.0251	<0.0129	<0.0129
F1	B-4(37')	soil boring	37	7/19/2016	<0.0140	<0.0140	<0.0140	<0.0140	<0.0140	<0.0140	<0.0140	<0.0140	<0.0140	<0.0140	<0.0140	<0.0140	<0.0140	<0.0140	<0.0699	<0.0279	<0.0140	<0.0140
 F1	B-5(3')	soil boring	3	7/19/2016	<0.0130	<0.0130	<0.0130	<0.0130	<0.0130	<0.0130	<0.0130	<0.0130	<0.0130	<0.0130	<0.0130	<0.0130	<0.0130	<0.0130	<0.0649	<0.026	<0.0130	<0.0130
F1	B-5(10')	soil boring	10	7/19/2016	< 0.0333	<0.0333	< 0.0333	< 0.0333	<0.0333	< 0.0333	< 0.0333	< 0.0333	< 0.0333	< 0.0333	< 0.0333	< 0.0333	<0.0333	<0.0333	<0.0649	<0.0665	< 0.0333	<0.0333
F1	B-5B(1')	soil boring	1	7/20/2016	<0.0169	<0.0169	<0.0169	<0.0169	<0.0169	< 0.0169	< 0.0169	< 0.0169	<0.0169	<0.0169	< 0.0169	< 0.0169	<0.0169	<0.0169	<0.0846	<0.0338	<0.0169	<0.0169
F1	B-5B(6')	soil boring	6	7/20/2016	<0.0135	<0.0135	<0.0135	<0.0135	<0.0135	<0.0135	<0.0135	<0.0135	<0.0135	<0.0135	<0.0135	<0.0135	<0.0135	<0.0135	<0.0673	<0.0269	<0.0135	<0.0135
F1	B-6(31')	soil boring	31	7/20/2016	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0134	<0.0668	<0.0267	<0.0134	<0.0134
F1	B-7A(1')	soil boring	1	7/19/2016	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0638	<0.0255	<0.0128	<0.0128
F1	B-7A(5')	soil boring	5	7/19/2016	<0.0271	<0.0271	<0.0271	<0.0271	<0.0271	<0.0271	< 0.0271	<0.0271	<0.0271	< 0.0271	<0.0271	<0.0271	<0.0271	<0.0271	<0.136	<0.0543	<0.0271	<0.0271

											VOCs									SVOCs		
																				01000		
							p-	sec-		t-			trans-1,2-	trans-1,3-		Trichlorof						
					N-Propyl		Isopropyl	Butylbenz		Butylbenz	Tetrachlo		Dichloroe	Dichlorop	Trichloroe	luoromet	Vinyl	Acenapht	Acenapht		Anthracen	Benzo(a)a
OA	Sample ID	Sample Method or Type	Sample Depth	Sample Date	benzene	o-Xylene	benzene	ene	Styrene	ene	roethene	Toluene	thene	ropene	thene	hane	chloride	hene	hylene	Aniline	e	nthracene
1001 Gas Sta	tion LIST Removal		rt bgs	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
F1	service station soil (sidewall)	grah	NA	8/14/1992	NA	<0.1	NA	NA	NA	NA	NA	<0.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	service station (bottom of	6100	14/ (0/14/1992	1 1/1	\U.1	1 1/7 1	1473	1473	1473	1 1/ 1		1473	1473	1473	1 1/7 1	1473	1473	147.1	1473	147 (1473
E1	excavation)	grab	NA	3/10/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2015 Woodn	nill Hydrocarbon Investigation by Are	cadis		-, -,																		
A1	B1	soil boring	3.0 - 3.5	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	B2	soil boring	4.5 - 5.0	10/8/2015	<0.0021 H	<0.0021 H	NA	<0.0021 H	<0.01 H	<0.0021 H	<0.0021 H	<0.0021 H	NA	NA	NA	NA	NA					
A1	B3	soil boring	4.5 - 5.0	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	B5	soil boring	2.0 - 5.0	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	BD-1	duplicate (B5)		10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2000, 2002, a	and 2016 CBC Sampling																					
F1	GP1	soil boring	2.5	8/1/2000	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.33	<0.33	NA	<0.33	<0.33
F1	GP2B	soil boring	7.5	8/2/2000	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.33	< 0.33	NA	<0.33	< 0.33
F1	GP3	soil boring	14	8/1/2000	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.33	<0.33	NA	<0.33	<0.33
<u>F1</u>	GP4	soil boring	19	8/1/2000	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1.65	<1.65	NA	<1.65	<1.65
F1	GP5	soll boring	4.5	8/1/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
<u>F1</u>		soil boring	 	8/1/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1 F1		soil boring	21 5	8/1/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA	NA
F1		soil boring	12	8/1/2000	<0 1	<0 1	<0.2	<0 1	<0 1	<0 1	2 95	<0 1	<0 1	<0 1	<0 1	<0 1	<0 1	<0.33	<0 33	NA	<0.33	<0.33
F1 F1	GP9	soil boring	27.5	8/1/2000	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.33	<0.33	NΑ	<0.33	<0.33
 F1	GP10	soil boring	21.5	8/1/2000	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	0.25	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.33	<0.33	NA	<0.33	<0.33
 F1	GP11	soil boring	10.5	8/1/2000	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA	NA	NA	NA	NA
F1	GP12	soil boring	14.5	8/2/2000	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA	NA	NA	NA	NA
F1	GP13	soil boring	6.5	8/2/2000	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA	NA	NA	NA	NA
F1	GP14	soil boring	8	8/2/2000	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.33	NA	NA	NA	NA
F1	GP15	soil boring	7.5	8/2/2000	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.33	<0.33	NA	<0.33	<0.33
F1	GP16	soil boring	2.7	8/3/2000	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA	NA	NA	NA	NA
F1	GP17	soil boring	6	8/2/2000	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<13.2	<13.2	NA	<13.2	<13.2
F1	GP17C	soil boring	11.5	8/2/2000	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.33	<0.33	NA	<0.33	<0.33
F1	GP18	soil boring	1.5	8/3/2000	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.33	<0.33	NA	<0.33	<0.33
F1	GP19	soil boring	1.5	8/3/2000	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1.65	<1.65	NA	<1.65	<1.65
F1	GP20	soil boring	5.5	8/3/2000	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-1(1')	soil boring	1	7/19/2016	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	NA	NA	NA	NA	NA
F1	B-1(13')	soil boring	13	7/19/2016	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	NA	NA	NA	NA	NA
<u>F1</u>	B-1(26 ⁻)	soil boring	26	7/19/2016	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	<0.0164	NA	NA	NA	NA	NA
F1	B-1B(28)	soil boring	28	7/20/2016	<0.0147	<0.0147	<0.0147	<0.0147	<0.0147	<0.0147	<0.0147	<0.0147	<0.0147	<0.0147	<0.0147	<0.0147	<0.0147	NA	NA	NA	NA	NA
F1 E1	B-2(2)	soil boring	2	7/19/2016	<0.0139	<0.0139	<0.0139	<0.0139	<0.0139	<0.0139	<0.0139	<0.0139	<0.0139	<0.0139	<0.0139	<0.0139	<0.0139	NA	NA	NA	NA	NA
F1 F1	B-2(40) B-3(1')	soil boring	40	7/19/2010	<0.0103	<0.0103	<0.0103	<0.0103	<0.0103	<0.0103	<0.0103	<0.0103	<0.0103	<0.0103	<0.0103	<0.0103	<0.0103	NΑ	NΑ	ΝA	NΑ	NA
 F1	B-3B(10')	soil boring	10	7/20/2016	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	ΝΔ	NΔ	NΔ	NΔ	NA
 F1	B-4(2')	soil boring	2	7/19/2016	<0.0125	<0.0125	<0.0134	<0.0134	<0.0125	<0.0125	<0.0134	<0.0125	<0.0134	<0.0125	<0.0134	<0.0125	<0.0134	NA	NA	NA	NA	NA
F1	B-4(12')	soil boring	12	7/19/2016	<0.0129	<0.0129	<0.0129	<0.0129	<0.0129	<0.0129	<0.0129	<0.0129	<0.0129	<0.0129	<0.0129	<0.0129	<0.0129	NA	NA	NA	NA	NA
 F1	B-4(37')	soil boring	37	7/19/2016	< 0.0140	< 0.0140	< 0.0140	< 0.0140	< 0.0140	< 0.0140	< 0.0140	<0.0140	< 0.0140	< 0.0140	< 0.0140	< 0.0140	< 0.0140	NA	NA	NA	NA	NA
F1	B-5(3')	soil boring	3	7/19/2016	< 0.0130	< 0.0130	< 0.0130	< 0.0130	<0.0130	< 0.0130	<0.0130	<0.0130	<0.0130	< 0.0130	<0.0130	< 0.0130	<0.0130	NA	NA	NA	NA	NA
F1	B-5(10')	soil boring	10	7/19/2016	<0.0333	< 0.0333	< 0.0333	< 0.0333	<0.0333	<0.0333	<0.0333	< 0.0333	< 0.0333	< 0.0333	<0.0333	<0.0333	<0.0333	NA	NA	NA	NA	NA
F1	B-5B(1')	soil boring	1	7/20/2016	<0.0169	<0.0169	<0.0169	<0.0169	<0.0169	<0.0169	<0.0169	<0.0169	<0.0169	<0.0169	<0.0169	<0.0169	<0.0169	NA	NA	NA	NA	NA
F1	B-5B(6')	soil boring	6	7/20/2016	<0.0135	<0.0135	<0.0135	<0.0135	<0.0135	<0.0135	<0.0135	<0.0135	<0.0135	<0.0135	<0.0135	<0.0135	<0.0135	NA	NA	NA	NA	NA
F1	B-6(31')	soil boring	31	7/20/2016	<0.0134	< 0.0134	< 0.0134	< 0.0134	<0.0134	<0.0134	<0.0134	< 0.0134	< 0.0134	< 0.0134	< 0.0134	<0.0134	<0.0134	NA	NA	NA	NA	NA
F1	B-7A(1')	soil boring	1	7/19/2016	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	<0.0128	NA	NA	NA	NA	NA
F1	B-7A(5')	soil boring	5	7/19/2016	<0.0271	<0.0271	<0.0271	<0.0271	<0.0271	<0.0271	<0.0271	<0.0271	<0.0271	<0.0271	<0.0271	<0.0271	<0.0271	NA	NA	NA	NA	NA

													SVO	DCs							
											۸_		1-Chloro-		Bic(2-		Ric(2-			۸_	
						Benzo(b)fl		Benzo(k)fl			4- Bromonhe	Butyl	4-CIII010- 3-	4-	chloroeth	Bis(2-	chloroison	2-	2-	4- Chlorophe	
					Benzo(a)p	uoranthen	Benzo(ghi	uoranthen	Benzoic	Benzvl	nvl phenvl	benzvl	methylph	Chloroanil	oxv)meth	chloroeth	ropyl)	Chloronap	Chlorophe	• nvl phenvl	
OA	Sample ID	Sample Method or Type	Sample Depth	Sample Date	vrene	e)pervlene	e	Acid	Alcohol	ether	phthalate	enol	ine	ane	vl)ether	ether	hthalene	nol	ether	Chrvsene
			ft bgs	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1991 Gas Sta	tion UST Removal		Ŭ		0, 0	0, 0	0, 0	0, 0		0, 0	0.0	0, 0	0, 0	0, 0		0, 0	0, 0	0, 0	0, 0	<u><u> </u></u>	<u> </u>
E1	service station soil (sidewall)	grab	NA	8/14/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
E1	service station (bottom of																				
	excavation)	grab	NA	3/10/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2015 Woodn	nill Hydrocarbon Investigation by A	rcadis																			
A1	B1	soil boring	3.0 - 3.5	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	B2	soil boring	4.5 - 5.0	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	B3	soil boring	4.5 - 5.0	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	B5	soil boring	2.0 - 5.0	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	BD-1	duplicate (B5)		10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2000, 2002, 8	CD1	coil boring	2 5	8/1/2000	<0.22	<0.22	<0.22	<0.22	<1.00	<0.22	<0.22	<0.22	<0.22	<2.00	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22
<u>F1</u>		soil boring	2.5	8/1/2000	<0.55	<0.35	<0.55	<0.35	<1.00	<0.35	<0.33	<0.35	<0.55	<2.00	<0.35	<0.33	<0.35	<0.35	<0.35	<0.35	<0.33
F1 F1		soil boring	1.5	8/2/2000	<0.33	<0.33	<0.33	<0.33	<1.00	<0.33	<0.33	<0.33	<0.33	<2.00	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33
F1	GP4	soil boring	14	8/1/2000	<1.65	<1.65	<1.65	<1.65	<5.00	<1.65	<1.55	<1.65	<1.65	<10.0	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65
F1	GP5	soil boring	4.5	8/1/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
 F1	GP6	soil boring	17.5	8/1/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	GP7C	soil boring	6	8/1/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	GP8	soil boring	31.5	8/1/2000	NA	NA	NA	NA	NA	NA	NA	NA	<0.33	NA	NA	NA	NA	NA	<0.33	NA	NA
F1	GP9	soil boring	12	8/1/2000	<0.33	<0.33	<0.33	<0.33	<1.00	<0.33	<0.33	<0.33	<0.33	<2.00	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33
F1	GP9	soil boring	27.5	8/1/2000	<0.33	<0.33	<0.33	<0.33	<1.00	<0.33	<0.33	<0.33	<0.33	<2.00	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33
F1	GP10	soil boring	21.5	8/1/2000	<0.33	<0.33	<0.33	<0.33	<1.00	<0.33	<0.33	<0.33	<0.33	<2.00	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33
F1	GP11	soil boring	10.5	8/1/2000	NA	NA	NA	NA	NA	NA	NA	NA	<0.66	NA	NA	NA	NA	NA	<0.66	NA	NA
F1	GP12	soil boring	14.5	8/2/2000	NA	NA	NA	NA	NA	NA	NA	NA	<0.33	NA	NA	NA	NA	NA	<0.33	NA	NA
F1	GP13	soil boring	6.5	8/2/2000	NA	NA	NA	NA	NA	NA	NA	NA	<0.66	NA	NA	NA	NA	NA	<0.66	NA	NA
F1	GP14	soil boring	8	8/2/2000	NA	NA	NA	NA	NA	NA	NA	NA	<0.33	NA	NA	NA	NA	NA	<0.33	NA	NA
F1	GP15	soil boring	7.5	8/2/2000	<0.33	<0.33	<0.33	<0.33	<1.00	<0.33	<0.33	<0.33	<0.33	<2.00	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33
F1	GP16	soil boring	2.7	8/3/2000	NA	NA	NA	NA	NA	NA	NA	NA	<0.33	NA	NA	NA	NA	NA	<0.33	NA	NA
F1	GP17	soil boring	6	8/2/2000	<13.2	<13.2	<13.2	<13.2	<40.0	<13.2	<13.2	<13.2	<13.2	<80.0	<13.2	<13.2	<13.2	<13.2	<13.2	<13.2	<13.2
F1	GP17C	soil boring	11.5	8/2/2000	<0.33	<0.33	<0.33	<0.33	<1.00	<0.33	<0.33	<0.33	<0.33	<2.00	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33
F1	GP18	soil boring	1.5	8/3/2000	< 0.33	< 0.33	< 0.33	<0.33	<1.00	< 0.33	< 0.33	<0.33	<0.33	<2.00	< 0.33	<0.33	< 0.33	< 0.33	< 0.33	<0.33	< 0.33
F1	GP19	soil boring	1.5	8/3/2000	<1.65	<1.65	<1.65	<1.65	<5.00	<1.65	<1.65	<1.65	<1.65	<10.0	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65
F1		soll boring	5.5	8/3/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-1(1)	soli boring	12	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1 F1	B-1(13) B-1(26')	soil boring	13	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA
F1 F1	B-18(28')	soil boring	20	7/20/2016	NΑ	NΑ	ΝA	NΑ	NΑ	NΑ	NΑ	NΑ	ΝA	ΝA	ΝA	NA	NΑ	ΝA	NΑ	ΝA	ΝA
F1	B-2(2')	soil boring	20	7/19/2016	NA	NΔ	ΝΔ	NΔ	NΔ	NΔ	NA	NΔ	NΔ	NΔ	NΔ	NA	NA	NΔ	NA	ΝΔ	ΝΔ
F1	B-2(40')	soil boring	40	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-3(1')	soil boring	1	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-3B(10')	soil boring	10	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-4(2')	soil boring	2	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-4(12')	soil boring	12	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-4(37')	soil boring	37	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-5(3')	soil boring	3	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-5(10')	soil boring	10	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-5B(1')	soil boring	1	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-5B(6')	soil boring	6	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-6(31')	soil boring	31	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-7A(1')	soil boring	1	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-7A(5')	soil boring	5	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

														SV	OCs						
OA	Sample ID	Sample Method or Type	Sample Depth	Sample Date	Di-n-butyl phthalate	Di-n-octyl phthalate	Dibenz(a, h)anthrac ene	Dibenzofu ran	1,2- Dichlorob enzene	1,3- Dichlorob enzene	1,4- Dichlorob enzene	3,3- Dichlorob enzidine	2,4- Dichlorop henol	Diethyl phthalate	2,4- Dimethylp henol	Dimethyl phthalate	4,6- Dinitro-2- methylph enol	2,4- Dinitroph enol	2,4- Dinitrotol uene	2,6- Dinitrotol uene	Bis(2- ethylhexyl) phthalate
			ft bgs	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
1991 Gas Sta	ation UST Removal	h		0/44/4000	D.L.A.		DI A	D.L.A.		21.0			D.L.A.							b.L.A	
E1	service station soil (sidewall)	grab	NA	8/14/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
E1	excertion)	grah	NΔ	3/10/1992	NΔ	ΝΔ	NΔ	NΙΔ	NΔ	NΔ	NΔ	NΔ	ΝΔ	ΝΔ	NΔ	ΝΔ	NΔ	NΔ	NΙΔ	NΔ	ΝΔ
2015 Woodr	mill Hydrocarbon Investigation by	Arcadis	NA	5/10/1992	NA	N/A	NA	NA	NA	NA	NA	IN/A	N/A	N/A	N/A	NA	NA	NA	NA	N/A	NA
A1	B1	soil boring	3.0 - 3.5	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	B2	soil boring	4.5 - 5.0	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	ВЗ	soil boring	4.5 - 5.0	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	B5	soil boring	2.0 - 5.0	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	BD-1	duplicate (B5)		10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2000, 2002,	and 2016 CBC Sampling																				
F1	GP1	soil boring	2.5	8/1/2000	<1.00	<0.33	<0.33	<0.33	<1.00	<1.00	<1.00	<1.00	<0.33	<0.33	<1.00	<0.33	<1.00	<2.00	<0.50	<0.50	<2.00
F1	GP2B	soil boring	7.5	8/2/2000	<1.00	<0.33	<0.33	<0.33	<1.00	<1.00	<1.00	<1.00	<0.33	<0.33	<1.00	<0.33	<1.00	<2.00	<0.50	<0.50	<2.00
F1	GP3	soil boring	14	8/1/2000	<1.00	<0.33	<0.33	<0.33	<1.00	<1.00	<1.00	<1.00	<0.33	<0.33	<1.00	<0.33	<1.00	<2.00	<0.50	<0.50	<2.00
F1	GP4	soil boring	19	8/1/2000	<5.00	<1.65	<1.65	<1.65	<5.00	<5.00	<5.00	<5.00	<1.65	<1.65	<5.00	<1.65	<5.00	<10.0	<2.50	<2.50	<10.0
F1	GP5	soil boring	4.5	8/1/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	GP6	soil boring	17.5	8/1/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1 F1		soil boring	21 5	8/1/2000	NA	NA	NA	NA	NA	NA	NA	NA	<0.22	NA	<1.00	NA	<1.00	<2.00	NA	NA	NA
F1 F1	GPO	soil boring	12	8/1/2000	<1 00	<0 33	<0.33	<0 33	<1.00	<1 00	<1.00	<1.00	<0.33	<0 33	<1.00	<0.33	<1.00	<2.00	<0.50	<0.50	<2 00
F1 F1	GP9	soil boring	27.5	8/1/2000	<1.00	<0.33	<0.33	<0.33	<1.00	<1.00	<1.00	<1.00	<0.33	<0.33	<1.00	<0.33	<1.00	<2.00	<0.30	<0.50	<2.00
F1	GP10	soil boring	27.5	8/1/2000	<1.00	<0.33	<0.33	<0.33	<1.00	<1.00	<1.00	<1.00	<0.33	<0.33	<1.00	<0.33	<1.00	<2.00	<0.50	<0.50	<2.00
F1	GP11	soil boring	10.5	8/1/2000	NA	NA	NA	NA	NA	NA	NA	NA	<0.55	NA	<2.00	NA	<2.00	<4.00	NA	NA	NA
F1	GP12	soil boring	14.5	8/2/2000	NA	NA	NA	NA	NA	NA	NA	NA	<0.00	NA	<1.00	NA	<1.00	<2.00	NA	NA	NA
F1	GP13	soil boring	6.5	8/2/2000	NA	NA	NA	NA	NA	NA	NA	NA	<0.66	NA	<2.00	NA	<2.00	<4.00	NA	NA	NA
F1	GP14	soil boring	8	8/2/2000	NA	NA	NA	NA	NA	NA	<1.00	NA	<0.33	NA	<1.00	NA	<1.00	<2.00	<0.50	NA	NA
F1	GP15	soil boring	7.5	8/2/2000	<1.00	<0.33	<0.33	<0.33	<1.00	<1.00	<1.00	<1.00	<0.33	<0.33	<1.00	<0.33	<1.00	<2.00	<0.50	<0.50	<2.00
F1	GP16	soil boring	2.7	8/3/2000	NA	NA	NA	NA	NA	NA	NA	NA	<0.33	NA	<1.00	NA	<1.00	<2.00	NA	NA	NA
F1	GP17	soil boring	6	8/2/2000	<40.0	<13.2	<13.2	<13.2	946	<40.0	<40.0	<40.0	<13.2	<13.2	<40.0	<13.2	<40.0	<80.0	<20.0	<20.0	<80.0
F1	GP17C	soil boring	11.5	8/2/2000	<1.00	<0.33	<0.33	<0.33	<1.00	<1.00	<1.00	<1.00	<0.33	<0.33	<1.00	<0.33	<1.00	<2.00	<0.50	<0.50	<2.00
F1	GP18	soil boring	1.5	8/3/2000	<1.00	<0.33	<0.33	<0.33	<1.00	<1.00	<1.00	<1.00	<0.33	<0.33	<1.00	<0.33	<1.00	<2.00	<0.50	<0.50	<2.00
F1	GP19	soil boring	1.5	8/3/2000	<5.00	<1.65	<1.65	<1.65	<5.00	<5.00	<5.00	<5.00	<1.65	<1.65	<5.00	<1.65	<5.00	<10.0	<2.50	<2.50	<10.0
F1	GP20	soil boring	5.5	8/3/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-1(1')	soil boring	1	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.037
F1	B-1(13')	soil boring	13	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.0399
F1	B-1(26')	soil boring	26	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.0454
F1	B-1B(28')	soil boring	28	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.0435
F1	B-2(2')	soil boring	2	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1 54	B-2(40°)	soil boring	40	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-3(1)	soil boring	1	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.03/1
F1		soil boring	10	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.0401
	B-4(2)	soil boring	12	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.0415
F1 F1	B-4(12) B-4(37')	soil boring	37	7/19/2010	NΑ	NΑ	ΝA	NA	ΝA	NΑ	NΑ	ΝA	NA	NΑ	NΑ	NΑ	NA	NΑ	NA	ΝA	<0.0412
F1	B-5(3')	soil boring	3/	7/19/2016	NA	NΔ	NA	NA	NA	NΔ	NΑ	NA	NΑ	NΔ	NΔ	NΔ	ΝA	NΔ	NA	NΑ	NA
F1	B-5(10')	soil horing	10	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
<u>F1</u>	B-5B(1')	soil boring	1	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-5B(6')	soil boring	6	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-6(31')	soil boring	31	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.0422
F1	B-7A(1')	soil boring	1	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-7A(5')	soil boring	5	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

					Fluoranth		Hexachlor	Hexachlor obutadien	Hexachlor ocyclopen	Hexachlor	Indeno(1, - 2,3-	Isophoror	2- n Methylna	2- Methylph	3-,4- Methylph	Naphthale	2- Nitroanilin	3- Nitroanilin	4- Nitroanilin	Nitrobenz	2- Nitrophen
OA	Sample ID	Sample Method or Type	Sample Depth	Sample Date	ene ma/ka	Fluorene	obenzene	e e	tadiene	oethane	cd)pyrene	e ma/ka	phthalene	enol	enol	ne ma/ka	e ma/ka	e ma/ka	e ma/ka	ene	
1991 Gas St	ation LIST Removal		it bgs	Units	iiig/ Kg	під/кд	iiig/kg	під/кд	iiig/ Kg	під/кд	під/кд	iiig/ kg	iiig/ kg	iiig/ Kg	iiig/ Kg	iiig/ Kg	iiig/ Kg	iiig/kg	iiig/ Kg	під/кд	iiig/ kg
F1	service station soil (sidewall)	grab	NA	8/14/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	service station (bottom of	0.00		0, 1, 1001																	
E1	excavation)	grab	NA	3/10/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2015 Wood	mill Hydrocarbon Investigation by	Arcadis		-, -,																	
A1	B1	soil boring	3.0 - 3.5	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	B2	soil boring	4.5 - 5.0	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	B3	soil boring	4.5 - 5.0	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	В5	soil boring	2.0 - 5.0	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	BD-1	duplicate (B5)		10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2000, 2002,	and 2016 CBC Sampling																				
F1	GP1	soil boring	2.5	8/1/2000	<0.33	<0.33	<0.33	<1.00	<1.00	<1.00	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<1.00	<0.33	<0.33	<0.33
F1	GP2B	soil boring	7.5	8/2/2000	<0.33	<0.33	<0.33	<1.00	<1.00	<1.00	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<1.00	<0.33	<0.33	<0.33
F1	GP3	soil boring	14	8/1/2000	<0.33	<0.33	<0.33	<1.00	<1.00	<1.00	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<1.00	<0.33	<0.33	<0.33
F1	GP4	soil boring	19	8/1/2000	<1.65	<1.65	<1.65	<5.00	<5.00	<5.00	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<5.00	<1.65	<1.65	<1.65
F1	GP5	soil boring	4.5	8/1/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	GP6	soil boring	17.5	8/1/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	GP7C	soil boring	6	8/1/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	GP8	soil boring	31.5	8/1/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.33	<0.33	NA	NA	NA	NA	NA	<1.00
F1	GP9	soil boring	12	8/1/2000	<0.33	<0.33	<0.33	<1.00	<1.00	<1.00	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<1.00	<0.33	<0.33	<0.33
F1	GP9	soil boring	27.5	8/1/2000	<0.33	<0.33	<0.33	<1.00	<1.00	<1.00	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<1.00	<0.33	<0.33	<0.33
F1	GP10	soil boring	21.5	8/1/2000	<0.33	<0.33	<0.33	<1.00	<1.00	<1.00	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<1.00	<0.33	<0.33	<0.33
F1	GP11	soil boring	10.5	8/1/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.66	<0.66	NA	NA	NA	NA	NA	<0.66
F1	GP12	soil boring	14.5	8/2/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.33	<0.33	NA	NA	NA	NA	NA	<1.00
F1	GP13	soil boring	6.5	8/2/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.66	<0.66	NA	NA	NA	NA	NA	<0.66
F1	GP14	soil boring	8	8/2/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.33	<0.33	NA	NA	NA	NA	NA	<0.33
F1	GP15	soil boring	7.5	8/2/2000	<0.33	<0.33	<0.33	<1.00	<1.00	<1.00	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<1.00	<0.33	<0.33	<0.33
F1	GP16	soil boring	2.7	8/3/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.33	<0.33	NA	NA	NA	NA	NA	<0.33
F1	GP17	soil boring	6	8/2/2000	<13.2	<13.2	<13.2	<40.0	<40.0	<40.0	<13.2	<13.2	<13.2	<13.2	<13.2	<13.2	<13.2	<40.0	<13.2	<13.2	<13.2
F1	GP17C	soil boring	11.5	8/2/2000	<0.33	<0.33	<0.33	<1.00	<1.00	<1.00	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<1.00	<0.33	<0.33	<0.33
F1	GP18	soil boring	1.5	8/3/2000	<0.33	<0.33	<0.33	<1.00	<1.00	<1.00	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<1.00	<0.33	<0.33	<0.33
F1	GP19	soil boring	1.5	8/3/2000	<1.65	<1.65	<1.65	<5.00	<5.00	<5.00	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	<5.00	<1.65	<1.65	<1.65
F1	GP20	soil boring	5.5	8/3/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-1(1')	soil boring	1	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-1(13')	soil boring	13	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-1(26')	soil boring	26	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-1B(28')	soil boring	28	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-2(2')	soil boring	2	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-2(40')	soil boring	40	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-3(1')	soil boring	1	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-3B(10')	soil boring	10	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-4(2')	soil boring	2	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-4(12')	soil boring	12	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-4(37')	soil boring	37	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-5(3')	soil boring	3	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-5(10')	soil boring	10	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-5B(1')	soil boring	1	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-5B(6')	soil boring	6	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-6(31')	soil boring	31	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-7A(1')	soil boring	1	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-7A(5')	soil boring	5	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

SVOCs

											SVOCs							PCBs			
					,	N-															
					4	Nitrosodi-	N-					1 2 4	245	246							
					4-	n-	Nitrosodip) Dontochla	nhononthr			1,2,4- Trichloroh	2,4,5- Trichloron	2,4,6- Trichloron	Aradar	Aradar	Aradar	Aradar	Aradar	Aradar	Aradar
04	Sample ID	Sample Method or Type	Sample Donth	Sampla Data	Nitropher		nenyiamir	rophonol	phenanthr	Phonol	Durono		honol	honol	1016	1221	410CI01 1222	1242	12/0	1254	1260
	Sample ID	Sample Wethou of Type	ft has	Junits	mg/kg	mg/kg	mg/kg	ma/ka	mg/kg	ma/ka	mg/kg	mg/kg	mg/kg	mg/kg	1010 mg/kg	 	1232 mg/kg	1242 mg/kg	1240 mg/kg	1234 mg/kg	
1991 Gas Sta	tion UST Removal		Tt bgs	Onits	iiig/ kg	iiig/ kg	ing/kg	iiig/ kg	iiig/ kg	під/кд	iiig/ kg	iiig/ kg	iiig/ kg	iiig/ kg	iiig/ kg	iiig/ kg	iiig/ kg	iiig/ kg	під/кд	iiig/ kg	iiig/ kg
F1	service station soil (sidewall)	grab	NA	8/14/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	service station (bottom of	6.00		0, 1, 1, 2002																	
E1	excavation)	grab	NA	3/10/1992	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2015 Woodn	nill Hydrocarbon Investigation by A	vrcadis		· · ·																	
A1	B1	soil boring	3.0 - 3.5	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	B2	soil boring	4.5 - 5.0	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	B3	soil boring	4.5 - 5.0	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	B5	soil boring	2.0 - 5.0	10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A1	BD-1	duplicate (B5)		10/8/2015	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2000, 2002,	and 2016 CBC Sampling																				
F1	GP1	soil boring	2.5	8/1/2000	<1.00	< 0.33	<0.33	<1.00	< 0.33	<0.33	<0.33	<0.33	<0.33	< 0.33	NA	NA	NA	NA	NA	NA	NA
<u>F1</u>	GP2B	soil boring	7.5	8/2/2000	<1.00	< 0.33	< 0.33	<1.00	< 0.33	< 0.33	< 0.33	< 0.33	<0.33	< 0.33	NA	NA	NA	NA	NA	NA	NA
F1	GP3	soil boring	14	8/1/2000	<1.00	<0.33	<0.33	<1.00	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	NA	NA	NA	NA	NA	NA	NA
F1 F1		soil boring	19	8/1/2000	<5.00	<1.65	<1.65	<5.00	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	NA	NA	NA	NA	NA	NA	NA
		soil boring	4.5	8/1/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
F1		soil boring	6	8/1/2000	NA	NΑ	ΝA	NΑ	ΝA	NΑ	NΑ	NΑ	NΑ	NΑ	NA	ΝA	NΑ	NA	NΑ	NΑ	NA
F1	GP8	soil boring	31.5	8/1/2000	<1.00	NA	NA	NA	NA	<0.33	NA	NA	<0.33	<0.33	NA	NA	NA	NA	NA	NA	NA
F1	<u> </u>	soil boring	12	8/1/2000	<1.00	<0.33	<0.33	<1.00	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	NA	NA	NA	NA	NA	NA	NA
F1	GP9	soil boring	27.5	8/1/2000	<1.00	< 0.33	<0.33	<1.00	< 0.33	<0.33	<0.33	<0.33	<0.33	<0.33	NA	NA	NA	NA	NA	NA	NA
F1	GP10	soil boring	21.5	8/1/2000	<1.00	< 0.33	<0.33	<1.00	< 0.33	<0.33	< 0.33	< 0.33	< 0.33	< 0.33	NA	NA	NA	NA	NA	NA	NA
F1	GP11	soil boring	10.5	8/1/2000	<2.00	NA	NA	<2.00	NA	<0.66	NA	NA	<0.66	<0.66	NA	NA	NA	NA	NA	NA	NA
F1	GP12	soil boring	14.5	8/2/2000	<1.00	NA	NA	NA	NA	<0.33	NA	NA	<0.33	<0.33	NA	NA	NA	NA	NA	NA	NA
F1	GP13	soil boring	6.5	8/2/2000	<2.00	NA	NA	<2.00	NA	<0.66	NA	NA	<0.66	<0.66	NA	NA	NA	NA	NA	NA	NA
F1	GP14	soil boring	8	8/2/2000	<1.00	<0.33	NA	<1.00	NA	<0.33	<0.33	<0.33	<0.33	<0.33	NA	NA	NA	NA	NA	NA	NA
F1	GP15	soil boring	7.5	8/2/2000	<1.00	<0.33	<0.33	<1.00	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	NA	NA	NA	NA	NA	NA	NA
F1	GP16	soil boring	2.7	8/3/2000	<1.00	NA	NA	<1.00	NA	<0.33	NA	NA	<0.33	<0.33	NA	NA	NA	NA	NA	NA	NA
F1	GP17	soil boring	6	8/2/2000	<40.0	<13.2	<13.2	<40.0	<13.2	<13.2	<13.2	<13.2	<13.2	<13.2	<0.067	<0.134	<0.067	<0.067	0.289	<0.067	<0.067
F1	GP17C	soil boring	11.5	8/2/2000	<1.00	<0.33	<0.33	<1.00	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.067	<0.134	<0.067	<0.067	<0.067	<0.067	<0.067
F1	GP18	soil boring	1.5	8/3/2000	<1.00	< 0.33	< 0.33	<1.00	<0.33	< 0.33	<0.33	< 0.33	<0.33	<0.33	NA	NA	NA	NA	NA	NA	NA
F1	GP19	soil boring	1.5	8/3/2000	<5.00	<1.65	<1.65	<5.00	<1.65	<1.65	<1.65	<1.65	<1.65	<1.65	NA	NA	NA	NA	NA	NA	NA
F1		soil boring	5.5	8/3/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
<u>F1</u>	B-1(12)	soil boring	12	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1 F1	B-1(15) B-1(26')	soil boring	26	7/19/2016	NA	NΑ	NA	NΑ	NΑ	NA	NΑ	ΝA	NA	NΑ	NA	NΑ	ΝA	NA	NΑ	NA	NA
 F1	B-1B(28')	soil boring	28	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-2(2')	soil boring	20	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-2(40')	soil boring	40	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-3(1')	soil boring	1	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-3B(10')	soil boring	10	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-4(2')	soil boring	2	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-4(12')	soil boring	12	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-4(37')	soil boring	37	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-5(3')	soil boring	3	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-5(10')	soil boring	10	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-5B(1')	soil boring	1	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-5B(6')	soil boring	6	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-6(31')	soil boring	31	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-7A(1')	soil boring	1	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-7A(5')	soil boring	5	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table B2: Data Summary Table - Soil

									ТРН			Extracta	ble Petroleu	m Hydrocarbo	ons (EPH) by	Method NW	ТРН/ЕРН	
OA	Sample ID	Sample Method or Type	Sample Depth	Sample Date	Total Solids	Percent Solids	Percent Moisture	GRO	DRO	ORO	C10-C12 Aromatics	C12-C16 Aromatics	C16-C21 Aromatics	C21-C34 Aromatics	C10-C12 Aliphatics	C12-C16 Aliphatics	C16-C21 Aliphatics	C21-C34 Aliphatics
			ft bgs	Units	%	%	%	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
2000, 2002,	and 2016 CBC Sampling (continued)																	
F1	B-7B(3')	soil boring	3	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-7C(1')	soil boring	1	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-7C(6')	soil boring	6	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-7D(5')	soil boring	5	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-8B(3')	soil boring	3	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-8B(6')	soil boring	6	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1 F1		soil boring	9	7/19/2016	NA	NA	NA	NA	NA	NA <122	NA	NA	NA	NA	NA	NA	NA	NA
F1 F1	B-9(0) B-9(12')	soil boring	12	7/20/2016	NA	NA	NA	<24.7 NA	<01.7	×125	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-10(8')	soil boring	8	7/20/2016	NΔ	NΔ	NΑ	<24.3	<60.7	<121	NA	NΔ	NΔ	NΔ	NΑ	NΔ	NΔ	NA
F1	B-10(15')	soil boring	15	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-11(1')	soil boring	1	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-11(12')	soil boring	12	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-11B(8')	soil boring	8	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-11B(18')	soil boring	18	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	TP 1-1	test pit	1.3	8/15/2002	88.4	NA	NA	<20	140	170	NA	NA	NA	NA	NA	NA	NA	NA
F1	TP 1-2	test pit	3	8/15/2002	78.5	NA	NA	<20	<50	<100	NA	NA	NA	NA	NA	NA	NA	NA
F1	TP2-1	test pit	1.5	8/15/2002	82.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	TP2-2	test pit	3.2	8/15/2002	76.9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	TP3-1	test pit	1.2	8/15/2002	91.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	TP3-2	test pit	3.8	8/15/2002	79.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	TP4-1	test pit	1.5	8/15/2002	79.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	TP4-2	test pit	3.8	8/15/2002	77.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	TP 5-1 (bkgd)	test pit	1.5	8/15/2002	86.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	TP 5-2 (bkgd)	test pit	3.5	8/15/2002	86.2	NA	NA	<20	<50	150	NA	NA	NA	NA	NA	NA	NA	NA
F1	LS-1	surface sample	1	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	LS-2	surface sample	1	//19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2017 Diesei	Release opuate commation sample	ing	confirmation															
C4	Sample #1	soil sample	sidewall	8/7/2017	NA	NA	NA	NA	360	ND	NA	NA	NA	NA	NA	NA	NA	NA
	Sumple #1	Jon Jumpie	confirmation	0,7,2017	1473	1 17 1	1473	1473	500	ND	1473	1 1/7 1	1 1/1	1 1/7 1	14/ 1	1 17 1	1 1/1	14/ 1
C4	Sample #2	soil sample	sidewall	8/7/2017	NA	NA	NA	NA	1800	150	NA	NA	NA	NA	NA	NA	NA	NA
	•	·	confirmation															
C4	Sample #3	soil sample	bottom	8/7/2017	NA	NA	NA	NA	1600	310	NA	NA	NA	NA	NA	NA	NA	NA
			confirmation															
C4	Sample #4	soil sample	sidewall	8/7/2017	NA	NA	NA	NA	550	ND	NA	NA	NA	NA	NA	NA	NA	NA
			confirmation															
C4	Sample #5	soil sample	sidewall	8/7/2017	NA	NA	NA	NA	1500	340	NA	NA	NA	NA	NA	NA	NA	NA
			confirmation															
C4	Sample #6	soil sample	sidewall	8/7/2017	NA	NA	NA	NA	1300	280	NA	NA	NA	NA	NA	NA	NA	NA
2018 March	n Fuel Oil Day Tank			- / /														
<u>B4</u>	CAMAS TANK-ACROSS ROAD-4.5	soil sample	4.5	3/19/2018	NA	NA	NA	NA	< 56	< 56	NA	NA	NA	NA	NA	NA	NA	NA
<u>В4</u> Р4	CAMAS TANK-ACKUSS RUAD-6.0	soil sample	6.U	3/19/2018	NA	NA	NA ac a	NA	< 55	99	NA	NA	NA	NA	NA	NA	NA	NA
D4		soil sample	2.0	3/14/2018	NA	NA	25.Z	NA	< 03	< 03	NA	NA	NA	NA	NA	NA	NA	NA
D4 D4		soil sample	2.0	2/14/2018	NA	NA	18.5	NA	ل ۲۵ ×	1300 J-	NA	NA	NA	NA	NA	NA	NA	NA
B4 R4		soil sample	0.1	3/14/2018	NA NA	NA	NA	190 IL	470 J-	1100 -	NΑ	NΑ	NA NA	NΑ	NΑ	NA NA	NA NA	NΑ
 B4	CAMAS TANK-SW-3 0	soil sample	3.1	3/14/2018	NΔ	NΔ	10.7	NA	87	310	ΝΔ	NΔ	NΔ	NΔ	ΝA	NΔ	NΔ	ΝΔ
<u> </u>	CAMAS TANK-SW-2 0	soil sample	2.0	3/14/2018	NA	NA	7 3	NA	< 52	< 52	NA	NA	NA	NA	NA	NA	NA	NA
<u>~ · · · · · · · · · · · · · · · · · · ·</u>		sen sample	2.0	0, 1., 2010											. 47.5			. 47 1

Table B2: Data Summary Table - Soil

					Vo	latile Petrole	eum Hydroca	rbons (VPH)	by Metho	d NWTPH/V	'PH					Tota	al Metals					
					C10-C12	C5-C6	C6-C8	C8-C10	Total	C10-C12	C8-C10											
OA	Sample ID	Sample Method or Type	Sample Depth	Sample Date	Aliphatics	Aliphatics	Aliphatics	Aliphatics	VPH	Aromatics	Aromatics	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Silver	Selenium	Zinc
2000 2002	and 2016 CBC Sampling (continued)		ft bgs	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
F1	B-7B(3')	soil boring	3	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-7C(1')	soil boring	1	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-7C(6')	soil boring	6	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-7D(5')	soil boring	5	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-8B(3')	soil boring	3	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-8B(6')	soil boring	6	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-8C(9')	soil boring	9	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-9(6')	soil boring	6	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-9(12')	soil boring	12	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-10(8')	soil boring	8	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-10(15')	soil boring	15	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-11(1')	soil boring	1	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-11(12')	soil boring	12	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-11B(8')	soil boring	8	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-11B(18')	soil boring	18	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	TP 1-1	test pit	1.3	8/15/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	TP 1-2	test pit	3	8/15/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	TP2-1	test pit	1.5	8/15/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	TP2-2	test pit	3.2	8/15/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
<u>F1</u>	TP3-1	test pit	1.2	8/15/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
<u>F1</u>	1P3-2	test pit	3.8	8/15/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
<u>F1</u>		test pit	1.5	8/15/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
<u>F1</u>		test pit	3.8	8/15/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
<u>F1</u>	TP 5-1 (bkgd)	test pit	1.5	8/15/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	IP 5-2 (DKgd)	test pit	3.5	8/15/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA 245	NA	NA	NA	NA	NA
F1		surface sample	1	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	345	NA	NA	NA	NA	NA
71 2017 Diesel	LJ-2 Release Undate Confirmation Samplin		1	//19/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	27.7	NA	NA	NA	NA	NA
ZUIT Diesei	Release Opdate Commation Sampling	5	confirmation																			
C4	Sample #1	soil sample	sidewall	8/7/2017	NΔ	NΔ	NΔ	ΝΔ	NΔ	ΝΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ
	Sumple #1	son sumple	confirmation	0,7,2017	147 (147 (147.0	147.4	147 (1473	147.4	147.	1474	1473	1.17.	147 (147 (1473	147 (1474		1073
C4	Sample #2	soil sample	sidewall	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	-		confirmation	-, , -																		
C4	Sample #3	soil sample	bottom	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	· · · ·		confirmation																			
C4	Sample #4	soil sample	sidewall	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
			confirmation																			
C4	Sample #5	soil sample	sidewall	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
			confirmation																			
C4	Sample #6	soil sample	sidewall	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2018 March	Fuel Oil Day Tank																					
B4	CAMAS TANK-ACROSS ROAD-4.5	soil sample	4.5	3/19/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B4	CAMAS TANK-ACROSS ROAD-6.0	soil sample	6.0	3/19/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B4	CAMAS TANK-NE-2.0	soil sample	2.0	3/14/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B4	CAMAS TANK-NW-2.0	soil sample	2.0	3/14/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B4	CAMAS TANK-SE-2.0	soil sample	2.0	3/14/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B4	CAMAS TANK-SOIL PILE	soil sample	0.1	3/19/2018	NA	NA	NA	NA	NA	NA	NA	< 2.5	66	< 0.85	11	48	33	0.21	18	< 2.1	< 4.2	70
B4	CAMAS TANK-SW-3.0	soil sample	3.0	3/14/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
В4	CAMAS TANK-SW-2.0	soil sample	2.0	3/14/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

													vo	Cs								
							4422					4.2.2	122	121	4.2.4	1,2-	4.2	4.2	4.2	1.2	4.2.5	4.2
					1,1,1,2-	1,1,1- Trichlaract	1,1,2,2- Totrochlor	1,1,2- Trichloroo	1,1- Disblaras	1,1- Dichleree	1,1- Dichleren	1,2,3- Trichloro	1,2,3- Trichloro	1,2,4- Trichloro	1,2,4-	Dibromo-3	1,2- Dibromoo	1,2- Dichloroh	1,2- Dichleres	1,2- Disblaran	1,3,5- Trimothul	1,3- Dichloroh
04	Sample ID Sa	ample Method or Type	Sample Denth	Sample Date	oethane	hane	oethane	thane	thane	thene	ronene	honzono	nronane	henzene	honzono	chloropro	thane	DICHIOTOD	thane	ronane	henzene	DICHIOTOD
	Sample ID Sa		ft has	Janpie Date	mg/kg	ma/ka	mg/kg	mg/kg	ma/ka	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ma/ka	ma/ka	mg/kg	ma/ka	mg/kg	mg/kg	mg/kg
2000. 2002. a	and 2016 CBC Sampling (continued)		11 063	Offics	1116/16	1116/16	116/16	1116/16	116/16	1116/16	116/16	1116/16	116/16	1116/16	116/16	111 <u>6</u> / Kg	116/16	1116/16	1116/16	116/16	1116/16	1116/16
F1	B-7B(3')	soil boring	3	7/19/2016	<0.0326	<0.0326	<0.0326	<0.0326	<0.0326	<0.0326	<0.0326	<0.0326	<0.0326	<0.0326	<0.0326	<0.0326	<0.0326	<0.0326	<0.0326	<0.0326	<0.0326	<0.0326
F1	B-7C(1')	soil boring	1	7/20/2016	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211
F1	B-7C(6')	soil boring	6	7/20/2016	<0.0153	<0.0153	<0.0153	<0.0153	<0.0153	<0.0153	<0.0153	<0.0153	<0.0153	<0.0153	<0.0153	<0.0153	<0.0153	<0.0153	<0.0153	<0.0153	<0.0153	<0.0153
F1	B-7D(5')	soil boring	5	7/20/2016	<0.0105	< 0.0105	<0.0105	<0.0105	<0.0105	< 0.0105	<0.0105	<0.0105	<0.0105	<0.0105	<0.0105	<0.0105	<0.0105	<0.0105	<0.0105	<0.0105	< 0.0105	<0.0105
F1	B-8B(3')	soil boring	3	7/19/2016	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114
F1	B-8B(6')	soil boring	6	7/19/2016	<0.0144	<0.0144	<0.0144	<0.0144	<0.0144	<0.0144	<0.0144	<0.0144	<0.0144	<0.0144	<0.0144	<0.0144	<0.0144	<0.0144	<0.0144	<0.0144	<0.0144	<0.0144
F1	B-8C(9')	soil boring	9	7/19/2016	<0.0126	<0.0126	<0.0126	<0.0126	<0.0126	<0.0126	<0.0126	<0.0126	<0.0126	<0.0126	<0.0126	<0.0126	<0.0126	<0.0126	<0.0126	<0.0126	<0.0126	<0.0126
F1	B-9(6')	soil boring	6	7/20/2016	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117
F1	B-9(12')	soil boring	12	7/20/2016	<0.0136	<0.0136	<0.0136	<0.0136	<0.0136	<0.0136	<0.0136	<0.0136	<0.0136	<0.0136	<0.0136	<0.0136	<0.0136	<0.0136	<0.0136	<0.0136	<0.0136	<0.0136
F1	B-10(8')	soil boring	8	7/20/2016	<0.0133	<0.0133	< 0.0133	< 0.0133	<0.0133	< 0.0133	<0.0133	<0.0133	<0.0133	< 0.0133	<0.0133	<0.0133	< 0.0133	<0.0133	<0.0133	<0.0133	<0.0133	< 0.0133
F1	B-10(15')	soil boring	15	7/20/2016	<0.0145	<0.0145	<0.0145	<0.0145	<0.0145	<0.0145	<0.0145	<0.0145	<0.0145	<0.0145	<0.0145	<0.0145	<0.0145	<0.0145	<0.0145	<0.0145	<0.0145	<0.0145
F1 F1	B-11(1)	soil boring	12	7/19/2016	<0.00945	<0.00945	<0.00945	<0.00945	<0.00945	<0.00945	<0.00945	<0.00945	<0.00945	<0.00945	<0.00945	<0.00945	<0.00945	<0.00945	<0.00945	<0.00945	<0.00945	<0.00945
F1	B-11(12) B-11B(8')	soil boring	8	7/19/2016	<0.0112	<0.0112	<0.0112	<0.0112	<0.0112	<0.0112	<0.0112	<0.0112	<0.0112	<0.0112	<0.0112	<0.0112	<0.0112	<0.0112	<0.0112	<0.0112	<0.0112	<0.0112
F1	B-11B(18')	soil boring	18	7/20/2010	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117
F1	TP 1-1	test nit	1.3	8/15/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	TP 1-2	test pit	3	8/15/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	TP2-1	test pit	1.5	8/15/2002	< 0.0061	< 0.0061	< 0.0061	< 0.0061	< 0.0061	< 0.0061	< 0.0061	<0.025	< 0.0061	<0.025	<0.025	<0.025	<0.025	< 0.0061	< 0.0061	< 0.0061	<0.025	< 0.0061
F1	TP2-2	test pit	3.2	8/15/2002	<0.0064	<0.0064	<0.0064	<0.0064	<0.0064	<0.0064	<0.0064	<0.026	<0.0064	<0.026	<0.026	<0.026	<0.026	<0.0064	<0.0064	<0.0064	<0.026	<0.0064
F1	TP3-1	test pit	1.2	8/15/2002	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054	<0.022	<0.0054	<0.022	<0.022	<0.022	<0.022	<0.0054	<0.0054	<0.0054	<0.022	<0.0054
F1	TP3-2	test pit	3.8	8/15/2002	<0.0063	<0.0063	<0.0063	<0.0063	<0.0063	<0.0063	<0.0063	<0.026	<0.0063	<0.026	<0.026	<0.026	<0.026	<0.0063	<0.0063	<0.0063	< 0.0063	<0.0063
F1	TP4-1	test pit	1.5	8/15/2002	<0.0062	<0.0062	<0.0062	<0.0062	<0.0062	<0.0062	<0.0062	<0.025	<0.0062	<0.025	<0.025	<0.025	<0.025	29	<0.0062	<0.0062	<0.0062	0.033
F1	TP4-2	test pit	3.8	8/15/2002	<0.0063	<0.0063	<0.0063	<0.0063	<0.0063	<0.0063	<0.0063	<0.025	<0.0063	<0.025	<0.025	<0.025	<0.025	14	<0.0063	<0.0063	<0.0063	0.017
F1	TP 5-1 (bkgd)	test pit	1.5	8/15/2002	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.023	<0.0058	<0.023	<0.023	<0.023	<0.023	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058
F1	TP 5-2 (bkgd)	test pit	3.5	8/15/2002	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.023	<0.0058	<0.023	<0.023	<0.023	<0.023	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058
F1	LS-1	surface sample	1	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	LS-2	surface sample	1	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2017 Diesel F	Release Update Confirmation Sampling		<i>c</i>																			
64	Constant III		confirmation	0/7/2017																		
<u></u>	Sample #1	soli sample	sidewall	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
C4	Samala #2	coil complo	commation	9/7/2017	NIA	NIA	NLA	NIA	NLA	NLA	NLA	NIA	NIA	NIA	NIA	NLA	NLA	NLA	NLA	NIA	NIA	NIA
	Sample #2	son sample	confirmation	8/7/2017	INA	NA	INA	NA	NA	NA	NA	NA	NA	IN/A	INA	NA	NA	IN/A	NA	INA	NA	NA
C4	Sample #3	soil sample	bottom	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		son sample	confirmation	0,7,2017	147 (147 (1474	147 (1073	1073	1473	147 (1073	147 (1473	147 (1073	147 (1073	147 (147.	147 (
C4	Sample #4	soil sample	sidewall	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
			confirmation	-, , -																		
C4	Sample #5	soil sample	sidewall	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
			confirmation																			
C4	Sample #6	soil sample	sidewall	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2018 March	Fuel Oil Day Tank																					
B4	CAMAS TANK-ACROSS ROAD-4.5	soil sample	4.5	3/19/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B4	CAMAS TANK-ACROSS ROAD-6.0	soil sample	6.0	3/19/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B4	CAMAS TANK-NE-2.0	soil sample	2.0	3/14/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B4	CAMAS TANK-NW-2.0	soil sample	2.0	3/14/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B4	CAMAS TANK-SE-2.0	soil sample	2.0	3/14/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B4	CAMAS TANK-SOIL PILE	soil sample	0.1	3/19/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B4	CAMAS TANK-SW-3.0	soil sample	3.0	3/14/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
В4	CAMAS TANK-SW-2.0	soil sample	2.0	3/14/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

													vo	DCs								
								2				4-Methyl-					- II					
					1,3-	1,4-	2,2-	2-	2	4- Chile and al	4-	2-			D h .	Bromochi	Bromodic	D	D	2	n-	C . I
~ ~		Constant Marked as T			Dichlorop	Dichlorob	Dichlorop	Chlorotol	2-	Chlorotol	Isopropylt	pentanon		D	Bromobe	orometha	hloromet	Bromofor	Bromome	2-	Butylbenz	Carbon
UA	Sample ID	Sample Method or Type	Sample Depth	Sample Date	ropane	enzene	ropane	uene	Hexanone	uene	oluene	e	Acetone	Benzene	nzene	ne	nane	m	thane	Butanone	ene	disulfide
2000 2002	and 2016 CPC Sampling (continued)		Tt bgs	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/ kg	mg/kg	mg/кg	mg/kg	mg/ kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
2000, 2002, a		coil boring	2	7/10/2016	<0.0226	<0.0226	<0.0226	<0.0226	<0.0651	<0.0226	<0.0226	<0.120	<0.226	<0.0226	<0.0226	<0.0226	<0.0226	<0.0226	<0.0226	<0.120	<0.0226	<0.0226
F1	$B_{-7C(1')}$	soil boring		7/20/2016	<0.0320	<0.0320	<0.0320	<0.0320	<0.0031	<0.0320	<0.0320	<0.130	<0.320	<0.0320	<0.0320	<0.0320	<0.0320	<0.0320	<0.0320	<0.130	<0.0320	<0.0320
F1	B-7C(6')	soil boring	6	7/20/2010	<0.0211	<0.0211	<0.0211	<0.0211	<0.422	<0.0211	<0.0211	<0.0644	<0.211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0644	<0.0211	<0.0211
F1	B-7D(5')	soil boring	5	7/20/2016	<0.0105	<0.0105	<0.0105	<0.0105	<0.0307	<0.0105	<0.0105	<0.0014	<0.105	<0.0105	<0.0105	<0.0105	<0.0105	<0.0105	<0.0105	<0.0014	<0.0105	<0.0105
F1	B-8B(3')	soil boring	3	7/19/2016	<0.0114	<0.0114	<0.0114	<0.0114	<0.0228	<0.0114	<0.0114	<0.0457	<0.114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0457	<0.0114	<0.0114
F1	B-8B(6')	soil boring	6	7/19/2016	<0.0144	<0.0144	<0.0144	<0.0144	<0.0288	<0.0144	<0.0144	<0.0575	<0.144	<0.0144	<0.0144	<0.0144	<0.0144	<0.0144	<0.0144	<0.0575	<0.0144	<0.0144
F1	B-8C(9')	soil boring	9	7/19/2016	< 0.0126	<0.0126	<0.0126	< 0.0126	<0.0251	< 0.0126	<0.0126	< 0.0503	<0.144	<0.0126	<0.0126	< 0.0126	< 0.0126	< 0.0126	< 0.0126	< 0.0503	< 0.0126	<0.0126
F1	B-9(6')	soil boring	6	7/20/2016	<0.0117	<0.0117	<0.0117	<0.0117	<0.0235	<0.0117	<0.0117	<0.047	<0.117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.047	<0.0117	<0.0117
F1	B-9(12')	soil boring	12	7/20/2016	<0.0136	<0.0136	<0.0136	<0.0136	<0.0273	<0.0136	<0.0136	<0.0546	<0.136	<0.0136	<0.0136	<0.0136	<0.0136	<0.0136	<0.0136	<0.0546	<0.0136	<0.0136
F1	B-10(8')	soil boring	8	7/20/2016	<0.0133	<0.0133	<0.0133	<0.0133	<0.0266	<0.0133	<0.0133	<0.0532	<0.133	<0.0133	<0.0133	<0.0133	<0.0133	<0.0133	<0.0133	<0.0532	<0.0133	<0.0133
F1	B-10(15')	soil boring	15	7/20/2016	<0.0145	<0.0145	<0.0145	<0.0145	<0.0289	<0.0145	<0.0145	<0.0579	<0.145	<0.0145	<0.0145	<0.0145	<0.0145	<0.0145	<0.0145	<0.0579	<0.0145	<0.0145
F1	B-11(1')	soil boring	1	7/19/2016	<0.00945	<0.00945	<0.00945	<0.00945	<0.0189	<0.00945	<0.00945	<0.0378	<0.0945	<0.00945	<0.00945	<0.00945	<0.00945	<0.00945	<0.00945	<0.0378	<0.00945	<0.00945
F1	B-11(12')	soil boring	12	7/19/2016	<0.0112	<0.0112	<0.0112	<0.0112	<0.0225	<0.0112	<0.0112	<0.0449	<0.112	<0.0112	<0.0112	<0.0112	<0.0112	<0.0112	<0.0112	<0.0449	<0.0112	<0.0112
F1	B-11B(8')	soil boring	8	7/20/2016	<0.0117	<0.0117	<0.0117	<0.0117	<0.0234	<0.0117	<0.0117	<0.0467	<0.117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0467	<0.0117	<0.0117
F1	B-11B(18')	soil boring	18	7/20/2016	<0.0123	<0.0123	<0.0123	<0.0123	<0.0246	<0.0123	<0.0123	<0.0492	<0.123	<0.0123	<0.0123	<0.0123	<0.0123	<0.0123	<0.0123	<0.0492	<0.0123	<0.0123
F1	TP 1-1	test pit	1.3	8/15/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	TP 1-2	test pit	3	8/15/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	TP2-1	test pit	1.5	8/15/2002	<0.0061	<0.0061	<0.0061	<0.025	<0.025	<0.025	<0.025	<0.025	<0.061	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061	<0.025	<0.025	<0.0061
F1	TP2-2	test pit	3.2	8/15/2002	< 0.0064	< 0.0064	<0.0064	<0.026	<0.026	<0.026	<0.022	<0.026	< 0.064	< 0.0064	< 0.0064	< 0.0064	< 0.0064	< 0.0064	< 0.0064	<0.026	<0.026	<0.0064
F1	TP3-1	test pit	1.2	8/15/2002	<0.0054	<0.0054	<0.0054	<0.022	<0.022	<0.022	<0.022	<0.022	<0.054	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054	< 0.0054	<0.022	<0.022	<0.0054
F1	1P3-2	test pit	3.8	8/15/2002	<0.0063	<0.0063	<0.0063	<0.026	<0.026	<0.026	<0.026	<0.026	<0.063	<0.0063	<0.0063	<0.0063	<0.0063	<0.0063	<0.0063	<0.026	<0.026	<0.0063
F1		test pit	1.5	8/15/2002	<0.0062	0.13	<0.0062	<0.025	<0.025	<0.025	<0.025	<0.025	<0.062	<0.0062	<0.0062	<0.0062	<0.0062	<0.0062	<0.0062	<0.025	<0.025	<0.0062
F1 F1		test pit	3.8	8/15/2002	<0.0063	0.1	<0.0053	<0.025	<0.025	<0.025	<0.025	<0.025	<0.063	<0.0053	<0.0063	<0.0053	<0.0063	<0.0063	<0.0063	<0.025	<0.025	<0.0063
F1 F1		test pit	1.5	8/15/2002	<0.0058	<0.0058	<0.0058	<0.023	<0.023	<0.023	<0.023	<0.023		<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.023	<0.023	<0.0058
F1	IF 5-2 (DKgu)	surface sample		7/10/2016	NIA	NIA	NA	N/A	NIA	NA	NA	NIA	NIA	NIA	NIA	NIA	NIA	NA	NA	NIA	NA	NIA
F1	\$-2	surface sample	1	7/19/2010	NA	NA	NA	ΝA	NA	ΝA	NA	NA	ΝA	NA	NA	NA	ΝA	NA	NA	NA	ΝA	NA
2017 Diesel	Release Undate Confirmation Sampli	ng	-	771372010	1177	11/1	1473	1473	1177	147.4	117.1	11/1	1473	1473	1474	1 17 1	1473	147.4	1473	1 1 7 7	1473	11/1
		0	confirmation																			
C4	Sample #1	soil sample	sidewall	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	•	•	confirmation																			
C4	Sample #2	soil sample	sidewall	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
			confirmation																			
C4	Sample #3	soil sample	bottom	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
			confirmation																			
C4	Sample #4	soil sample	sidewall	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
			confirmation																			
C4	Sample #5	soil sample	sidewall	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
C 4			confirmation	0/7/2017																		
C4	Sample #6	soil sample	sidewall	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2018 Warch		coil complo		2/10/2019	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA
B/		soil cample	4.5	3/19/2018	NA	NA	NA	NA NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA	NA
84 R4		soil sample	2.0	3/12/2018	NΔ	NΔ	NΔ	NΔ	NA	NΔ	NΔ	NΔ	ΝA	NA	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	ΝA
B4		soil sample	2.0	3/14/2010	NΔ	NΔ	NA	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ
 B4	CAMAS TANK-SE-2 0	soil sample	2.0	3/14/2018	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ
 B4	CAMAS TANK-SOIL PILE	soil sample	0.1	3/19/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 27	NA	NA	NA	NA	NA	NA	NA	NA
B4	CAMAS TANK-SW-3.0	soil sample	3.0	3/14/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B4	CAMAS TANK-SW-2.0	soil sample	2.0	3/14/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

					Carbon					cis-1 2-	cis-1 3-	Dibromoc		Dichlorod		Hexachlor				m-Xvlene		n-
					tetrachlor	Chlorobe	Chloroeth	Chlorofor	Chlorome	Dichloroe	Dichloron	hloromet	Dibromo	ifluorome	Fthyl	obutadien	Isonronvl	Methyl	Methylene	& P_	Nanhthal	Butylhenz
OA	Sample ID	Sample Method or Type	Sample Depth	Sample Date	ide	nzene	ane	m	thane	thene	ropene	hane	methane	thane	benzene	e	benzene	tert-butvl	Chloride	Xvlene	ene	ene
	Sample ib	sumple method of type	ft bgs	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
2000, 2002,	and 2016 CBC Sampling (continued)																					
F1	B-7B(3')	soil boring	3	7/19/2016	<0.0326	<0.0326	<0.0326	<0.0326	<0.0326	<0.0326	<0.0326	<0.0326	<0.0326	<0.0326	<0.0326	<0.0326	<0.0326	<0.0326	<0.163	<0.0651	<0.0326	<0.0326
F1	B-7C(1')	soil boring	1	7/20/2016	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.105	<0.0442	<0.0211	<0.0211
F1	B-7C(6')	soil boring	6	7/20/2016	<0.0153	<0.0153	<0.0153	<0.0153	<0.0153	<0.0153	<0.0153	<0.0153	<0.0153	<0.0153	<0.0153	<0.0153	<0.0153	<0.0153	<0.0676	<0.0307	<0.0153	<0.0153
F1	B-7D(5')	soil boring	5	7/20/2016	<0.0105	<0.0105	<0.0105	<0.0105	<0.0105	<0.0105	<0.0105	<0.0105	<0.0105	<0.0105	<0.0105	<0.0105	<0.0105	<0.0105	<0.526	<0.021	<0.0105	<0.0105
F1	B-8B(3')	soil boring	3	7/19/2016	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0571	<0.0228	<0.0114	<0.0114
F1	B-8B(6')	soil boring	6	7/19/2016	<0.0144	<0.0144	<0.0144	<0.0144	<0.0144	<0.0144	<0.0144	<0.0144	<0.0144	<0.0144	<0.0144	<0.0144	<0.0144	<0.0144	<0.0719	<0.0288	<0.0144	<0.0144
F1	B-8C(9')	soil boring	9	7/19/2016	<0.0126	<0.0126	<0.0126	<0.0126	<0.0126	<0.0126	<0.0126	<0.0126	<0.0126	<0.0126	<0.0126	<0.0126	<0.0126	<0.0126	<0.0628	<0.0251	<0.0126	<0.0126
F1	B-9(6')	soil boring	6	7/20/2016	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0587	<0.0235	<0.0117	<0.0117
F1	B-9(12')	soil boring	12	7/20/2016	<0.0136	<0.0136	<0.0136	<0.0136	<0.0136	<0.0136	<0.0136	<0.0136	<0.0136	<0.0136	<0.0136	<0.0136	<0.0136	<0.0136	<0.0682	<0.0273	<0.0136	<0.0136
F1	B-10(8')	soil boring	8	7/20/2016	<0.0133	<0.0133	<0.0133	<0.0133	<0.0133	<0.0133	<0.0133	<0.0133	<0.0133	<0.0133	<0.0133	<0.0133	<0.0133	<0.0133	<0.0665	<0.0266	<0.0133	<0.0133
F1	B-10(15')	soil boring	15	7/20/2016	<0.0145	<0.0145	<0.0145	<0.0145	<0.0145	<0.0145	<0.0145	<0.0145	<0.0145	<0.0145	<0.0145	<0.0145	<0.0145	<0.0145	<0.0723	<0.0289	<0.0145	<0.0145
F1	B-11(1')	soil boring	1	7/19/2016	<0.00945	<0.00945	<0.00945	<0.00945	<0.00945	<0.00945	<0.00945	<0.00945	<0.00945	<0.00945	<0.00945	<0.00945	<0.00945	<0.00945	<0.0473	<0.0189	<0.00945	<0.00945
F1	B-11(12')	soil boring	12	7/19/2016	<0.0112	<0.0112	<0.0112	<0.0112	<0.0112	<0.0112	<0.0112	<0.0112	<0.0112	<0.0112	<0.0112	<0.0112	<0.0112	<0.0112	<0.0562	<0.0225	<0.0112	<0.0112
F1	B-11B(8')	soil boring	8	7/20/2016	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0584	<0.0234	<0.0117	<0.0117
F1	B-11B(18')	soil boring	18	7/20/2016	<0.0123	<0.0123	<0.0123	<0.0123	<0.0123	<0.0123	<0.0123	<0.0123	<0.0123	<0.0123	<0.0123	<0.0123	<0.0123	<0.0123	<0.0615	<0.0246	<0.0123	<0.0123
F1	TP 1-1	test pit	1.3	8/15/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
<u>F1</u>	TP 1-2	test pit	3	8/15/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
<u>F1</u>	1P2-1	test pit	1.5	8/15/2002	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061	<0.025	<0.025	NA	<0.013	<0.0061	<0.025	<0.025
F1	TP2-2	test pit	3.2	8/15/2002	<0.0064	<0.0064	<0.0064	<0.0064	<0.0064	<0.0064	<0.0064	<0.0064	<0.0064	<0.0064	<0.0064	<0.026	<0.026	NA	<0.013	<0.0064	<0.026	<0.026
F1		test pit	1.2	8/15/2002	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054	<0.022	<0.022	NA	<0.011	<0.0054	<0.022	<0.022
F1 F1		test pit	3.8 1 F	8/15/2002	<0.0063	<0.0063	<0.0063	<0.0063	<0.0063	<0.0063	<0.0063	<0.0063	<0.0063	<0.0063	<0.0063	<0.020	<0.026	NA	<0.013	<0.0063	<0.026	<0.020
<u></u>		test pit	2.0	8/15/2002	<0.0062	0.034	<0.0062				<0.0062	<0.0062			<0.0062		<0.025	NA	<0.013	<0.0062	<0.025	<0.025
F1	TP 5-1 (bkgd)	test pit	1 5	8/15/2002	<0.0003	<0.022	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.0003	<0.023	NA	<0.013	<0.0003	<0.023	<0.023
F1	TP 5-2 (bkgd)	test pit	3.5	8/15/2002	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.023	NA	<0.012	<0.0058	<0.023	<0.023
F1	LS-1	surface sample	1	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	LS-2	surface sample	1	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2017 Diesel	Release Update Confirmation Samplin	lg		, -,																		
	•	0	confirmation																			
C4	Sample #1	soil sample	sidewall	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
			confirmation																			
C4	Sample #2	soil sample	sidewall	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
			confirmation																			
C4	Sample #3	soil sample	bottom	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
			confirmation																			
C4	Sample #4	soil sample	sidewall	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
			confirmation																			
C4	Sample #5	soil sample	sidewall	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
			confirmation																			
C4	Sample #6	soil sample	sidewall	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2018 March	Fuel Oil Day Tank																					
<u>B4</u>	CAMAS TANK-ACROSS ROAD-4.5	soil sample	4.5	3/19/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
<u>В4</u>		soil sample	0.0	3/19/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
<u>В4</u>		soil sample	2.0	3/14/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B/			2.0	2/14/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B/		soil sample	2.0	3/19/2018	NA NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	< 270	NA	NA NA
 R4		soil sample	3.0	3/14/2018	NΔ	NΔ	NΔ	NA	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	<u><u></u> √ J4</u>	NΔ	NΔ	NΔ	NΔ	× 270	NA NA	NΔ
 R4	CAMAS TANK-SW-3.0	soil sample	2.0	3/11/2010	NΔ	NIA	NIA	NIA	NIA	NΔ	NΔ	NΔ	NIA	NΔ	NIA	NΔ	NΔ	NΔ	NIΔ	NA NA	NIA	NΔ
7		son sample	2.0	J/ 17/ 2010	11/71	11/71	1474	11/71	1 1/71	11/74	14/24	1474	11/71	11/74	11/21	1.1/71	11/71	1 1/1	1.1/71	1474	11/71	11/71

VOCs

											VOCs									SVOCe		
											VOCS									30003		
							p-	sec-		t-			trans-1,2-	trans-1,3-		Trichlorof						
					N-Propyl		Isopropyl	Butylbenz		Butylbenz	Tetrachlo		Dichloroe	Dichlorop	Trichloroe	luoromet	Vinyl	Acenapht	Acenapht		Anthracen	Benzo(a)a
OA	Sample ID	Sample Method or Type	Sample Depth	Sample Date	benzene	o-Xylene	benzene	ene	Styrene	ene	roethene	Toluene	thene	ropene	thene	hane	chloride	hene	hylene	Aniline	<u>e</u>	nthracene
			ft bgs	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
2000, 2002,	and 2016 CBC Sampling (continued)	coil boring	2	7/10/2016	<0.0226	<0.0226	<0.0226	<0.0226	<0.0226	<0.0226	<0.0226	<0.0226	<0.0226	<0.0226	<0.0226	<0.0226	<0.0226	NIA	NIA	NIA	NIA	NIA
F1 F1	B-7C(1')	soil boring	5 1	7/19/2016	<0.0320	<0.0320	<0.0320	<0.0320	<0.0320	<0.0320	<0.0320	<0.0320	<0.0320	<0.0320	<0.0320	<0.0320	<0.0320	NA	NA	NA	NA	NA
F1	B-7C(6')	soil boring	6	7/20/2010	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	ΝA	NA	NA	NA	NA
F1	B-7D(5')	soil boring	5	7/20/2010	<0.0105	<0.0105	<0.0105	<0.0105	<0.0105	<0.0105	<0.0105	<0.0105	<0.0105	<0.0105	<0.0105	<0.0105	<0.0105	NA	NA	NA	NA	NA
F1	B-8B(3')	soil boring	3	7/19/2016	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	<0.0114	NA	NA	NA	NA	NA
F1	B-8B(6')	soil boring	6	7/19/2016	<0.0144	<0.0144	<0.0144	<0.0144	<0.0144	<0.0144	<0.0144	<0.0144	<0.0144	<0.0144	<0.0144	<0.0144	<0.0144	NA	NA	NA	NA	NA
F1	B-8C(9')	soil boring	9	7/19/2016	<0.0126	< 0.0126	< 0.0126	<0.0126	< 0.0126	< 0.0126	<0.0126	<0.0126	< 0.0126	<0.0126	<0.0126	< 0.0126	< 0.0126	NA	NA	NA	NA	NA
F1	B-9(6')	soil boring	6	7/20/2016	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	NA	NA	NA	NA	NA
F1	B-9(12')	soil boring	12	7/20/2016	<0.0136	<0.0136	<0.0136	<0.0136	<0.0136	<0.0136	<0.0136	<0.0136	<0.0136	<0.0136	<0.0136	<0.0136	<0.0136	NA	NA	NA	NA	NA
F1	B-10(8')	soil boring	8	7/20/2016	<0.0133	<0.0133	<0.0133	<0.0133	<0.0133	<0.0133	<0.0133	<0.0133	<0.0133	<0.0133	<0.0133	<0.0133	<0.0133	NA	NA	NA	NA	NA
F1	B-10(15')	soil boring	15	7/20/2016	<0.0145	<0.0145	<0.0145	<0.0145	<0.0145	<0.0145	<0.0145	<0.0145	<0.0145	<0.0145	<0.0145	<0.0145	<0.0145	NA	NA	NA	NA	NA
F1	B-11(1')	soil boring	1	7/19/2016	<0.00945	<0.00945	<0.00945	<0.00945	<0.00945	<0.00945	<0.00945	<0.00945	<0.00945	<0.00945	<0.00945	<0.00945	<0.00945	NA	NA	NA	NA	NA
F1	B-11(12')	soil boring	12	7/19/2016	<0.0112	<0.0112	<0.0112	<0.0112	<0.0112	<0.0112	<0.0112	<0.0112	<0.0112	<0.0112	<0.0112	<0.0112	<0.0112	NA	NA	NA	NA	NA
F1	B-11B(8')	soil boring	8	7/20/2016	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	<0.0117	NA	NA	NA	NA	NA
F1	B-11B(18')	soil boring	18	7/20/2016	<0.0123	<0.0123	<0.0123	<0.0123	<0.0123	<0.0123	<0.0123	<0.0123	<0.0123	<0.0123	<0.0123	<0.0123	<0.0123	NA	NA	NA	NA	NA
F1	TP 1-1	test pit	1.3	8/15/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	TP 1-2	test pit	3	8/15/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	TP2-1	test pit	1.5	8/15/2002	<0.025	< 0.0061	NA	<0.025	< 0.0061	<0.025	< 0.0061	< 0.0061	<0.0061	< 0.0061	<0.0061	< 0.0061	< 0.0061	<0.41	<0.41	<1.3	<0.41	<0.41
F1	TP2-2	test pit	3.2	8/15/2002	<0.026	<0.0064	NA	<0.026	<0.0064	<0.026	<0.0064	<0.0064	<0.0064	<0.0064	<0.0064	<0.0064	<0.0064	<0.43	<0.43	<1.4	<0.43	<0.43
F1	1P3-1 TD2-2	test pit	1.2	8/15/2002	<0.022	<0.0054	NA	<0.022	<0.0054	<0.022	0.05	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054	<0.37	<0.37	<1.1	<0.37	<0.37
F1 F1		test pit	3.8	8/15/2002	<0.026	<0.0063	NA	<0.026	<0.0063	<0.026	0.013	<0.0063	<0.0063	<0.0063	<0.0063	<0.0063	<0.0063	<0.42	<0.42	<1.3	<0.42	<0.42
F1 E1		test pit	1.5	8/15/2002	<0.025	<0.0062	NA	<0.025	<0.0062	<0.025	<0.0062	<0.0062	<0.0062	<0.0062	<0.0062	<0.0062	<0.0062	NA	NA	NA	NA	NA
F1 F1	TP 5-1 (bkgd)	test pit	<u> </u>	8/15/2002	<0.025	<0.0003	NA	<0.025		<0.025	<0.0058	<0.0003	<0.0005				<0.0005	<0.38	<0.38	<1 2	<0.38	<0.38
F1	TP 5-2 (bkgd)	test pit	3.5	8/15/2002	<0.023	<0.0058	NA	<0.023	<0.0058	<0.023	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.38	<0.38	<1.2	<0.38	<0.38
F1	I S-1	surface sample	1	7/19/2016	NA	NA	1473	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	LS-2	surface sample	1	7/19/2016	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2017 Diesel	Release Update Confirmation Samplin	Ig	_	.,,																		
	· · ·	•	confirmation																			
C4	Sample #1	soil sample	sidewall	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
			confirmation																			
C4	Sample #2	soil sample	sidewall	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
			confirmation																			
C4	Sample #3	soil sample	bottom	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
			confirmation																			
C4	Sample #4	soil sample	sidewall	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
C1	Comple #F	coil comple	confirmation	0/7/2017	NLA	NLA	NLA	NLA	NLA	NLA	NLA	NLA	NLA	NLA	NLA	NLA	NLA	NLA	NLA	NLA	NLA	NLA
	Sample #5	son sample	sidewall	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
C4	Sample #6	soil sample	commation	8/7/2017	NA	NIA	NIA	NΙΛ	NA	NΙΛ	NIA	NΛ	NΛ	NIA	NIA	NIA	NΛ	NΛ	NIA	NIA	NΙΛ	NΙΔ
2018 March	Fuel Oil Day Tank	Son Sample	Sidewall	0,772017		N/A	11/7	N/A	11/3	11/1	11/5	nn -	N/A	N/A	N/A	11/7	N/A	nn -	11/4	IN/A	11/4	
B4	CAMAS TANK-ACROSS ROAD-4 5	soil sample	4.5	3/19/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B4	CAMAS TANK-ACROSS ROAD-6.0	soil sample	6.0	3/19/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B4	CAMAS TANK-NE-2.0	soil sample	2.0	3/14/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B4	CAMAS TANK-NW-2.0	soil sample	2.0	3/14/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B4	CAMAS TANK-SE-2.0	soil sample	2.0	3/14/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B4	CAMAS TANK-SOIL PILE	soil sample	0.1	3/19/2018	NA	< 54	NA	NA	NA	NA	NA	< 200	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B4	CAMAS TANK-SW-3.0	soil sample	3.0	3/14/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B4	CAMAS TANK-SW-2.0	soil sample	2.0	3/14/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

													SV	OCs							
											4-		4-Chloro-		Bis(2-		Bis(2.			4-	
						Benzo(b)fl		Benzo(k)fl			Bromophe	Butvl	3-	4-	chloroeth	Bis(2-	chloroison	2-	2-	Chlorophe	
					Benzo(a)p	uoranthen	Benzo(ghi	uoranthen	Benzoic	Benzvl	nvl phenvl	benzvl	methylph	Chloroanil	oxv)meth	chloroeth	ropyl)	- Chloronap	– Chlorophe	nvl phenvl	
OA	Sample ID	Sample Method or Type	Sample Depth	Sample Date	vrene	е)pervlene	е	Acid	Alcohol	ether	phthalate	enol	ine	ane	vl)ether	ether	hthalene	nol	ether	Chrysene
	•		ft bgs	Units	, mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	 mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	, mg/kg
2000, 2002,	and 2016 CBC Sampling (continued)																				
F1	B-7B(3')	soil boring	3	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-7C(1')	soil boring	1	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-7C(6')	soil boring	6	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-7D(5')	soil boring	5	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-8B(3')	soil boring	3	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-8B(6')	soil boring	6	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-8C(9')	soil boring	9	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-9(6')	soil boring	6	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-9(12')	soil boring	12	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-10(8')	soil boring	8	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-10(15')	soil boring	15	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-11(1')	soil boring	1	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-11(12')	soil boring	12	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-11B(8')	soil boring	8	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-11B(18 ⁻)	soil boring	18	//20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1 F1		test pit	1.3	8/15/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1 F1		test pit	3	8/15/2002	NA	NA	NA	NA 10.41	NA 2 F	NA	NA -0.41	NA (0.41	NA	NA	NA	NA (0.41	NA	NA	NA	NA	NA
F1 F1		test pit	1.5	8/15/2002	<0.41	<0.41	<0.41	<0.41	<2.5	2.8	<0.41	<0.41	<0.41	<0.41	<0.41	<0.41	<0.41	<0.41	<0.41	<0.41	<0.41
F1 E1		test pit	3.2	8/15/2002	<0.43	<0.43	<0.43	<0.43	<2.7	<0.43	<0.43	<0.43	<0.43	<0.43	<0.43	<0.43	<0.43	<0.43	<0.43	<0.43	<0.43
	1P3-1 TP3-2	test pit	2.2	8/15/2002	<0.37	<0.37	<0.37	<0.37	<2.2	<0.37	<0.37	<0.37	<0.37	<0.37	<0.37	<0.37	<0.37	<0.37	<0.37	<0.37	<0.37
<u></u>	TD4 1	tost pit	3.8 1 E	8/15/2002	NIA	NIA	NIA	NIA	NA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA
F1 F1	TD/_2	test pit	2.2	8/15/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
F1	$TP 5_1 (bkgd)$	test pit	1.5	8/15/2002	<0.38	<0.38	<0.38	<0.38	<21	<0.38	<0.38	<0.38	<0.38	<0.38	<0.38	<0.38	<0.38	<0.38	<0.38	<0.38	<0.38
F1	TP 5-2 (bkgd)	test pit	3.5	8/15/2002	<0.30	<0.30	<0.30	<0.30	<2.4	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30
F1	\$-1	surface sample	1	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	15-2	surface sample	1	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2017 Diesel	Release Update Confirmation Sampli	ing	-	., 10, 1010																	
			confirmation																		
C4	Sample #1	soil sample	sidewall	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	•	ľ	confirmation																		
C4	Sample #2	soil sample	sidewall	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	· ·		confirmation																		
C4	Sample #3	soil sample	bottom	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
			confirmation																		
C4	Sample #4	soil sample	sidewall	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
			confirmation																		
C4	Sample #5	soil sample	sidewall	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
			confirmation																		
C4	Sample #6	soil sample	sidewall	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2018 March	Fuel Oil Day Tank																				
B4	CAMAS TANK-ACROSS ROAD-4.5	soil sample	4.5	3/19/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B4	CAMAS TANK-ACROSS ROAD-6.0	soil sample	6.0	3/19/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B4	CAMAS TANK-NE-2.0	soil sample	2.0	3/14/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B4	CAMAS TANK-NW-2.0	soil sample	2.0	3/14/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B4	CAMAS TANK-SE-2.0	soil sample	2.0	3/14/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B4	CAMAS TANK-SOIL PILE	soil sample	0.1	3/19/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B4	CAMAS TANK-SW-3.0	soil sample	3.0	3/14/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
В4	CAMAS TANK-SW-2.0	soil sample	2.0	3/14/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

														SV	OCs						
					Di-n-butvl	Di-n-octvl	Dibenz(a, h)anthrac	Dibenzofu	1,2- Dichlorob	1,3- Dichlorob	1,4- Dichlorob	3,3- Dichlorob	2,4- Dichlorop	Diethvl	2,4- Dimethvlp	o Dimethyl	4,6- Dinitro-2- methylph	2,4- Dinitroph	2,4- Dinitrotol	2,6- Dinitrotol	Bis(2- ethylhexyl)
OA	Sample ID	Sample Method or Type	Sample Depth	Sample Date	, phthalate	, phthalate	ene	ran	enzene	enzene	enzene	enzidine	henol	, phthalate	henol	, phthalate	enol	enol	uene	uene	phthalate
	•		ft bgs	Units	 mg/kg	 mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	, mg/kg	mg/kg	 mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
2000, 2002,	and 2016 CBC Sampling (continued)		Ŭ		0, 0	0, 0	0, 0	0, 0	0, 0	0, 0	0, 0	0, 0	0, 0		0, 0	0, 0	0, 0	0, 0	0, 0	0, 0	0, 0
F1	B-7B(3')	soil boring	3	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-7C(1')	soil boring	1	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-7C(6')	soil boring	6	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-7D(5')	soil boring	5	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-8B(3')	soil boring	3	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.0390
F1	B-8B(6')	soil boring	6	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.0414
F1	B-8C(9')	soil boring	9	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-9(6')	soil boring	6	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.0411
F1	B-9(12')	soil boring	12	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-10(8')	soil boring	8	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.0404
F1	B-10(15')	soil boring	15	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-11(1')	soil boring	1	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.0373
F1	B-11(12')	soil boring	12	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.0370
F1	B-11B(8')	soil boring	8	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-11B(18')	soil boring	18	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.0415
F1	TP 1-1	test pit	1.3	8/15/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	TP 1-2	test pit	3	8/15/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	TP2-1	test pit	1.5	8/15/2002	<0.41	<0.41	<0.41	<0.41	<0.41	<0.41	<0.41	<2.5	<0.41	<0.41	<0.41	<0.41	<2.5	<2.5	<0.41	<0.41	<0.41
F1	TP2-2	test pit	3.2	8/15/2002	<0.43	<0.43	<0.43	<0.43	<0.43	<0.43	<0.43	<2.7	<0.43	<0.43	<0.43	<0.43	<2.7	<2.7	<0.43	<0.43	<0.43
F1	TP3-1	test pit	1.2	8/15/2002	<0.37	<0.37	<0.37	<0.37	<0.37	<0.37	<0.37	<2.2	<0.37	<0.37	<0.37	<0.37	<2.2	<2.2	<0.37	<0.37	<0.37
F1	TP3-2	test pit	3.8	8/15/2002	<0.42	<0.42	<0.42	<0.42	<0.42	<0.42	<0.42	<2.6	<0.42	<0.42	<0.42	<0.42	<2.6	<2.6	<0.42	<0.42	<0.42
F1	TP4-1	test pit	1.5	8/15/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	TP4-2	test pit	3.8	8/15/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	TP 5-1 (bkgd)	test pit	1.5	8/15/2002	<0.38	<0.38	<0.38	<0.38	<0.38	<0.38	<0.38	<2.4	<0.38	<0.38	<0.38	<0.38	<2.4	<2.4	<0.38	<0.38	<0.38
F1	TP 5-2 (bkgd)	test pit	3.5	8/15/2002	<0.39	<0.39	<0.39	<0.39	<0.39	<0.39	<0.39	<2.4	<0.39	<0.39	<0.39	<0.39	<2.4	<2.4	<0.39	<0.39	<0.39
F1	LS-1	surface sample	1	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	LS-2	surface sample	1	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2017 Diesel	Release Update Confirmation Sampli	ing																			
			confirmation																		
C4	Sample #1	soil sample	sidewall	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
			confirmation																		
C4	Sample #2	soil sample	sidewall	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
			confirmation																		
C4	Sample #3	soil sample	bottom	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
			confirmation																		
C4	Sample #4	soil sample	sidewall	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
			confirmation																		
C4	Sample #5	soil sample	sidewall	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
			confirmation																		
C4	Sample #6	soil sample	sidewall	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2018 March	Fuel Oil Day Tank																				
B4	CAMAS TANK-ACROSS ROAD-4.5	soil sample	4.5	3/19/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B4	CAMAS TANK-ACROSS ROAD-6.0	soil sample	6.0	3/19/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B4	CAMAS TANK-NE-2.0	soil sample	2.0	3/14/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B4	CAMAS TANK-NW-2.0	soil sample	2.0	3/14/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B4	CAMAS TANK-SE-2.0	soil sample	2.0	3/14/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B4	CAMAS TANK-SOIL PILE	soil sample	0.1	3/19/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B4	CAMAS TANK-SW-3.0	soil sample	3.0	3/14/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B4	CAMAS TANK-SW-2.0	soil sample	2.0	3/14/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

								Hexachlor	Hexachlor		Indeno(1,		2-	2-	3-,4-		2-	3-	4-		2-
					Fluoranth		Hexachlor	obutadien	ocyclopen	Hexachlor	2,3-	Isophoron	Methylna	Methylph	Methylph	Naphthale	Nitroanilin	Nitroanilin	Nitroanilin	Nitrobenz	Nitrophen
OA	Sample ID	Sample Method or Type	Sample Depth	Sample Date	ene	Fluorene	obenzene	е	tadiene	oethane	cd)pyrene	e	phthalene	enol	enol	ne	e	е	e	ene	ol
	•		ft bgs	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	 mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
2000, 2002,	and 2016 CBC Sampling (continued)				0, 0	0, 0		0, 0	0, 0	0, 0	0, 0	0, 0	0, 0	0, 0	0, 0	0, 0	0, 0	0, 0		0, 0	
F1	B-7B(3')	soil boring	3	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-7C(1')	soil boring	1	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-7C(6')	soil boring	6	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-7D(5')	soil boring	5	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-8B(3')	soil boring	3	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-8B(6')	soil boring	6	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-8C(9')	soil boring	9	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-9(6')	soil boring	6	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-9(12')	soil boring	12	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-10(8')	soil boring	8	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-10(15')	soil boring	15	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-11(1')	soil boring	1	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-11(12')	soil boring	12	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-11B(8')	soil boring	8	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-11B(18')	soil boring	18	7/20/2016	NΔ	ΝΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NA	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ
F1	TP 1-1	test nit	13	8/15/2002	NΔ	ΝΔ	NΔ	NΔ	NΔ	NΔ	NΔ	ΝΔ	NA	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	ΝΔ
F1	TP 1_2	test pit	3	8/15/2002	NΔ	ΝΔ	ΝΔ	ΝΔ	ΝΔ	ΝΔ	ΝA	ΝΔ	NA	ΝA	ΝΔ	ΝΔ	ΝΔ	ΝΔ	ΝΔ	ΝΔ	ΝA
F1	TP2-1	test pit	15	8/15/2002	<0.41	<0.41	<0.41	<0.41	<0.41	<0.41	<0.41	<0.41	<0.41	<0.41	<0.41	<0.41	<2.5	<25	<2.5	<0.41	<0.41
F1	TD2_2	test pit	2.2	8/15/2002	<0.41	<0.41	<0.41	<0.41	<0.41	<0.41	<0.41	<0.41	<0.41	<0.41	<0.41	<0.41	<2.5	<2.5	~2.5	<0.41	<0.41
F1	TD2-1	test pit	1.2	8/15/2002	<0.43	<0.43	<0.43	<0.43	<0.43	<0.43	<0.43	<0.43	<0.43	<0.43	<0.43	<0.43	<2.7	<2.7	<2.7	<0.43	<0.43
F1	TD2_7	test pit	2.8	8/15/2002	<0.37	<0.37	<0.37	<0.37	<0.37	<0.37	<0.37	<0.37	<0.37	<0.37	<0.37	<0.37	<2.2	<2.2	<2.2	<0.37	<0.37
F1	TP/_1	test pit	1 5	8/15/2002	NIA	NA	NA	NIA	NIA	NA	NA	NA	NIA	NA	NIA	NIA	NA	NA	NA	NA	NIA
F1 E1		test pit	2.0	8/15/2002 9/15/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1 F1		test pit		8/15/2002	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.39	<0.20	<0.20	<0.20	<2.4	-2.4	<2.4	<0.20	<0.20
	TP 5-1 (bkgu)	test pit	1.5	8/15/2002	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.30	<0.38	<0.30	<0.30	<0.30	<2.4	<2.4	<2.4	<0.30	<0.30
F1 F1	IP 5-2 (DKgu)	curface cample	3.5	7/10/2016	<0.59	<0.59	<0.59	<0.59	<0.59	<0.59	<0.59	<0.59	×0.59	<0.59	<0.59	<0.59	< <u>Z.4</u>	< <u>2.4</u>	<2.4	<0.59	<0.59
F1 F1			1	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	L3-2 Release Undets Confirmation Samuli	surface sample	1	//19/2016	INA	NA	NA	INA	INA	NA	INA	NA	NA	INA	INA	INA	NA	INA	INA	NA	INA
2017 Diesei	Release Opdate Confirmation Sampli	ng	confirmation																		
C 4	Concello #1		commation	0/7/2017	NLA	N I A	N L A	NLA	NLA	N I A	NLA	N.L.O.	NLO	N.L.A	NLA	N I A		NLA	NLA	N I A	N L A
C4	Sample #1	son sample	sidewali	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	INA	NA	NA	NA	NA	NA	NA
C A	Comple #2	coil commo	commation	9/7/2017	NLA	NLA	NLA	NLA	NLA	NLA	NLA	NLA	NLA	NLA	NLA	NLA	NLA	NLA	NIA	NLA	NLA
<u>L</u> 4	Sample #2	son sample	Sidewali	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	INA	NA	NA	NA	NA	NA	NA
C A	Comple #2	coil commo	bottom	9/7/2017	NLA	NLA	NLA	NLA	NLA	NLA	NLA	NLA	NLA	NLA	NLA	NLA	NLA	NLA	NIA	NLA	NLA
<u>C4</u>	Sample #3	son sample	DOLLOIN	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	INA	NA	NA	NA	NA	NA	NA
C A	Comple #4	coil commo	commation	9/7/2017	NLA	NLA	NLA	NLA	NLA	NLA	NLA	NLA	NLA	NLA	NLA	NLA	NLA	NLA	NIA	NLA	NLA
<u>L4</u>	Sample #4	son sample	sidewall	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	INA	NA	NA	NA	NA	NA	NA
C1	Comple #F	coil commo	commation	9/7/2017	NLA	NLA	NLA	NLA	NLA	NLA	NLA	NLA	NLA	NIA	NLA	NLA	NLA	NLA	NIA	NLA	NLA
<u>L4</u>	Sample #5	son sample	sidewall	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	INA	NA	NA	NA	NA	NA	NA
C 4	Converte #C		confirmation	0/7/2017	NLA	N I A	N L A	NLA	NLA	N I A	NLA	N.L.O.	NLO	N.L.A	NLA	N I A		NLA	NLA	N I A	N L A
2242 14		soli sample	sidewall	8/7/2017	NA	NA	NA	NA	NA	NA	INA	NA	NA	NA	INA	NA	NA	NA	NA	NA	INA
2018 March			4.5	2/10/2010	D.L.A.			b L A	b.L.A	D.L.A.	N.L.A.	51.0	N.A.	51.0	NI A	D.L.A.		b.L.A	51.0	D.L.A.	
B4	CAMAS TANK-ACROSS ROAD-4.5	soil sample	4.5	3/19/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B4	CANAAS TANK-ACRUSS RUAD-6.0	soil sample	6.0	3/19/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
84	CAMAS TANK-NE-2.0	soil sample	2.0	3/14/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B4	CAMAS TANK-NW-2.0	soil sample	2.0	3/14/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B4	CAMAS TANK-SE-2.0	soil sample	2.0	3/14/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
84		soil sample	0.1	3/19/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
В4	CAMAS TANK-SW-3.0	soil sample	3.0	3/14/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
В4	CAMAS TANK-SW-2.0	soil sample	2.0	3/14/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

SVOCs

											SVOCs							PCBs			
						N-															
						Nitrosodi-	N-														
					4-	n-	Nitrosodip) Doutochio				1,2,4- Triablereb	2,4,5- Triable rear	2,4,6- Tuishlanan	A	A	A	A	A	A	A
04	Sample ID	Sample Mathed or Tune	Sample Depth	Sampla Data	Nitrophen	n propylami	nenyiamir	rentachio	pnenanthr	Dhonol	Durono	Irichiorop	Irichiorop	Irichiorop	Arocior	Arocior	Arocior	Arocior	Arocior	Arocior	Arocior
04	Sample ID	Sample Method of Type	ft bac	Sample Date	01	ma/ka	e ma/ka	rophenoi ma/ka	mg/kg	ma/ka	pyrene mg/kg	enzene ma/ka	ma/ka	ma/ka	1016 mg/kg	1221 mg/kg	1232 mg/kg	1242 mg/kg	1248 mg/kg	 	
2000. 2002.	and 2016 CBC Sampling (continued)		Tt bgs	Onits	iiig/ kg	iiig/ kg	iiig/ kg	iiig/ kg	iiig/ kg	iiig/ kg	iiig/ kg	iiig/ kg	iiig/ kg	iiig/ kg	iiig/ kg	iiig/ kg	iiig/ kg	iiig/ kg	iiig/ kg	iiig/ kg	iiig/ kg
F1	B-7B(3')	soil boring	3	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-7C(1')	soil boring	1	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-7C(6')	soil boring	6	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-7D(5')	soil boring	5	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-8B(3')	soil boring	3	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-8B(6')	soil boring	6	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-8C(9')	soil boring	9	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-9(6')	soil boring	6	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-9(12')	soil boring	12	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-10(8')	soil boring	8	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-10(15')	soil boring	15	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-11(1')	soil boring	1	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-11(12')	soil boring	12	7/19/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-11B(8')	soil boring	8	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	B-11B(18')	soil boring	18	7/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	TP 1-1	test pit	1.3	8/15/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	TP 1-2	test pit	3	8/15/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F1	TP2-1	test pit	1.5	8/15/2002	<2.5	<0.41	<2.5	<2.5	<0.41	<0.41	<0.41	<0.41	<0.41	<0.41	NA	NA	NA	NA	NA	NA	NA
F1	TP2-2	test pit	3.2	8/15/2002	<2.7	<0.43	<2.7	<2.7	<0.43	<0.43	<0.43	<0.43	<0.43	<0.43	NA	NA	NA	NA	NA	NA	NA
<u>F1</u>	1P3-1 TD2-2	test pit	1.2	8/15/2002	<2.2	<0.37	<2.2	<2.2	<0.37	<0.37	<0.37	<0.37	<0.37	<0.37	NA	NA	NA	NA	NA	NA	NA
F1	TP3-2	test pit	3.8	8/15/2002	<2.6	<0.42	<2.6	<2.6	<0.42	<0.42	<0.42	<0.42	<0.42	<0.42	NA	NA	NA 10.42	NA 10.42	NA	NA	NA 10.12
F1	TP4-1	test pit	1.5	8/15/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.13	<0.25	<0.13	<0.13	<0.13	<0.13	<0.13
F1		test pit	3.8	8/15/2002	NA	NA	NA 12.4	NA 12.4	NA -0.20	NA -0.20	NA (0.20	NA	NA -0.20	NA	<0.13	<0.26	<0.13	<0.13	<0.13	<0.13	<0.13
F1 F1		test pit	1.5	8/15/2002	<2.4	<0.38	<2.4	<2.4	<0.38	<0.38	<0.38	<0.38	<0.38	<0.38	NA <0.12	NA	NA	NA	NA	-0 12	NA
		surface cample		7/10/2016	< <u>2.4</u>	<0.59	<2.4	<2.4	<0.59	<0.59	<0.59	<0.59	<0.59	<0.59	<0.1Z	<0.24	<0.12	<0.12	<0.12	<u><0.12</u>	<u> </u>
F1 F1	L3-1 S_2	surface sample	1	7/19/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2017 Diesel	Release Undate Confirmation Sampli	ng	1	771372010	NA	NA	NA	NA	N/A	NA	IN/A	INA	NA	NA	NA	NA	NA	NA	NA	IN/A	INA
2017 Dieser	Release optiate commation sample	116	confirmation																		
C4	Sample #1	soil sample	sidewall	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	64p.C # 2		confirmation	0,7,2027																	
C4	Sample #2	soil sample	sidewall	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	•		confirmation																		
C4	Sample #3	soil sample	bottom	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
			confirmation																		
C4	Sample #4	soil sample	sidewall	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
			confirmation																		
C4	Sample #5	soil sample	sidewall	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
			confirmation																		
C4	Sample #6	soil sample	sidewall	8/7/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2018 March	Fuel Oil Day Tank																				
B4	CAMAS TANK-ACROSS ROAD-4.5	soil sample	4.5	3/19/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B4	CAMAS TANK-ACROSS ROAD-6.0	soil sample	6.0	3/19/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B4	CAMAS TANK-NE-2.0	soil sample	2.0	3/14/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B4	CAMAS TANK-NW-2.0	soil sample	2.0	3/14/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
<u>B4</u>	CAMAS TANK-SE-2.0	soil sample	2.0	3/14/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
<u>B4</u>		soil sample	0.1	3/19/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
<u>B4</u>		soil sample	3.0	3/14/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
В4	CAIVIAS TAINK-SW-2.0	soil sample	2.0	3/14/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table B3: Data Summary Table - Sediment

											Т	PH			Dioxins a	nd Furans		
	Sediment			Total Fixed			Total Organic	Total Organic		Total			2378-	1 2 3 7 8-	1 2 3 4 7 8-	123678-	123789-	1234678-
Sample ID	Sample Depth	Sample Date	Total Solids	Solids	Bulk Density	рH	Carbon	Carbon	Total Sulfides	Ammonia	DRO	ORO	TCDD	PeCDD	HxCDD	HxCDD	HxCDD	HpCDD
Units	ft bss	oumpie Date	%	%	g/cm3	s.u.	mg/kg	%	mg/kg	mg/kg	mg/kg	mg/kg	ng/kg	ng/kg	ng/kg	ng/kg	ng/kg	ng/kg
NPDES Permit Monitoring				·	0,		0, 0	•	6, 0	0, 0	0, 0	0, 0	0, 0	0, 0	0, 0	0, 0	0, 0	0, 0
OF1-1	0 - 0.28	9/13/2017	71.0	NA	NA	NA	310 JH	NA	<13	<63	< 63	16 J	NA	NA	NA	NA	NA	NA
OF1-2	0 - 0.23	9/13/2017	71.0	NA	NA	NA	280 JH	NA	<13	<47	< 61	17 J	NA	NA	NA	NA	NA	NA
OF1-3	0 - 0.16	9/13/2017	69.0	NA	NA	NA	320 JH	NA	<13	<62	< 63	12 J	NA	NA	NA	NA	NA	NA
OF1-4	0 - 0.18	9/14/2017	73.0	NA	NA	NA	250 JH	NA	<13	<61	< 65	<65	NA	NA	NA	NA	NA	NA
OF2-1	0 - 0.23	9/12/2017	64.0	NA	NA	NA	3500 H	NA	<15	<72	<71	70 J	<0.0742	<0.0957	<0.0112	0.207 J	0.241 J	2.41
OF2-2	0 - 0.28	9/12/2017	68.0	NA	NA	NA	2100 H	NA	<14	<46	<66	60 J	<0.0904	<0.115	0.144 J	0.121 J	<0.201	1.17
OF2-3	0 - 0.28	9/12/2017	65.0	NA	NA	NA	1500 JH	NA	<13	<51	<62	30 J	<0.0915	<0.106	<0.0914	<0.0937	0.107 J	1.11
OF2-4	0 - 0.28	9/14/2017	73.0	NA	NA	NA	1200 JH	NA	<13	<63	<64	23 J	NA	NA	NA	NA	NA	NA
OF2-5	0 - 0.26	9/14/2017	67.0	NA	NA	NA	1600 JH	NA	<15	<60	<69	23 J	NA	NA	NA	NA	NA	NA
OF2-5D	0 - 0.26	9/14/2017	67.0	NA	NA	NA	1700 JH	NA	NA	<72	<70	38 J	NA	NA	NA	NA	NA	NA
2016 & 2020 Dredged Materials Sa	mpling																	
12202016.1 - Camas Slough	NA	12/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sample #1 (west)	NA	3/5/2020	83.0 / 80.5	94.8	1.33	5.13	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sample #2 (mid)	NA	3/5/2020	81.4 / 82.2	95.4	1.27	5.38	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sample #3 (east)	NA	3/5/2020	79.7 / 82.1	95.1	1.25	5.43	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2009 Camas Slough Sediment Cores	s																	
B13	0 - 1	8/10/2009	54.1	NA	NA	NA	NA	2.37	76.7	16.1	NA	NA	<0.248	0.311	0.569	1.77	1.49	28.4
B13	2 - 3	8/10/2009	54.5	NA	NA	NA	NA	2.9	217	4.4	NA	NA	0.27	<0.36	0.55	1.88	1.7	29.9
B13	4 - 5	8/10/2009	64.5	NA	NA	NA	NA	2.61	211	1.5 J	NA	NA	<0.829	<0.463	<0.654	3.59	2.76	40.3
B14	0 - 1	8/10/2009	58.3	NA	NA	NA	NA	2.3	121	12.6	NA	NA	<0.406	0.504	0.622	2.5	<2.20	44.9
B14	2 - 3	8/10/2009	60.4	NA	NA	NA	NA	2.56	268	2	NA	NA	<1.05	1.02	1.05	20.1	9.9	236
B14	4 - 5	8/10/2009	57.9	NA	NA	NA	NA	2.76	327	2.6	NA	NA	1.77	0.774	1.25	23.7	8.46	500
B15	0 - 1	8/10/2009	57.2	NA	NA	NA	NA	3.3	103	2.3	NA	NA	<0.215	<0.266	<0.417	2.32	1.61	35.3
B15	2 - 3	8/10/2009	61.7	NA	NA	NA	NA	1.68	87.9	5.4	NA	NA	<0.268	<0.205	<0.325	1.5	1.12	18.8
B15	4 - 5	8/10/2009	62.7	NA	NA	NA	NA	1.65	143	10.6	NA	NA	<0.294	<0.316	0.366	3.09	1.83	27.9
Z sample 2006	3 - 4	8/10/2009	56.8	NA	NA	NA	NA	1.98	309	50.7	NA	NA	1.61	0.716	1.06	17	6.12	417

Dioxins and Furans

	Sediment				1,2,3,7,8-	2,3,4,7,8-	1,2,3,4,7,8-	1,2,3,6,7,8-	1,2,3,7,8,9-	2,3,4,6,7,8-	1,2,3,4,6,7,8-	1,2,3,4,7,8,9-			TEQ (ND=1/2				
Sample ID	Sample Depth	Sample Date	OCDD	2,3,7,8-TCDF	PeCDF	PeCDF	HxCDF	HxCDF	HxCDF	HxCDF	HpCDF	HpCDF	OCDF	TEQ (ND=0)	DL)	Aluminum	Antimony	Arsenic	Barium
Units	ft bss		ng/kg	ng/kg	ng/kg	ng/kg	ng/kg	ng/kg	ng/kg	ng/kg	ng/kg	ng/kg	ng/kg	ng/kg	ng/kg	mg/kg	mg/kg	mg/kg	mg/kg
NPDES Permit Monitoring																			
OF1-1	0 - 0.28	9/13/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.325	NA	NA	NA	1.7	NA
OF1-2	0 - 0.23	9/13/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.332	NA	NA	NA	1.8	NA
OF1-3	0 - 0.16	9/13/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.344	NA	NA	NA	1.8	NA
OF1-4	0 - 0.18	9/14/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.351	NA	NA	NA	2.1	NA
OF2-1	0 - 0.23	9/12/2017	15.3	<0.0795	<0.104	<0.101	0.104 J	0.127 J	0.145 J	0.108 J	0.388 J	0.138 J	0.900 J	0.35	NA	NA	NA	7.7	NA
OF2-2	0 - 0.28	9/12/2017	6.08	<0.0744	<0.108	<0.105	<0.0897	<0.0912	0.0948 J	<0.0849	<0.0230	<0.0703	0.444 J	0.347	NA	NA	NA	7.2	NA
OF2-3	0 - 0.28	9/12/2017	6.86	<0.0923	<0.0915	<0.0888	<0.0819	<0.0833	<0.0828	<0.0775	<0.143	<0.101	0.394 J	0.314	NA	NA	NA	6.5	NA
OF2-4	0 - 0.28	9/14/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.376	NA	NA	NA	7.7	NA
OF2-5	0 - 0.26	9/14/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.412	NA	NA	NA	8.9	NA
OF2-5D	0 - 0.26	9/14/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	7.9	NA
2016 & 2020 Dredged Materials Sa	mpling																		
12202016.1 - Camas Slough	NA	12/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sample #1 (west)	NA	3/5/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	11800	<7.9	<3.9	106
Sample #2 (mid)	NA	3/5/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	11400	<5.1	<2.5	109
Sample #3 (east)	NA	3/5/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	14200	<8.5	4.4	126
2009 Camas Slough Sediment Core	s																		
B13	0 - 1	8/10/2009	238	0.426	<0.138	<0.292	0.579	0.301	<0.052 J	<0.274	4.01	0.35	8.94	1.23	1.41	NA	0.195	4.59	NA
B13	2 - 3	8/10/2009	255	0.69	<0.230	<0.33	0.7	<0.41	<0.06 J	<0.300	5.04	<0.45	16.1	1.25	1.53	NA	0.29	4.81	NA
B13	4 - 5	8/10/2009	423	1.3	0.33	0.521	<0.89	<0.817	<0.153	<0.450	5.69	0.586	14.2	1.53	2.32	NA	0.23	5.57	NA
B14	0 - 1	8/10/2009	665	0.615	0.19	<0.277	0.569	0.336	<0.0666	<0.266	6.42	0.469	20.2	1.7	2.06	NA	0.19	5.06	NA
B14	2 - 3	8/10/2009	4120	3.49	<0.516	0.782	1.75	1.37	0.235 J	<0.878	34.7	2.73	120	9.05	9.63	NA	0.304	5	NA
B14	4 - 5	8/10/2009	12900	5.17	0.623	0.744	1.78	0.918	0.155 J	<0.713	60.9	3.83	276	16.53	16.56	NA	0.453	6.08	NA
B15	0 - 1	8/10/2009	486	1.21	0.213	<0.216	0.532	<0.335	<0.125 J	<0.250	4.49	0.322	15.5	1.13	1.45	NA	0.184	4.25	NA
B15	2 - 3	8/10/2009	166	1.94	<0.223	<0.240	0.343	0.338	<0.091 J	<0.186	3.39	0.284	11.8	0.8	1.11	NA	0.206	4.19	NA
B15	4 - 5	8/10/2009	258	1.04	<.201	0.291	0.474	0.445	<0.0592 J	<0.239	4.99	0.344	13.6	1.23	1.55	NA	0.265	5.1	NA
Z sample 2006	3 - 4	8/10/2009	7310	3.91	0.596	0.929	1.64	1.01	0.089 J	0.742	53.5	3.28	181	12.76	12.76	NA	<5.9	<7	NA

Metals

Metals

	Sediment						Chromium,	Chromium,												
Sample ID	Sample Depth	Sample Date	Beryllium	Boron	Cadmium	Cerium	total	Hexavalent	Cobalt	Copper	Iron	Lead	Manganese	Mercury V	1olybdenun	Nickel	Selenium	Silver	Strontium	Thallium
Units	ft bss		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
NPDES Permit Monitoring																				
OF1-1	0 - 0.28	9/13/2017	NA	NA	0.096	NA	8.6	NA	NA	5.4	NA	2.8	NA	< 0.030 F1	NA	9.5	0.57	0.01 J	NA	NA
OF1-2	0 - 0.23	9/13/2017	NA	NA	0.095	NA	8.5	NA	NA	5.5	NA	3.1	NA	< 0.032	NA	11	1.48	< 0.059	NA	NA
OF1-3	0 - 0.16	9/13/2017	NA	NA	0.11	NA	9.7	NA	NA	6	NA	3.6	NA	< 0.036	NA	11	0.54	0.011 J	NA	NA
OF1-4	0 - 0.18	9/14/2017	NA	NA	0.12	NA	12 B	NA	NA	6.6	NA	3.6	NA	< 0.040	NA	13	0.49	0.015 J	NA	NA
OF2-1	0 - 0.23	9/12/2017	NA	NA	0.26	NA	16	NA	NA	29	NA	9.8	NA	0.026 J	NA	0.15	0.66	0.035 J	NA	NA
OF2-2	0 - 0.28	9/12/2017	NA	NA	0.16	NA	17	NA	NA	39	NA	9	NA	0.021 J	NA	16	0.62	0.024 J	NA	NA
OF2-3	0 - 0.28	9/12/2017	NA	NA	0.16	NA	16	NA	NA	37	NA	7.7	NA	0.042	NA	16	0.52	0.021 J	NA	NA
OF2-4	0 - 0.28	9/14/2017	NA	NA	0.12	NA	17 B F1	NA	NA	40 F1	NA	5.7	NA	0.011 J	NA	16	0.86	0.015 J	NA	NA
OF2-5	0 - 0.26	9/14/2017	NA	NA	0.2	NA	19 B	NA	NA	47	NA	12	NA	0.024 J	NA	17	0.97	0.024 J	NA	NA
OF2-5D	0 - 0.26	9/14/2017	NA	NA	0.17	NA	18 B	NA	NA	43	NA	9.1	NA	0.026 J	NA	15	0.95	0.031 J	NA	NA
2016 & 2020 Dredged Materials Sa	ampling																			
12202016.1 - Camas Slough	NA	12/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sample #1 (west)	NA	3/5/2020	0.43	<3.9	<0.2	18.2	12.7	<0.54	7.93	24	20100	8	250	0.047	1.11	13.9	<7.9	<0.79	37.9	<3.9
Sample #2 (mid)	NA	3/5/2020	0.46	<2.5	<0.13	19.9	12.6	<0.60	7.71	23.9	18500	8.3	239	0.04	<0.51	12.7	<5.1	<0.51	36.8	<2.5
Sample #3 (east)	NA	3/5/2020	0.51	<4.3	<0.21	19.8	14.7	<0.60	8.92	26.9	23600	9.7	286	0.04	<0.85	14.6	<8.5	<0.85	44.8	<4.3
2009 Camas Slough Sediment Core	es																			
B13	0 - 1	8/10/2009	NA	NA	0.506	NA	13.6	NA	NA	31.5	NA	12.7	NA	0.076	NA	13.5	NA	0.166	NA	NA
B13	2 - 3	8/10/2009	NA	NA	0.51	NA	14	NA	NA	33.8	NA	14.2	NA	0.05	NA	13.7	NA	0.18	NA	NA
B13	4 - 5	8/10/2009	NA	NA	0.69	NA	15.6	NA	NA	34.6	NA	21.8	NA	0.06	NA	15.2	NA	0.1	NA	NA
B14	0 - 1	8/10/2009	NA	NA	0.523	NA	13.9	NA	NA	32.5	NA	14.6	NA	0.07	NA	14.1	NA	0.089	NA	NA
B14	2 - 3	8/10/2009	NA	NA	1.25	NA	18.6	NA	NA	31.8	NA	24.7	NA	0.145	NA	15.1	NA	0.116	NA	NA
B14	4 - 5	8/10/2009	NA	NA	2.47	NA	22.6	NA	NA	43.2	NA	32.4	NA	0.225	NA	16.1	NA	0.149	NA	NA
B15	0 - 1	8/10/2009	NA	NA	0.64	NA	13.2	NA	NA	27.8	NA	13.1	NA	0.062	NA	13.6	NA	0.079	NA	NA
B15	2 - 3	8/10/2009	NA	NA	0.693	NA	13.2	NA	NA	24.5	NA	13.9	NA	0.049	NA	14.2	NA	0.101	NA	NA
B15	4 - 5	8/10/2009	NA	NA	0.885	NA	15.4	NA	NA	29.2	NA	17	NA	0.067	NA	16	NA	0.098	NA	NA
Z sample 2006	3 - 4	8/10/2009	NA	NA	2.1	NA	27.1	NA	NA	46.8	NA	29.5	NA	0.183	NA	17.3	NA	<0.7	NA	NA

Table B3: Data Summary Table - Sediment

				Metals					TCLP N	letals								TCL	P VOCs				
	Sediment								Chromiu					1,1- Dichloroe	1,2- e Dichloroe	1,4- 2 Dichlorob	2-		Carbon tetrachlor	- Chlorobe		Tetrachlor	Trichloroe
Sample ID	Sample Depth	Sample Date	Tin	Vanadium	Zinc	Arsenic	Barium	Cadmium	m, total	Lead	Mercury	Selenium	Silver	thene	thane	enzene	Butanone	Benzene	ide	nzene	Chloroform	oethene	thene
Units	ft bss	•	mg/kg	mg/kg	mg/kg	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
NPDES Permit Monitoring												-							-	-		-	
OF1-1	0 - 0.28	9/13/2017	NA	NA	39	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OF1-2	0 - 0.23	9/13/2017	NA	NA	41	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OF1-3	0 - 0.16	9/13/2017	NA	NA	48	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OF1-4	0 - 0.18	9/14/2017	NA	NA	49	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OF2-1	0 - 0.23	9/12/2017	NA	NA	85	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OF2-2	0 - 0.28	9/12/2017	NA	NA	75	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OF2-3	0 - 0.28	9/12/2017	NA	NA	65	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OF2-4	0 - 0.28	9/14/2017	NA	NA	73	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OF2-5	0 - 0.26	9/14/2017	NA	NA	94	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OF2-5D	0 - 0.26	9/14/2017	NA	NA	88	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2016 & 2020 Dredged Materials S	ampling																						
12202016.1 - Camas Slough	NA	12/20/2016	NA	NA	NA	<0.05	<1	<0.05	<0.05	<0.05	<0.001	<0.1	<0.05	<0.2	<0.2	<0.2	<8	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Sample #1 (west)	NA	3/5/2020	<3.9	51.9	69.4	<0.1	<2	<0.05	<0.05	<0.05	<0.001	<0.1	<0.05	<0.2	<0.2	<0.2	<8	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Sample #2 (mid)	NA	3/5/2020	<2.5	50.6	71.5	<0.1	<2	<0.05	<0.05	<0.05	<0.001	<0.1	<0.05	<0.2	<0.2	<0.2	<8	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Sample #3 (east)	NA	3/5/2020	<4.3	61.2	82.4	<0.1	<2	<0.05	<0.05	<0.05	<0.001	<0.1	<0.05	<0.2	<0.2	<0.2	<8	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
2009 Camas Slough Sediment Cor	res																						
B13	0 - 1	8/10/2009	NA	NA	87	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B13	2 - 3	8/10/2009	NA	NA	91.9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B13	4 - 5	8/10/2009	NA	NA	121	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B14	0 - 1	8/10/2009	NA	NA	94	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B14	2 - 3	8/10/2009	NA	NA	157	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B14	4 - 5	8/10/2009	NA	NA	225	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B15	0 - 1	8/10/2009	NA	NA	105	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B15	2 - 3	8/10/2009	NA	NA	173	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B15	4 - 5	8/10/2009	NA	NA	153	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Z sample 2006	3 - 4	8/10/2009	NA	NA	207	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table B3: Data Summary Table - Sediment

			TLCP VOCs								Organics	(SVOCs, Pes	ticides, Herb	icides, Inse	cticides, PA	Hs, PCBs)							
						Beta-	Bis(2-																
						Hexachlor	ethylhexyl									Penta			2-				
	Sediment		Vinyl	4-Methyl	Benzoic	ocyclohex)		Dibenzo			Di-n-butyl	Di-n-octyl	Endrin	Mono	chloro		Tetra	Methylna	Acenapht	Acenapht	Anthracen	Benz(a)an
Sample ID	Sample Depth	Sample Date	, chloride	phenol	Acid	ane	, phthalate	Carbazole	furan	Dibutyltin	Dieldrin	, phthalate	, phthalate	Ketone	butyltin	phenol	Phenol	butyltin	, phthalene	hene	hylene	е	thracene
Units	ft bss		mg/L	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
NPDES Permit Monitoring																							
OF1-1	0 - 0.28	9/13/2017	NA	<52	<650	<0.13 F1	<160	<39	<39	<16 H	<0.26 F1	<130	<26 H F2	0.019 J p	<9.9 H	<100	<39	<49 H	NA	NA	NA	NA	NA
OF1-2	0 - 0.23	9/13/2017	NA	<52	<650	<0.12	<160	<39	<39	<16 H	<0.25	<130	<26 H	<0.25	<9.7 H	<100	<39	<49 H	NA	NA	NA	NA	NA
OF1-3	0 - 0.16	9/13/2017	NA	<50	<630	0.07 J	<150	<38	<38	<16 H	<0.25 p	<130	<25 H	<0.25	<9.6 H	<100	<38	<48 H	NA	NA	NA	NA	NA
OF1-4	0 - 0.18	9/14/2017	NA	<26 H	<330 H	<0.13	<79 H	<200	<200	<17 H	<0.26	<66 H	<26 H	<0.26	<11 H	<530	<20 H	<54 H	NA	NA	NA	NA	NA
OF2-1	0 - 0.23	9/12/2017	NA	<150	<1900	<0.72	<450	<110	<110	<19 H	<1.4	<370	<30 H	<1.4	<12 H	<300	<110	<59 H	NA	NA	NA	NA	NA
0F2-2	0 - 0.28	9/12/2017	NA	<130	<1600	<0.65	<380	<95	<95	<17 H	<1.4	<320	<25 H	<1.4		<250	<95	<53 H	NA	NA	NA	NA	NA
OF2-3	0 - 0.28	9/12/2017	ΝA	<250	<320 H	<0.03	2014 52	<191	<191	<16 H	<1.3	<65 H	<24 H	<1.3	<10 H F2	<500	<10 H	<50 H F2	NA	ΝA	NA	NA	NA
0F2-5	0 - 0.26	9/14/2017	NA	<29 H	<360 H	<0.74	<86 H	<220	<22 H	<10 H	<1.5	<72 H	<20 H	<1.5	<11 H	<590	<22 H	<57 H	NA	NA	NA	NA	NA
OF2-5D	0 - 0.26	9/14/2017	NA	<29 H	<360 H	<0.71	<86 H	<210	<22 H	<18 H	<1.4	<72 H	<29 H	<1.4	<11 H	<560	<22 H	<56 H	NA	NA	NA	NA	NA
2016 & 2020 Dredged Materials Sa	mpling	-, , -				-		-		-			-										
12202016.1 - Camas Slough	NA	12/20/2016	<0.08	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sample #1 (west)	NA	3/5/2020	<0.08	NA	NA	NA	NA	NA	< 390	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.39	<0.39	<0.39	<0.39	<0.39
Sample #2 (mid)	NA	3/5/2020	<0.08	NA	NA	NA	NA	NA	< 400	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.40	<0.40	<0.40	<0.40	<0.40
Sample #3 (east)	NA	3/5/2020	<0.08	NA	NA	NA	NA	NA	< 400	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.40	<0.40	<0.40	<0.40	<0.40
2009 Camas Slough Sediment Core	s																						
B13	0 - 1	8/10/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B13	2 - 3	8/10/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B13	4 - 5	8/10/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B14	0 - 1	8/10/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B14	2 - 3	8/10/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B14	4 - 5	8/10/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B15	0 - 1	8/10/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B15	2 - 3	8/10/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B15	4 - 5	8/10/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Z sample 2006	3 - 4	8/10/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Organics (SVOCs, Pesticides, Herbicides, Insecticides, PAHs, PCBs)

															2,4,5-	2,4,6-	2,4-						
				Benzo(b)f	l	Benzo(k)fl		Dibenz(a,h			Indeno(1,				Trichlorop	Trichlorop	Dinitrotol	2-	4-	Hexachlor	Hexachlor	Hexachlor	
	Sediment		Benzo(a)p	uoroanthe	e Benzo(g,h,	uoranthen	l)anthrace	Fluoranth		2,3-	Naphthale	Phenanthr		henol,	henol,	uene,	Methylph	Methlylph	obenzene,	obutadien	oethane,	Nitrobenz
Sample ID	Sample Depth	Sample Date	yrene	ne	i)perylene	е	Chrysene	ne	ene	Fluorene	cd)pyrene	ne	ene	Pyrene	TCLP	TCLP	TCLP	enol, TCLP	enol, TCLP	TCLP	e, TCLP	TCLP	ene, TCLP
Units	ft bss		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
NPDES Permit Monitoring																							
OF1-1	0 - 0.28	9/13/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OF1-2	0 - 0.23	9/13/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OF1-3	0 - 0.16	9/13/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OF1-4	0 - 0.18	9/14/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OF2-1	0 - 0.23	9/12/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OF2-2	0 - 0.28	9/12/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OF2-3	0 - 0.28	9/12/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OF2-4	0 - 0.28	9/14/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OF2-5	0 - 0.26	9/14/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OF2-5D	0 - 0.26	9/14/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2016 & 2020 Dredged Materials S	ampling																						
12202016.1 - Camas Slough	NA	12/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Sample #1 (west)	NA	3/5/2020	<0.39	<0.39	<0.39	<0.39	<0.39	<0.39	<0.39	<0.39	<0.39	<0.39	<0.39	<0.39	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Sample #2 (mid)	NA	3/5/2020	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Sample #3 (east)	NA	3/5/2020	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
2009 Camas Slough Sediment Cor	es																						
B13	0 - 1	8/10/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B13	2 - 3	8/10/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B13	4 - 5	8/10/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B14	0 - 1	8/10/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B14	2 - 3	8/10/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B14	4 - 5	8/10/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B15	0 - 1	8/10/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B15	2 - 3	8/10/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B15	4 - 5	8/10/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Z sample 2006	3 - 4	8/10/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		-, -, =, ====																					

Organics (SVOCs, Pesticides, Herbicides, Insecticides, PAHs, PCBs)

			Pentachlo																
	Sediment		rophenol,	Pyridine,	Aroclor	Total PCB					Heptachlor								
Sample ID	Sample Depth	Sample Date	TCLP	TCLP	1016	1221	1232	1242	1248	1254	1260	Aroclors	TCLP PCBs	Chlordane	Endrin	Heptachlor	Epoxide	Methoxychlor	Toxaphene
Units	ft bss		mg/L	mg/L	µg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	µg/kg	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
NPDES Permit Monitoring																			
OF1-1	0 - 0.28	9/13/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	<1.4	NA	NA	NA	NA	NA	NA	NA
OF1-2	0 - 0.23	9/13/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	<1.4	NA	NA	NA	NA	NA	NA	NA
OF1-3	0 - 0.16	9/13/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	<1.4	NA	NA	NA	NA	NA	NA	NA
OF1-4	0 - 0.18	9/14/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	<1.5	NA	NA	NA	NA	NA	NA	NA
OF2-1	0 - 0.23	9/12/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	<1.6	NA	NA	NA	NA	NA	NA	NA
OF2-2	0 - 0.28	9/12/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	<1.5	NA	NA	NA	NA	NA	NA	NA
OF2-3	0 - 0.28	9/12/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	<1.3	NA	NA	NA	NA	NA	NA	NA
OF2-4	0 - 0.28	9/14/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	<1.4	NA	NA	NA	NA	NA	NA	NA
OF2-5	0 - 0.26	9/14/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	<1.7	NA	NA	NA	NA	NA	NA	NA
OF2-5D	0 - 0.26	9/14/2017	NA	NA	NA	NA	NA	NA	NA	NA	NA	<1.6	NA	NA	NA	NA	NA	NA	NA
2016 & 2020 Dredged Materials Sa	ampling																		
12202016.1 - Camas Slough	NA	12/20/2016	<0.25	<0.50	<2.0	<4.0	<2.0	<2.0	<2.0	<2.0	<2.0	NA	< 2.0	NA	NA	NA	NA	NA	NA
Sample #1 (west)	NA	3/5/2020	<0.25	<0.50	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	NA	< 0.50	<0.0010	<0.00010	< 0.00010	< 0.00010	< 0.00010	<0.0020
Sample #2 (mid)	NA	3/5/2020	<0.25	<0.50	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	NA	< 0.50	<0.0010	<0.00010	< 0.00010	< 0.00010	< 0.00010	<0.0020
Sample #3 (east)	NA	3/5/2020	<0.25	<0.50	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<0.5	NA	< 0.50	<0.0010	<0.00010	<0.00010	<0.00010	<0.00010	<0.0020
2009 Camas Slough Sediment Core	es																		
B13	0 - 1	8/10/2009	NA	NA	<10	<20	<10	<10	<10	<10	<10	<20	NA	NA	NA	NA	NA	NA	NA
B13	2 - 3	8/10/2009	NA	NA	<10	<20	<10	<10	<10	<10	<10	<20	NA	NA	NA	NA	NA	NA	NA
B13	4 - 5	8/10/2009	NA	NA	<10	<60	<10	<10	<10	<13	<10	<60	NA	NA	NA	NA	NA	NA	NA
B14	0 - 1	8/10/2009	NA	NA	<10	<20	<10	<10	<10	<10	<10	<20	NA	NA	NA	NA	NA	NA	NA
B14	2 - 3	8/10/2009	NA	NA	<10	<20	<10	<10	<10	92	<10	92	NA	NA	NA	NA	NA	NA	NA
B14	4 - 5	8/10/2009	NA	NA	<9.9	<20	<9.9	<9.9	<9.9	44	<9.9	44	NA	NA	NA	NA	NA	NA	NA
B15	0 - 1	8/10/2009	NA	NA	<9.9	<20	<9.9	<9.9	<9.9	<9.9	<9.9	<20	NA	NA	NA	NA	NA	NA	NA
B15	2 - 3	8/10/2009	NA	NA	<9.9	<20	<9.9	<9.9	<9.9	<9.9	<9.9	<20	NA	NA	NA	NA	NA	NA	NA
B15	4 - 5	8/10/2009	NA	NA	<10	<20	<10	<10	<10	<10	<10	<20	NA	NA	NA	NA	NA	NA	NA
Z sample 2006	3 - 4	8/10/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table B3: Data Summary Table - Sediment

Sedment Sedment Total							Organics	5					Grain Siz	e				Sediment	t Biological	
Sample Day A de 1 ^d 2,46 ^{1d} 1d 1d<																				
Sedment Sed																				
Sedimetry Total Total Sample log hydle (bd-s)																				
Sample Depth Sample D																	Hyallela (10-day)		Chironomus (20-	Chironomus (20-
Sample Det																Hyallela (10-day)	Significantly	Hyallela (10-day)	day) Percent	day) Significantly
Sample ID Sample Depth Man Control Than Control ± 50) Control Units ft bs µg/L µg/L µg/L µg/R		Sediment		(a)		Total		Total	Total							Percent Mortality	Higher than	Percent Higher	Mortality (Mean	Higher than
Units fbs/ μg/L <	Sample ID	Sample Depth	Sample Date	2,4-D ^(e)	2,4,5-TP	DDDs	Total DDEs	DDTs	PAHs	Tributyltin	Clay	Sand	Silt	Gravel	Cobble	(Mean ± SD)	Control	Than Control	± SD)	Control
NPDE5 Permit Monitoring V	Units	ft bss		μg/L	μg/L	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	%	%	%	%	%					
OF1-1 0-0.28 9/13/2017 NA NA 0-025 0.021 p 0-026 <2005 <8.61 0.1 100 0.1 0.1 1.3 1.3 No 0 1.5 1.3 1.1 1/4 Yes OF1-2 0-0.16 9/13/2017 NA NA <0.25	NPDES Permit Monitoring																			
OF1-2 0-0.23 9/13/2017 NA NA 0.1 99 0.7 0.1 0 0.04.00 No -1.3 11.3 ±14.6 No OF1-3 0-0.16 9/13/2017 NA NA NA S0.25 0.021 µ 0.02 S0.31 FLF S4.4 H 0.2 99 0.4 0.1 0 3.8 7.4 No 2.5 12.5 ±11.6 Yes OF2-1 0-0.28 9/12/2017 NA NA <1.4	OF1-1	0 - 0.28	9/13/2017	NA	NA	<0.26 p	0.021 J p	<0.26	<200.5	<8.6 H	0.1	100	0.3	0.1	0	1.3 ± 3.5	No	0	15.0 ± 14.1	Yes
OF1-3 0 - 0.16 9/13/2017 NA NA <th< td=""><td>OF1-2</td><td>0 - 0.23</td><td>9/13/2017</td><td>NA</td><td>NA</td><td><0.25</td><td>0.022 J p</td><td><0.25</td><td><200.5</td><td><8.5 H</td><td>0.1</td><td>99</td><td>0.7</td><td>0.1</td><td>0</td><td>0.0 ± 0.0</td><td>No</td><td>-1.3</td><td>11.3 ± 14.6</td><td>No</td></th<>	OF1-2	0 - 0.23	9/13/2017	NA	NA	<0.25	0.022 J p	<0.25	<200.5	<8.5 H	0.1	99	0.7	0.1	0	0.0 ± 0.0	No	-1.3	11.3 ± 14.6	No
OF1-4 0 - 0.18 9/14/2017 NA NA <th< td=""><td>OF1-3</td><td>0 - 0.16</td><td>9/13/2017</td><td>NA</td><td>NA</td><td><0.25</td><td>0.019 J p</td><td><0.25</td><td><193.1 F1 F</td><td>2 <8.4 H</td><td>0.2</td><td>99</td><td>0.5</td><td>0</td><td>0</td><td>2.5 ± 7.1</td><td>No</td><td>1.2</td><td>5.0 ± 7.6</td><td>No</td></th<>	OF1-3	0 - 0.16	9/13/2017	NA	NA	<0.25	0.019 J p	<0.25	<193.1 F1 F	2 <8.4 H	0.2	99	0.5	0	0	2.5 ± 7.1	No	1.2	5.0 ± 7.6	No
OF2-1 O-0.23 9/12/2017 NA NA <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4	OF1-4	0 - 0.18	9/14/2017	NA	NA	<0.26	<0.26	<0.26	<1016	<9.4 H	0.1	99	0.4	0.1	0	3.8 ± 7.4	No	2.5	12.5 ± 11.6	Yes
OF-2 0-0.28 9/12/2017 NA NA <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.5 91 <1.6 <1.1 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <t< td=""><td>OF2-1</td><td>0 - 0.23</td><td>9/12/2017</td><td>NA</td><td>NA</td><td><1.4</td><td><1.4</td><td><1.4</td><td><572</td><td><10 H</td><td>1</td><td>87</td><td>9.5</td><td>2.6</td><td>0</td><td>3.8 ± 7.4</td><td>No</td><td>2.5</td><td>13.8 ± 13.0</td><td>Yes</td></t<>	OF2-1	0 - 0.23	9/12/2017	NA	NA	<1.4	<1.4	<1.4	<572	<10 H	1	87	9.5	2.6	0	3.8 ± 7.4	No	2.5	13.8 ± 13.0	Yes
OF2-3 0 - 0.28 9/12/2017 NA NA <1.3 <1.3 <1.3 <1.3 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4 <1.4	OF2-2	0 - 0.28	9/12/2017	NA	NA	<1.4	<1.4	<1.4	45.4 J *	<9.2 H	0.5	91	4.6	4.1	0	0.0 ± 0.0	No	-1.3	8.8 ± 8.3	No
OF2-4 0 0.28 9/14/2017 NA NA <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3	OF2-3	0 - 0.28	9/12/2017	NA	NA	<1.3	<1.3	<1.3	<460	<9.0 H	0.5	91	4.6	4.1	0	1.3 ± 3.5	No	0	7.1 ± 7.6	No
OF2-5 0 - 0.26 9/14/2017 NA NA <1.5 <1.5 <1.2 <1.0 0.5 95 3.4 0.8 0 1.3 ± 3.5 No 0 12.56 ± 12.8 Yes OF2-5D 0 - 0.26 9/14/2017 NA NA <1.4	OF2-4	0 - 0.28	9/14/2017	NA	NA	<1.3	<1.3	<1.3	<958 F2	<8.8 H	0.2	70	1.3	29	0	0.0 ± 0.0	No	-1.3	8.8 ± 6.4	Yes
OFE-SD 0 - 0.2b 9 / 14/2017 NA NA NA <t< td=""><td>0F2-5</td><td>0 - 0.26</td><td>9/14/2017</td><td>NA</td><td>NA</td><td><1.5</td><td><1.5</td><td><1.5</td><td><1124</td><td><10 H</td><td>0.5</td><td>95</td><td>3.4</td><td>0.8</td><td>0</td><td>1.3 ± 3.5</td><td>NO</td><td>0</td><td>12.56 ± 12.8</td><td>Yes</td></t<>	0F2-5	0 - 0.26	9/14/2017	NA	NA	<1.5	<1.5	<1.5	<1124	<10 H	0.5	95	3.4	0.8	0	1.3 ± 3.5	NO	0	12.56 ± 12.8	Yes
Interviewed Materials Sampling Interviewed Materials Sample #1 (west) NA 12/20/2016 NA		0 - 0.26	9/14/2017	NA	NA	<1.4	<1.4	<1.4	<1076	<9.7 H	0.5	95	3.4	0.9	0	NA	NA	NA	NA	NA
12202016.1 - Camas Slough NA 12/20/2016 NA NA </td <td>2016 & 2020 Dredged Materials</td> <td>Sampling</td> <td></td>	2016 & 2020 Dredged Materials	Sampling																		
Sample #1 (west)NA3/5/2020<100<20NA <td>12202016.1 - Camas Slough</td> <td>NA</td> <td>12/20/2016</td> <td>NA</td>	12202016.1 - Camas Slough	NA	12/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sample #2 (mid)NA3/5/2020<100<20NA <td>Sample #1 (west)</td> <td>NA</td> <td>3/5/2020</td> <td><100</td> <td><20</td> <td>NA</td>	Sample #1 (west)	NA	3/5/2020	<100	<20	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sample #3 (east)NA3/5/2020<100<20NA <td>Sample #2 (mid)</td> <td>NA</td> <td>3/5/2020</td> <td><100</td> <td><20</td> <td>NA</td>	Sample #2 (mid)	NA	3/5/2020	<100	<20	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2009 Camas Slough Sediment Cores B13 0 - 1 8/10/2009 NA	Sample #3 (east)	NA	3/5/2020	<100	<20	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B130-18/10/2009NA<	2009 Camas Slough Sediment Co	res	- /																	
B132 - 38/10/2009NA <td>B13</td> <td>0 - 1</td> <td>8/10/2009</td> <td>NA</td>	B13	0 - 1	8/10/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B134-58/10/2009NA<	B13	2 - 3	8/10/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B14 0 - 1 8/10/2009 NA	B13	4 - 5	8/10/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B14 2 - 3 8/10/2009 NA	B14	0 - 1	8/10/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B14 4-5 8/10/2009 NA	B14	2 - 3	8/10/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	B14	4 - 5	8/10/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B15 0-1 8/10/2009 NA	B15	0 - 1	8/10/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B15 2-3 8/10/2009 NA	B15	2 - 3	8/10/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B15 4-5 8/10/2009 NA	B15	4 - 5	8/10/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Z sample 2006 3 - 4 8/10/2009 NA	Z sample 2006	3 - 4	8/10/2009	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table B3: Data Summary Table - Sediment

Sediment Biological

				Chironomus (20-		
			Chironomus (20-	day) Avg. Ash-	Chironomus (20-	Chironomus (20-
			day) Percent	free Dry	day) Significantly	day) Percent
	Sediment		Higher Than	Wt/Midge (mg)	Lower than	Lower Than
Sample ID	Sample Depth	Sample Date	Control	(Mean ± SD)	Control	Control
Units	ft bss	•		· · ·		
NPDES Permit Monitoring						
OF1-1	0 - 0.28	9/13/2017	12.5	1.35 ± 0.14	Yes	17.5
OF1-2	0 - 0.23	9/13/2017	8.8	1.24 ± 0.16	Yes	23.9
OF1-3	0 - 0.16	9/13/2017	2.5	1.17 ± 0.12	Yes	28.9
OF1-4	0 - 0.18	9/14/2017	10	1.32 ± 0.20	Yes	19.1
OF2-1	0 - 0.23	9/12/2017	11.3	1.51 ± 0.28	No	7.5
OF2-2	0 - 0.28	9/12/2017	6.3	1.35 ± 0.16	Yes	17.5
OF2-3	0 - 0.28	9/12/2017	4.6	1.32 ± 0.11	Yes	19.3
OF2-4	0 - 0.28	9/14/2017	6.3	1.49 ± 0.14	Yes	9
OF2-5	0 - 0.26	9/14/2017	10	1.43 ± 0.20	Yes	12.4
OF2-5D	0 - 0.26	9/14/2017	NA	NA	NA	NA
2016 & 2020 Dredged Materials San	npling					
12202016.1 - Camas Slough	NA	12/20/2016	NA	NA	NA	NA
Sample #1 (west)	NA	3/5/2020	NA	NA	NA	NA
Sample #2 (mid)	NA	3/5/2020	NA	NA	NA	NA
Sample #3 (east)	NA	3/5/2020	NA	NA	NA	NA
2009 Camas Slough Sediment Cores						
B13	0 - 1	8/10/2009	NA	NA	NA	NA
B13	2 - 3	8/10/2009	NA	NA	NA	NA
B13	4 - 5	8/10/2009	NA	NA	NA	NA
B14	0 - 1	8/10/2009	NA	NA	NA	NA
B14	2 - 3	8/10/2009	NA	NA	NA	NA
B14	4 - 5	8/10/2009	NA	NA	NA	NA
B15	0 - 1	8/10/2009	NA	NA	NA	NA
B15	2 - 3	8/10/2009	NA	NA	NA	NA
B15	4 - 5	8/10/2009	NA	NA	NA	NA
Z sample 2006	3 - 4	8/10/2009	NA	NA	NA	NA

Table B4: Data Summary Table - WWTP Primary and Secondary Solids

													Tot	al Metals	5							
OA	Sample ID	Sample Method or Type	Sample Depth	Sample Date	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium, total	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Molybdenum	Mercury	Nickel	Phosphorus
			ft bss	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Primary	Solids																					
D1	primary solids	Primary Solids		1/28/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	12202016.2- primary																					
D1	solids	Primary Solids		12/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	4252018.0	Primary Solids		4/25/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	12172019	Primary solids		12/17/2019	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D 1	Comes 61 64 20200212	Duiment estide (serve esite)		02/42/2020																		
D1	Camas-51-54_20200312	Primary solids (composite)		03/12/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	Camac D1 N W 20200212	Drimony collide (composito)		02/12/2020	NIA	NLA	NLA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NLA	NLA	NLA	NLA	NLA	NIA	NLA	NIA
Seconda	ry Solids	Filling Solids (composite)		03/12/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	secondary solids	Secondary Solids		8/12/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	secondary solids cake	Secondary Solids		4/14/2005	11600	< 10	2	199	< 1.0	5.1	57000	44	3.2	295	5920	< 20	3370	1180	23	< 0.2	27	3530
 D1	secondary solids	Secondary Solids		2/9/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	secondary solids	Secondary Solids		1/21/2008	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	secondary solids	Secondary Solids		1/28/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	secondary solids	Secondary Solids		6/2/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	secondary solids	Secondary Solids		1/7/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	· · ·	Secondary Solids																				
D1	NORTHASB-C-01	(composite)		08/16/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		Secondary Solids																				
D1	SOUTHASB-C-01	(composite)		08/15/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NORTH ASB-01 (0-3)	Secondary Solids	0 - 3	08/16/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NORTH ASB-01 (3-6)	Secondary Solids	3 - 6	08/16/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NORTH ASB-01 (6-9.25)	Secondary Solids	6 - 9.2	08/16/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NORTH ASB-02 (0-2.5)	Secondary Solids	0 - 2.5	08/16/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NORTH ASB-02 (2.5-5)	Secondary Solids	2.5 - 5	08/16/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NORTH ASB-03 (0-3)	Secondary Solids	0 - 3	08/16/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	DUP-01 (20220816)	Duplicate NORTH ASB-03	3 - 4.5	08/16/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NORTH ASB-03 (3-4.5)	Secondary Solids	3 - 4.5	08/16/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NORTH ASB-04 (0-3)	Secondary Solids	0 - 3	08/16/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NORTH ASB-04 (3-5.75)	Secondary Solids	3 - 5.75	08/16/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SOUTH ASB-01 (0-4')	Secondary Solids	0 - 4	08/15/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SOUTHASB-02 (0-4')	Secondary Solids	0 - 4	08/15/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SOUTH ASB-03 (0-4')	Secondary Solids	0 - 4	08/15/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SOUTH ASB-04 (0-4°)	Secondary Solids	0 - 4	08/15/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Note: Secondary sludge samples collected by GP in 2003 and 2006 were analyzed by the (now discontinued) EPA SW-846 Method for reactive sulfides and reactive cyanides.

Table B4: Data Summary Table - WWTP Primary and Secondary Solids

									Total Metals	5							тс	LP Metals				
OA	Sample ID	Sample Method or Type	Sample Depth	Sample Date	Potassium	Selenium	Silver	Sodium	Strontium	Tin	Titanium	Vanadium	Zinc	Arsenic	Barium	Cadmium	Chromium, total	Lead	Mercury	Selenium	Silver	Zinc
Primary	Solids		IL DSS	Units	під/кд	iiig/kg	iiig/ kg	iiig/ kg	під/кд	під/кд	під/кд	iiig/kg	iiig/ kg	IIIg/L	IIIg/L	THIR/L	IIIg/L	IIIg/L	IIIg/L	iiig/L	IIIg/L	iiig/L
D1	primary solids	Primary Solids		1/28/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	12202016.2- primary			1/20/2010	1474	147 (147 (147 (147.0	147 (1073	1473	1471	1474	1073	147 (1471	147 (1073	147 (1471	
D1	solids	Primary Solids		12/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
 D1	4252018.0	Primary Solids		4/25/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	12172019	Primary solids		12/17/2019	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		•																				
D1	Camas-S1-S4_20200312	Primary solids (composite)		03/12/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	Camas-P1-N-W-20200312	Primary solids (composite)		03/12/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Seconda	ry Solids																					
D1	secondary solids	Secondary Solids		8/12/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.1	1.3	< 0.01	< 0.01	< 0.05	< 0.001	<0.1	< 0.1	NA
D1	secondary solids cake	Secondary Solids		4/14/2005	< 400	< 1.0	3.1	2450	143	13	299	26	629	< 0.1	< 1.0	< 0.01	< 0.01	< 0.05	< 0.001	NA	< 0.1	< 0.02
D1	secondary solids	Secondary Solids		2/9/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.1	< 1.0	< 0.01	< 0.01	< 0.05	< 0.001	NA	< 0.1	< 0.02
D1	secondary solids	Secondary Solids		1/21/2008	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.1	< 1.0	< 0.01	< 0.01	< 0.05	< 0.02	NA	< 0.1	< 0.02
D1	secondary solids	Secondary Solids		1/28/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.1	< 1.0	< 0.01	< 0.01	< 0.05	< 0.001	NA	< 0.1	< 0.02
D1	secondary solids	Secondary Solids		6/2/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.1	< 1.0	< 0.01	< 0.01	< 0.05	< 0.001	NA	< 0.1	< 0.02
D1	secondary solids	Secondary Solids		1/7/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		Secondary Solids																				
D1	NORTHASB-C-01	(composite)		08/16/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		Secondary Solids																				
D1	SOUTHASB-C-01	(composite)		08/15/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NORTH ASB-01 (0-3)	Secondary Solids	0 - 3	08/16/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.1	0.969	< 0.1	< 0.1	< 0.1	< 0.01	< 0.1	< 0.1	NA
D1	NORTH ASB-01 (3-6)	Secondary Solids	3 - 6	08/16/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.1	0.872	< 0.1	< 0.1	< 0.1	< 0.01	< 0.1	< 0.1	NA
D1	NORTH ASB-01 (6-9.25)	Secondary Solids	6 - 9.2	08/16/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.1	0.76	< 0.1	< 0.1	< 0.1	< 0.01	< 0.1	< 0.1	NA
D1	NORTH ASB-02 (0-2.5)	Secondary Solids	0 - 2.5	08/16/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.1	1.04	< 0.1	< 0.1	< 0.1	< 0.01	< 0.1	< 0.1	NA
D1	NORTH ASB-02 (2.5-5)	Secondary Solids	2.5 - 5	08/16/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.1	0.982	< 0.1	< 0.1	< 0.1	< 0.01	< 0.1	< 0.1	NA
D1	NORTH ASB-03 (0-3)	Secondary Solids	0 - 3	08/16/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.1	0.327	< 0.1	< 0.1	< 0.1	< 0.01	< 0.1	< 0.1	NA
D1	DUP-01 (20220816)	Duplicate NORTH ASB-03	3 - 4.5	08/16/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.1	0.571	< 0.1	< 0.1	< 0.1	< 0.01	< 0.1	< 0.1	NA
D1	NORTH ASB-03 (3-4.5)	Secondary Solids	3 - 4.5	08/16/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.1	0.564	< 0.1	< 0.1	< 0.1	< 0.01	< 0.1	< 0.1	NA
D1	NORTH ASB-04 (0-3)	Secondary Solids	0 - 3	08/16/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.1	0.498	< 0.1	< 0.1	< 0.1	< 0.01	< 0.1	< 0.1	NA
D1	NORTH ASB-04 (3-5.75)	Secondary Solids	3 - 5.75	08/16/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.1	0.342	< 0.1	< 0.1	< 0.1	< 0.01	< 0.1	< 0.1	NA
D1	SOUTH ASB-01 (0-4')	Secondary Solids	0 - 4	08/15/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.1	0.213	< 0.1	< 0.1	< 0.1	< 0.01	< 0.1	< 0.1	NA
D1	SOUTHASB-02 (0-4')	Secondary Solids	0 - 4	08/15/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.1	0.264	< 0.1	< 0.1	< 0.1	< 0.01	< 0.1	< 0.1	NA
D1	SOUTH ASB-03 (0-4')	Secondary Solids	0 - 4	08/15/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.1	0.201	< 0.1	< 0.1	< 0.1	< 0.01	< 0.1	< 0.1	NA
D1	SOUTH ASB-04 (0-4')	Secondary Solids	0 - 4	08/15/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.1	0.199	< 0.1	< 0.1	< 0.1	< 0.01	< 0.1	< 0.1	NA

Table B4: Data Summary Table - WWTP Primary and Secondary Solids

									T	CLP VOCs									SVOCs				
			Sample		1,1- Dichloroe	1,2- Dichloroe	_	Carbon Tetrachlor	Chlorobe		Methyl ethyl ketone (2-	Tetrachlor oethene	Trichloroe thene	Vinyl	Acenapht	Acenapht	Anthracen	Benzo(a)a	Benzo(a)p	Benzo(b)fl uoranthe	Benzo(ghi	Benzo(k)fl uoranthe	Benzoic
ŬĂ	Sample ID	Sample Method or Type	Depth	Sample Date	thene	thane	Benzene	ide	nzene	Chloroform	Butanone)	(PCE)	(TCE)	Chloride	hene "	hylene	e	nthracene	yrene	ne)perylene	ne	Acid
Drimory	Colida		ft bss	Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Primary D1	nrimary solids	Primary Solids		1/28/2010	ΝA	NΔ	NIA	NΔ	NΔ	ΝA	NA	NΔ	NΙΔ	NΔ	NΔ	NIΛ	NIA	NΙΔ	NIA	NΔ	NΔ	NA	ΝΔ
	12202016.2- primary	Timary Solids		1/20/2010	NA.	NA.	NА	NA	ΝA	ΝA	NA.	ЦА	ПЛ	ΝA	nn.	ЦА	NА	N/A	NА	N/A	NA	IN/A	NA.
D1	solids	Primary Solids		12/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	4252018.0	Primary Solids		4/25/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	12172019	Primary solids		12/17/2019	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
																							-
D1	Camas-S1-S4_20200312	Primary solids (composite)		03/12/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	Camas-P1-N-W-20200312	Primary solids (composite)		03/12/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Seconda	ry Solids														1								
D1	secondary solids	Secondary Solids		8/12/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 3.5	< 3.5	< 3.5	< 35	< 35	< 35	< 35	< 35	NA
D1	secondary solids cake	Secondary Solids		4/14/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	secondary solids	Secondary Solids		2/9/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	secondary solids	Secondary Solids		1/21/2008	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	secondary solids	Secondary Solids		6/2/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	secondary solids	Secondary Solids		1/7/2010	ΝA	NΑ	NA	NΑ	NΑ	NA	NA	NA	NΑ	NΑ	ΝA	ΝA	NA	NΑ	NΑ	ΝA	NΑ	NA	NA
	secondary solids	Secondary Solids		1/7/2010	N/A	INA	IN/A	NA	NA	N/A	NA	TN/A	TN/A	NA	N/A	IN/A	IN/A	IN/A	IN/A	N/A	NA	IN/A	- INA
D1	NORTHASB-C-01	(composite)		08/16/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		Secondary Solids		00, 10, 2022																			
D1	SOUTHASB-C-01	(composite)		08/15/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NORTH ASB-01 (0-3)	Secondary Solids	0 - 3	08/16/2022	< 50.0	< 50.0	< 50.0	< 50.0	< 50.0	< 250	< 500	< 50.0	< 50.0	< 50.0	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NORTH ASB-01 (3-6)	Secondary Solids	3 - 6	08/16/2022	< 50.0	< 50.0	< 50.0	< 50.0	< 50.0	< 250	< 500	< 50.0	< 50.0	< 50.0	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NORTH ASB-01 (6-9.25)	Secondary Solids	6 - 9.2	08/16/2022	< 50.0	< 50.0	< 50.0	< 50.0	< 50.0	< 250	< 500	< 50.0	< 50.0	< 50.0	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NORTH ASB-02 (0-2.5)	Secondary Solids	0 - 2.5	08/16/2022	< 50.0	< 50.0	< 50.0	< 50.0	< 50.0	< 250	< 500	< 50.0	< 50.0	< 50.0	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NORTH ASB-02 (2.5-5)	Secondary Solids	2.5 - 5	08/16/2022	< 50.0	< 50.0	< 50.0	< 50.0	< 50.0	< 250	< 500	< 50.0	< 50.0	< 50.0	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NORTH ASB-03 (0-3)	Secondary Solids	0 - 3	08/16/2022	< 50.0	< 50.0	< 50.0	< 50.0	< 50.0	< 250	< 500	< 50.0	< 50.0	< 50.0	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	DUP-01 (20220816)	Duplicate NORTH ASB-03	3 - 4.5	08/16/2022	< 50.0	< 50.0	< 50.0	< 50.0	< 50.0	< 250	< 500	< 50.0	< 50.0	< 50.0	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NORTH ASB-03 (3-4.5)	Secondary Solids	3 - 4.5	08/16/2022	< 50.0	< 50.0	< 50.0	< 50.0	< 50.0	< 250	< 500	< 50.0	< 50.0	< 50.0	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NORTH ASB-04 (0-3)	Secondary Solids	0 - 3	08/16/2022	< 50.0	< 50.0	< 50.0	< 50.0	< 50.0	< 250	< 500	< 50.0	< 50.0	< 50.0	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NORTH ASB-04 (3-5.75)	Secondary Solids	3 - 5.75	08/16/2022	< 50.0	< 50.0	< 50.0	< 50.0	< 50.0	< 250	< 500	< 50.0	< 50.0	< 50.0	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SOUTH ASB-01 (0-4')	Secondary Solids	0 - 4	08/15/2022	< 50.0	< 50.0	< 50.0	< 50.0	< 50.0	< 250	< 500	< 50.0	< 50.0	< 50.0	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SOUTHASB-02 (0-4')	Secondary Solids	0 - 4	08/15/2022	< 50.0	< 50.0	< 50.0	< 50.0	< 50.0	< 250	< 500	< 50.0	< 50.0	< 50.0	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SOUTH ASB-03 (0-4')	Secondary Solids	0 - 4	08/15/2022	< 50.0	< 50.0	< 50.0	< 50.0	< 50.0	< 250	< 500	< 50.0	< 50.0	< 50.0	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	SOUTH ASB-04 (0-4°)	Secondary Solids	0 - 4	08/15/2022	< 50.0	< 50.0	< 50.0	< 50.0	< 50.0	< 250	< 500	< 50.0	< 50.0	< 50.0	NA	NA	NA	NA	NA	NA	NA	NA	NA
									svo	DCs								٦		5			
---------	-----------------------	--	----------	--------------	----------	-------------------------	-----------	-----------	----------	-------------------	----------------	----------	-----------	--------	----------	-------------------	----------------	-----------	----------------	---------	------------------------	----------------------	----------------------
			Sample			Dibenzo(a ,h)anthrac	Dibenzofu	Fluoranth		Indeno(1, 2,3-	2- Methylna	Naphthal	l phenant			1,4- Dichlorob	2- Methylph	Hexachlor	4- Methylph	Nitro	Hexachlor obutadien	2,4,6- Trichlorop	2,4,5- Trichlorop
OA	Sample ID	Sample Method or Type	Depth	Sample Date	Chrysene	ene	ran	ene	Fluorene	cd)pyrene	phthalene	ene	hrene	Pyrene	Pyridine	enzene	enol	oethane	enolt	benzene	е	henol	henol
			ft bss	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Primary	Solids	Delana Callida		4/20/2040											L								
D1	primary solids	Primary Solids		1/28/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	12202016.2- primary	Primary Solids		12/20/2016	NIA	NIA	NIA	NLA	NLA	NLA	NIA	NIA	NIA	NLA	NLA	NIA	NIA	NLA	NIA	NLA	NIA	NLA	NIA
D1	4252018 0	Primary Solids		12/20/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	12172019	Primary solids		12/17/2018	NA	NΑ	NΑ	NΑ	NA	NΑ	NA	NΑ	ΝA	ΝA	NA	ΝA	NA	NA	NΑ	NA	NA	NΑ	NA
	12172013			12/17/2015	NA.	IN/A	DIA.	DIA.	NA.	NA.		IN/A	N/A	ΝA	NA.	IN/A	ЦА	DIA.	N/A	N/A	IN/A	ПА	NА
D1	Camas-S1-S4 20200312	Primary solids (composite)		03/12/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		······································		00, 11, 1010																			
D1	Camas-P1-N-W-20200312	Primary solids (composite)		03/12/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Seconda	ary Solids	/ \/																					
D1	secondary solids	Secondary Solids		8/12/2003	< 35	< 35	< 3.5	< 3.5	< 3.5	< 35	< 3.5	< 3.5	4.4	< 35	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	secondary solids cake	Secondary Solids		4/14/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	secondary solids	Secondary Solids		2/9/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.5	NA	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
D1	secondary solids	Secondary Solids		1/21/2008	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.5	NA	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
D1	secondary solids	Secondary Solids		1/28/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	secondary solids	Secondary Solids		6/2/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	secondary solids	Secondary Solids		1/7/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		Secondary Solids																					
D1	NORTHASB-C-01	(composite)		08/16/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		Secondary Solids																					
D1	SOUTHASB-C-01	(composite)		08/15/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NORTH ASB-01 (0-3)	Secondary Solids	0 - 3	08/16/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
D1	NORTH ASB-01 (3-6)	Secondary Solids	3 - 6	08/16/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
D1	NORTH ASB-01 (6-9.25)	Secondary Solids	6 - 9.2	08/16/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
D1	NORTH ASB-02 (0-2.5)	Secondary Solids	0 - 2.5	08/16/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
D1	NORTH ASB-02 (2.5-5)	Secondary Solids	2.5 - 5	08/16/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
D1	NORTH ASB-03 (0-3)	Secondary Solids	0 - 3	08/16/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
D1	DUP-01 (20220816)	Duplicate NORTH ASB-03	3 - 4.5	08/16/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
D1	NORTH ASB-03 (3-4.5)	Secondary Solids	3 - 4.5	08/16/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
D1	NORTH ASB-04 (0-3)	Secondary Solids	0 - 3	08/16/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
D1	NORTH ASB-04 (3-5.75)	Secondary Solids	3 - 5.75	08/16/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
D1	SOUTH ASB-01 (0-4')	Secondary Solids	0 - 4	08/15/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
D1	SOUTHASB-02 (0-4')	Secondary Solids	0 - 4	08/15/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
D1	SOUTH ASB-03 (0-4')	Secondary Solids	0 - 4	08/15/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
D1	зоотп Азв-04 (0-4)	Secondary Solids	0 - 4	08/15/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

							Cs Organochlorine Pesticides					TCLP Ch	lorinated								
						TCLP SVOC	.s			Organochlor	ine Pesticide	S			Herb	picides			Dioxins/Fura	ns	
																	Total		1,2,3,4,6,7,		1,2,3,4,7,8,
																	Tetrachloro	Total	8-	1,2,3,4,6,7,8-	9-
					2,4-					Gamma-				Extractable			dibenzo-p-	Tetrachloro	Heptachlor	Heptachloro	Heptachlor
			Sample		Dinitrotol	Hexachloro	Pentachlor			BHC		Methoxych	nl –	Organic			dioxin	dibenzofura	odibenzofu	dibenzo-p-	odibenzofu
OA	Sample ID	Sample Method or Type	Depth	Sample Date	uene	benzene	ophenol	Chlordane	Endrin	(Lindane)	Heptachlor	or	Toxaphene	Halides	2,4-D	2,4,5-TP	(TCDD)	n (TCDF)	ran	Dioxin	ran
			ft bss	Units	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	ng/kg	ng/kg	ng/kg	ng/kg	ng/kg
Primary	Solids							1							r		1				
D1	primary solids	Primary Solids		1/28/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.12	<0.15	NA	NA	NA
	12202016.2- primary																				
D1	solids	Primary Solids		12/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	4252018.0	Primary Solids		4/25/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	12172019	Primary solids		12/17/2019	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	Camas-S1-S4_20200312	Primary solids (composite)		03/12/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.099	0.237	NA	NA	NA
		.																			
D1	Camas-P1-N-W-20200312	Primary solids (composite)		03/12/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.0347	0.562	NA	NA	NA
Seconda	ary Solids	Constant Callida		0/42/2002	D.L.A.		D.L.A.		D.L.A.				21.0	. 40	D.L.O.	51.0				21.0	
D1	secondary solids	Secondary Solids		8/12/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	>10	NA	NA	NA	NA	NA	NA	NA
D1	secondary solids cake	Secondary Solids		4/14/2005	NA	NA		NA	NA	NA	NA	NA	NA	165	NA < 100	NA 4 20	NA	NA	NA	NA	NA
D1	secondary solids	Secondary Solids		2/9/2006	< 0.1	< 0.1	< 0.25	NA	NA	NA	NA	NA	NA	37	< 100	< 20	NA	NA	NA	NA	NA
D1	secondary solids	Secondary Solids		1/21/2008	< 0.1	< 0.1	< 0.25	NA	NA	NA	NA	NA	NA	210	< 100	< 20	150	064	NA	NA	NA
D1	secondary solids	Secondary Solids		6/2/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	1050	NA	NA	150	904	NA	NA	NA
D1	secondary solids	Secondary Solids		1/7/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	1030	NA	NA	NA	NA	NA	NA	NA
	secondary solids	Secondary Solids		1/7/2010	NA	NA	NA	INA	INA	NA	INA	NA	NA	NA	NA	NA	INA	NA	INA	NA	NA
1ח	NORTHASB-C-01	(composite)		08/16/2022	NΙΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NA	NΔ	NΔ	NΔ	NΔ	ΝΔ	NΔ	NΔ
	NORTHADD C 01	Secondary Solids		00/10/2022	NA.	NA.	NA.	IN/A	N/A	11/71		N/A	NA		DIA.	N/A		11/1	NA.		NA
D1	SOUTHASB-C-01	(composite)		08/15/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NORTH ASB-01 (0-3)	Secondary Solids	0 - 3	08/16/2022	< 0.1	< 0.1	< 0.1	< 5.00	< 5.00	< 5.00	< 4.00	< 5.00	< 10.0	< 1290	< 20.0	< 20.0	2.4	7.1	9.7	82	1.0 J
D1	NORTH ASB-01 (3-6)	Secondary Solids	3 - 6	08/16/2022	< 0.1	< 0.1	< 0.1	< 5.00	< 5.00	< 5.00	< 4.00	< 5.00	< 10.0	< 1850	< 20.0	< 20.0	11	12	6.1	57	< 0.69 U
D1	NORTH ASB-01 (6-9.25)	Secondary Solids	6 - 9.2	08/16/2022	< 0.1	< 0.1	< 0.1	< 5.00	< 5.00	< 5.00	< 4.00	< 5.00	< 10.0	< 267	< 20.0	< 20.0	16	5.4	2.5 J	18	< 0.58 U
D1	NORTH ASB-02 (0-2.5)	Secondary Solids	0 - 2.5	08/16/2022	< 0.1	< 0.1	< 0.1	< 5.00	< 5.00	< 5.00	< 4.00	< 5.00	< 10.0	< 754	< 20.0	< 20.0	14	13	3.3 J	57 J	< 0.30 U
D1	NORTH ASB-02 (2.5-5)	Secondary Solids	2.5 - 5	08/16/2022	< 0.1	< 0.1	< 0.1	< 5.00	< 5.00	< 5.00	< 4.00	< 5.00	< 10.0	< 378	< 20.0	< 20.0	33	14	2.7 J	46	< 0.58 U
D1	NORTH ASB-03 (0-3)	Secondary Solids	0 - 3	08/16/2022	< 0.1	< 0.1	< 0.1	< 5.00	< 5.00	< 5.00	< 4.00	< 5.00	< 10.0	< 1700	< 20.0	< 20.0	7.9	5.7	1.5 J	23	< 0.61 U
D1	DUP-01 (20220816)	Duplicate NORTH ASB-03	3 - 4.5	08/16/2022	< 0.1	< 0.1	< 0.1	< 5.00	< 5.00	< 5.00	< 4.00	< 5.00	< 10.0	< 447	< 20.0	< 20.0	130 J	41	9.8	140	1.3 J
D1	NORTH ASB-03 (3-4.5)	Secondary Solids	3 - 4.5	08/16/2022	< 0.1	< 0.1	< 0.1	< 5.00	< 5.00	< 5.00	< 4.00	< 5.00	< 10.0	< 503	< 20.0	< 20.0	48 J	42	10	130	1.2 J
D1	NORTH ASB-04 (0-3)	Secondary Solids	0 - 3	08/16/2022	< 0.1	< 0.1	< 0.1	< 5.00	< 5.00	< 5.00	< 4.00	< 5.00	< 10.0	< 2890	< 20.0	< 20.0	23 D	12 D	5.0 J	96 D	< 2.1 DU
D1	NORTH ASB-04 (3-5.75)	Secondary Solids	3 - 5.75	08/16/2022	< 0.1	< 0.1	< 0.1	< 5.00	< 5.00	< 5.00	< 4.00	< 5.00	< 10.0	< 447	< 20.0	< 20.0	980 J	170	16	600	2.0 J
D1	SOUTH ASB-01 (0-4')	Secondary Solids	0 - 4	08/15/2022	< 0.1	< 0.1	< 0.1	< 5.00	< 5.00	< 5.00	< 4.00	< 5.00	< 10.0	< 489	< 20.0	< 20.0	740	170	62	1300	< 3.9 U
D1	SOUTHASB-02 (0-4')	Secondary Solids	0 - 4	08/15/2022	< 0.1	< 0.1	< 0.1	< 5.00	< 5.00	< 5.00	< 4.00	< 5.00	< 10.0	< 417	< 20.0	< 20.0	1700	330	79	2200	< 9.6 U
D1	SOUTH ASB-03 (0-4')	Secondary Solids	0 - 4	08/15/2022	< 0.1	< 0.1	< 0.1	< 5.00	< 5.00	< 5.00	< 4.00	< 5.00	< 10.0	< 486	< 20.0	< 20.0	270	62	9.6 J	250	< 4.4 U
D1	SOUTH ASB-04 (0-4')	Secondary Solids	0 - 4	08/15/2022	< 0.1	< 0.1	< 0.1	< 5.00	< 5.00	< 5.00	< 4.00	< 5.00	< 10.0	< 2140	< 20.0	< 20.0	250	67	26 J	390	< 5.6 U

													Dioxins/Fu	rans								
			Sample		1,2,3,4,7,8- Hexachloro dibenzofura	1,2,3,4,7,8- Hexachloro dibenzo-p-	1,2,3,6,7,8- Hexachloro dibenzofura	1,2,3,6,7,8- Hexachloro dibenzo-p-	1,2,3,7,8,9- Hexachloro dibenzofura	1,2,3,7,8,9 Hexachlor odibenzo-	- 1,2,3,7,8- Pentachlo rodibenzo	1,2,3,7,8- Pentachlo rodibenzo	2,3,4,6,7,8- Hexachlor - odibenzof	2,3,4,7,8- Pentachlo rodibenzo	2,3,7,8- Tetrachlor odibenzof	2,3,7,8- Tetrachlor odibenzo- p-Dioxin	Octachlor odibenzof uran	Octachlor odibenzo- p-Dioxin	Total Heptachlo rodibenzo furan	Total Heptachlo rodibenzo- p-dioxin	Total Hexachlor odibenzof uran	Total Hexachlor odibenzo- p-dioxin
0A	Sample ID	Sample Method or Type	Depth	Sample Date	n "	Dioxin	n	Dioxin	n	p-Dioxin	furan	p-Dioxin	uran "	furan	uran "	(TCDD)	(OCDF)	(OCDD)	(HpCDF)	(HpCDD)	(HxCDF)	(HxCDD)
D. d. and a	e.H.I.		ft bss	Units	s ng/kg	ng/kg	ng/kg	ng/kg	ng/kg	ng/kg	ng/kg	ng/kg	ng/kg	ng/kg	ng/kg	ng/kg	ng/kg	ng/kg	ng/kg	ng/kg	ng/kg	ng/kg
Primary	/ Solids	Drimany Solids		1/28/2010	NLA	NIA	NIA	NLA	NIA	NLA	NIA	NIA	NIA	NLA	NIA	NLA	NIA	NLA	NLA	NLA	NLA	NIA
	12202016.2 primary	Prindry Solius		1/28/2010	NA	NA	NA	NA	NA	NA	NA	NA	INA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	solids	Brimany Solids		12/20/2016	NIA	NIA	NIA	NLA	NLA	NIA	NIA	NIA	NLA	NLA	NIA	NLA	NIA	NLA	NLA	NIA	NIA	NIA
D1	1252018 0	Primary Solids		12/20/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	4232018.0	Primary solids		4/25/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	121/2019	Fillidiy Solius		12/17/2019	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	Camas-S1-S4_20200312	Primary solids (composite)		03/12/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
54	0 04 11 11 00000040			00/10/2020																		
D1	Camas-P1-N-W-20200312	Primary solids (composite)		03/12/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Second	ary Solids	Constant Callida		0/42/2002		D.L.A.			D.L.A.	51.0	NI A	D.L.A.			N1.0		b.L.A.			N 1.0	N 1.0	
D1	secondary solids	Secondary Solids		8/12/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	secondary solids cake	Secondary Solids		4/14/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	secondary solids	Secondary Solids		2/9/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	secondary solids	Secondary Solids		1/21/2008	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	secondary solids	Secondary Solids		1/28/2010 c/2/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	secondary solids	Secondary Solids		6/2/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	secondary solids	Secondary Solids		1/7/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1		(composito)		09/16/2022	NLA	NIA	NIA	NLA	NLA	NIA	NIA	NIA	NLA	NLA	NIA	NLA	NIA	NLA	NLA	NIA	NIA	NIA
	NURTHASE-C-01	(composite)		08/16/2022	NA	NA	NA	NA	NA	NA	NA	NA	INA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1		(composito)		09/15/2022	NΙΛ	NIA	NIA	NΙΔ	NIA	NIA	NA	NIA	NΙΛ	NΙΔ	NIA	NIA	NIA	NIA	NΙΔ	NIA	NIA	NIA
D1		Secondary Solids	0 - 3	08/15/2022	1 2 I	221	0.72.1	12		8 0	151	211	121	121	271	< 0 /3 II	17	620	11	170	121	07
 	NORTH ΔSR-01 (2-6)	Secondary Solids	3-6	08/16/2022	0 00 1	2.55	111	9.1	0.00 U	5.5	0.84.1	151	1.55	1 4 1	1 7	0 35 1	11	360	61	120	7.8	79
D1	NORTH ASB-01 (6-9 25)	Secondary Solids	6-92	08/16/2022	0.555	< 0.61	< 0.3611	6.2	0.501	3.5	0.35 1	0.59.1	0.43.1	0 40 1	33	1.6	11	110 1	6.4	28	3.91	46
<u>D1</u>	NORTH ASB-02 (0-2 5)	Secondary Solids	0 - 2 5	08/16/2022	0.71	1.61	0.66 1	14	0.44 1	8.6	0.92 1	1.71	1.1 1	0.85 1	2.81	0.60 I	7.21	260 1	3.3 1	120	5.1	110
D1	NORTH ASB-02 (2.5-5)	Secondary Solids	25-5	08/16/2022	1.11	0.861	0.42	15	0.581	7.6	0.80 1	1.71	0.51	0.64	20	9.1	7.51	220	6.4	66	8.4	110
D1	NORTH ASB-03 (0-3)	Secondary Solids	0 - 3	08/16/2022	0.44 1	0.91	< 0.33 []	7.8	0.45 1	3.51	0.41	0.95 1	< 0.44 []	0.56 1	2.1	0.98 1	3.81	130	3.51	38	0.65 1	52
D1	DUP-01 (20220816)	Duplicate NORTH ASB-03	3 - 4.5	08/16/2022	2.8.1	2.21	1.4 J	43	1.2 J	24	1.8 J	4.7 J	1.9 J	3.01	33 J	14	30	770	22	230	15 J	340
 D1	NORTH ASB-03 (3-4.5)	Secondary Solids	3 - 4.5	08/16/2022	2.6 J	2.6 J	1.5 J	46	0.84 J	25	3.5 J	5.1	1.7 J	3,1 J	23 1	13	34	760	10 J	230	5.8 J	340
 D1	NORTH ASB-04 (0-3)	Secondary Solids	0 - 3	08/16/2022	1.3 J	2.3 J	1.0 J	30 D	< 1.4 DU	15 J	< 1.2 DU	5.1 JD	< 0.99 DU	< 1.1 DU	7,4 D	1.9 JD	11 J	460 D	8,6 J	190 D	< 0.91 DU	210 D
 D1	NORTH ASB-04 (3-5.75)	Secondary Solids	3 - 5.75	08/16/2022	3.2 J	< 0.66 U	2.4 J	1000	2.1 J	470	19	54	2.9 J	24	540 J	100	74	1800	16	1100	36	7400 J
 D1	SOUTH ASB-01 (0-4')	Secondary Solids	0 - 4	08/15/2022	9.2 J	< 2.3 U	12	2500	< 2.7 U	1100	11	91	6.3 J	12	350	76	300	4400	62	2200	66	18000 J
D1	SOUTHASB-02 (0-4')	Secondary Solids	0 - 4	08/15/2022	12 J	< 2.9 U	10 J	5500	< 4.1 U	2600	50 J	220	14	34	790	160	360	4000	210	4000	190	40000 J
D1	SOUTH ASB-03 (0-4')	Secondary Solids	0 - 4	08/15/2022	2.5 J	< 2.0 U	< 2.0 U	470	2.1 J	220	4.4 J	22 J	2.0 J	4.6 J	92	23	34 J	680	24	410	22 J	3100
D1	SOUTH ASB-04 (0-4')	Secondary Solids	0 - 4	08/15/2022	3.0 J	< 5.3 U	< 2.9 U	610	< 1.9 U	280	4.1 J	24 J	< 3.5 U	4.7 J	89	24	77 J	1200 J	74	650	18 J	4000

					Dioxin	s/Furans				PCBs							TCLP PCBs				PA	Hs
			Sample		Total Pentachlo rodibenzo furan	Total Pentachlo rodibenzo p-dioxin	PCB-1016 (Aroclor	PCB-1221 (Aroclor	PCB-1232 (Aroclor	PCB-1242 (Aroclor	PCB-1248 (Aroclor	PCB-1254 (Aroclor	PCB-1260 (Aroclor	Aroclor	Aroclor	Aroclor	Aroclor	Aroclor	Aroclor	Aroclor		1- Methylnap
OA	Sample ID	Sample Method or Type	Depth	Sample Date	(PeCDF)	(PeCDD)	1016)	1221)	1232)	1242)	1248)	1254)	1260)	1016	1221	1232	1242	1248	1254	1260	Naphthalene	hthalene
Drimony	Solida		ft bss	Units	ng/kg	ng/kg	mg/kg	μg/L	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	mg/kg	mg/kg						
	nrimary solids	Primary Solids		1/28/2010	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	ΝΔ	ΝΔ	NΔ	NΔ	NΔ	ΝΔ	NΔ	NΔ	NΔ	NA	NΔ
	12202016.2- primary	Thindry Sonas		1/20/2010	DIA.		ΝA	NА	ΝA	DIA.	IN/A	NА	ЦА	nn.	N/A	NA	ΠA	ΝA	N/A	N/A		ПА
D1	solids	Primary Solids		12/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	<2.0	<4.0	<2.0	<2.0	<2.0	<2.0	<2.0	NA	NA
 D1	4252018.0	Primary Solids		4/25/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	<2.0	<4.0	<2.0	<2.0	<2.0	<2.0	<2.0	NA	NA
D1	12172019	Primary solids		12/17/2019	NA	NA	NA	NA	NA	NA	NA	NA	NA	<5.0	<10.0	<5.0	<5.0	<5.0	<5.0	<5.0	NA	NA
D1	Camas-S1-S4_20200312	Primary solids (composite)		03/12/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	Camas-P1-N-W-20200312	Primary solids (composite)		03/12/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Seconda	ary Solids																				T	
D1	secondary solids	Secondary Solids		8/12/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 3.3	< 17	< 4.2	< 7.9	< 4.4	< 8.8	< 5.4	NA	NA
D1	secondary solids cake	Secondary Solids		4/14/2005	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 0.5	< 1.0	< 0.5	< 0.5	< 0.5	< 0.60	< 0.61	69	NA
D1	secondary solids	Secondary Solids		2/9/2006	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 2.0	< 4.0	< 2.1	< 2.0	< 2.0	< 2.0	< 2.0	63	NA
D1	secondary solids	Secondary Solids		1/21/2008	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 2.0	< 4.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	37	NA
D1	secondary solids	Secondary Solids		1/28/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 2.0	< 4.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	NA	NA
D1	secondary solids	Secondary Solids		6/2/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	< 2.0	< 4.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	NA	NA
D1	secondary solids	Secondary Solids		1/7/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		Secondary Solids																				
D1	NORTHASB-C-01	(composite)		08/16/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		Secondary Solids																				
D1	SOUTHASB-C-01	(composite)		08/15/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NORTH ASB-01 (0-3)	Secondary Solids	0-3	08/16/2022	5.3	4.1 J	< 0.437	< 0.437	< 0.437	< 0.437	< 0.219	< 0.219	< 0.219	NA	NA	NA	NA	NA	NA	NA	< 0.257	< 0.257
D1	NORTH ASB-01 (3-6)	Secondary Solids	3-6	08/16/2022	12	2/	< 0.628	< 0.628	< 0.628	< 0.628	< 0.314	< 0.314	< 0.314	NA	NA	NA	NA	NA	NA	NA	< 0.369	< 0.369
D1	NORTH ASB-01 (6-9.25)	Secondary Solids	6-9.2	08/16/2022	7.9	6.8	< 0.0906	< 0.0906	< 0.0906	< 0.0906	< 0.0453	< 0.0453	< 0.0453	NA	NA	NA	NA	NA	NA	NA	< 0.0533	< 0.0533
D1	NORTH ASB-02 (0-2.5)	Secondary Solids	0-2.5	08/16/2022	13	28	< 0.256	< 0.256	< 0.256	< 0.256	< 0.128	< 0.128	< 0.128	NA	NA	NA	NA	NA	NA	NA	< 0.151	< 0.151
D1		Secondary Solids	2.5 - 5	08/16/2022	19	18	< 0.129	< 0.129	< 0.129	< 0.129	< 0.0643	< 0.0643	< 0.0643	NA	NA	NA	NA	NA	NA	NA	< 0.0756	< 0.0756
D1	NURTH ASD-05 (0-5)		2 4 5	08/16/2022	4.6 J	62	< 0.578 J	< 0.578 J	< 0.578 J	< 0.578 J	< 0.289 J	< 0.289 J	< 0.289 J	NA	NA	NA	NA	NA	NA	NA	0.0932 J	< 0.340
D1		Secondary Solids	3 - 4.5	08/16/2022	05 E1	02	< 0.1/1	< 0.171	< 0.171	< 0.171	< 0.0850	< 0.0850	< 0.0850	NA	NA	NA	NA	NA	NA	NA	0.0364 J	< 0.0895
	NORTH $\Delta SR_0 / (0_2)$	Secondary Solids	5 - 4.5	08/16/2022	-12	00 07	< 0.152	< 0.152	< 0.152	< 0.152	< 0.0701	< 0.0701	< 0.0701	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	< 0.101	< 0.101
	NORTH ΔSR_0/ (2-5 75)	Secondary Solids	2_575	08/16/2022	200	3/ 0	< 0.504	< 0.504	< 0.504	< 0.504		< 0.492	< 0.492	NA NA	NA	NA	NA	NA	NA	NA	< 0.000	< 0.000
	SOUTH ΔSR-01 (0-1')	Secondary Solids	0.4	00/10/2022	200	1200	< 0.152	< 0.152	< 0.152	< 0.152	< 0.0759	< 0.0759	< 0.0759	NA NA	NA	NA	NA	NA	NA	NA	< 0.0693	< 0.0033
 1	SOUTHASB-02 (0-4-)	Secondary Solids	0-4	08/15/2022	670	2200	< 0.100	< 0.100	< 0.100	< 0.100			< 0.0032	NIA	NIA	NIA	NIA	NIA	NIA	NIA	< 0.0378	< 0.0378
 1		Secondary Solids	0 - 4	08/15/2022	Q1	2200	< 0.142	< 0.142	< 0.142	< 0.142	< 0.0709	< 0.0709	< 0.0709	ΝA	NΔ	ΝΔ	ΝA	NΔ	NΔ	NA	< 0.0033	0.0000
D1	SOUTH ASB-04 (0-4')	Secondary Solids	0 - 4	08/15/2022	100	270	< 0.729	< 0.729	< 0,729	< 0.729	< 0.364	< 0.364	< 0.364	NA	NA	NA	NA	NA	NA	NA	< 0.429	< 0.429
	- 1- /	,	v '	00, <u>10</u> , <u>10</u> , <u>10</u>	_00	_, •						0.007	0.001				. 47 3				. 3. 123	

													PA	Hs								
					2-	2-									Benzo(b)fl	Benzo(k)fl				Indeno(1,	Dibenz(a,h	
			Sample		Chloronaph	Methylnap	Acenapht	Acenapht		Dibenzofu	Phenanthr	Anthracen	Fluoranth		uoranthen	uoranthen	Benz(a)an		Benzo(a)p	2,3-)anthrace	Benzo(g,h,
OA	Sample ID	Sample Method or Type	Depth	Sample Date	thalene	hthalene	hylene	hene	Fluorene	ran	ene	e	ene	Pyrene	e	e	thracene	Chrysene	yrene	cd)pyrene	ne	i)perylene
			ft bss	Units	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Primary	Solids	Drimon Colida		1/20/2010	NIA	NL A	NLA	NLA	NLA	NLA	NLO.	NLA	NI A	NIA	NLA	NLA	NLA	NLA	NIA	NIA	NIA	NLA
D1	12202016.2 primary	Primary Solius		1/28/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	solids	Primary Solids		12/20/2016	NΛ	NΔ	NΙΛ	NA	NΛ	NΛ	NΛ	NA	NΔ	NA	NΙΛ	NΛ	ΝA	NA	NΙΔ	NΙΔ	NΛ	NΛ
D1	4252018.0	Primary Solids		12/20/2010	ΝA	NΑ	ΝA	NΑ	NA	NA	NΑ	NA	NΑ	NA	ΝA	ΝA	NA	NA	NA	NA	NA	NΑ
D1	12172019	Primary solids		12/17/2019	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ
	12172013	Thinki y sonus		12/17/2015	1 17 1	147.4	1473	1473	1 17 1	1 17 1	1 17 1	1 1/7 1	147.4	1 1/ 1	1473	1 1 7 7	1 1/7 1	1473	1 1/7 1	1473	1 17 1	1473
D1	Camas-S1-S4 20200312	Primary solids (composite)		03/12/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
				,,																		
D1	Camas-P1-N-W-20200312	Primary solids (composite)		03/12/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Seconda	ry Solids			· ·																		
D1	secondary solids	Secondary Solids		8/12/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	secondary solids cake	Secondary Solids		4/14/2005	NA	0.025	< 0.0094	0.013	0.11	< 0.0094	0.26	21	< 0.0094	0.11	0.028	< 0.0094	0.015	0.056	0.017	< 0.0094	< 0.0094	0.017
D1	secondary solids	Secondary Solids		2/9/2006	NA	0.24	< 0.016	0.021	0.16	< 0.096	0.46	0.22	< 0.096	< 0.096	0.021	< 0.0096	< 0.096	0.12	0.012	< 0.0096	< 0.0096	0.015
D1	secondary solids	Secondary Solids		1/21/2008	NA	0.062	< 0.019	0.05	0.1	< 0.036	1.4	< 0.25	1.1	1.5	0.14	0.03	0.3	0.65	0.075	0.036	0.018	0.057
D1	secondary solids	Secondary Solids		1/28/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	secondary solids	Secondary Solids		6/2/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	secondary solids	Secondary Solids		1/7/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		Secondary Solids																				
D1	NORTHASB-C-01	(composite)		08/16/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		Secondary Solids																				
D1	SOUTHASB-C-01	(composite)		08/15/2022	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NORTH ASB-01 (0-3)	Secondary Solids	0 - 3	08/16/2022	< 0.257	0.0588 J	< 0.0772	< 0.0772	< 0.0772	NA	< 0.0772	0.0471 J	< 0.0772	< 0.0772	< 0.0772	< 0.0772	< 0.0772	< 0.0772	< 0.0772	< 0.0772	< 0.0772	< 0.0772
D1	NORTH ASB-01 (3-6)	Secondary Solids	3 - 6	08/16/2022	< 0.369	< 0.369	< 0.111	< 0.111	< 0.111	NA	< 0.111	0.510	< 0.111	< 0.111	< 0.111	< 0.111	< 0.111	< 0.111	< 0.111	< 0.111	< 0.111	< 0.111
D1	NORTH ASB-01 (6-9.25)	Secondary Solids	6 - 9.2	08/16/2022	< 0.0533	< 0.0533	< 0.0160	< 0.0160	< 0.0160	NA	< 0.0160	22.8	< 0.0160	< 0.0160	< 0.0160	< 0.0160	< 0.0160	< 0.0160	< 0.0160	< 0.0160	< 0.0160	< 0.0160
D1	NORTH ASB-02 (0-2.5)	Secondary Solids	0 - 2.5	08/16/2022	< 0.151	< 0.151	< 0.0452	< 0.0452	< 0.0452	NA	< 0.0452	3.85	< 0.0452	< 0.0452	< 0.0452	< 0.0452	< 0.0452	< 0.0452	< 0.0452	< 0.0452	< 0.0452	< 0.0452
D1	NORTH ASB-02 (2.5-5)	Secondary Solids	2.5 - 5	08/16/2022	< 0.0756	< 0.0756	< 0.0227	< 0.0227	< 0.0227	NA	< 0.0227	0.405	< 0.0227	< 0.0227	< 0.0227	< 0.0227	< 0.0227	< 0.0227	< 0.0227	< 0.0227	< 0.0227	< 0.0227
D1	NORTH ASB-03 (0-3)	Secondary Solids	0 - 3	08/16/2022	< 0.340	0.0861 J	< 0.102	< 0.102	< 0.102	NA	< 0.102	2.02	< 0.102	< 0.102	< 0.102	< 0.102	< 0.102	< 0.102	< 0.102	< 0.102	< 0.102	< 0.102
D1	DUP-01 (20220816)	Duplicate NORTH ASB-03	3 - 4.5	08/16/2022	< 0.0895	< 0.0895	< 0.0268	< 0.0268	0.0272	NA	< 0.0268	6.35 J	0.0225 J	0.0162 J	< 0.0268	< 0.0268	< 0.0268	< 0.0268	< 0.0268	< 0.0268	< 0.0268	< 0.0268
D1	NORTH ASB-03 (3-4.5)	Secondary Solids	3 - 4.5	08/16/2022	< 0.101	< 0.101	< 0.0302	< 0.0302	0.0128 J	NA	< 0.0302	1.56 J	0.0120 J	0.0119 J	< 0.0302	< 0.0302	< 0.0302	< 0.0302	< 0.0302	< 0.0302	< 0.0302	< 0.0302
D1	NORTH ASB-04 (0-3)	Secondary Solids	0 - 3	08/16/2022	< 0.579	< 0.579	< 0.174	< 0.174	< 0.174	NA	< 0.174	1.89	< 0.174	< 0.174	< 0.174	< 0.174	< 0.174	< 0.174	< 0.174	< 0.174	< 0.174	< 0.174
D1	NOR [H ASB-04 (3-5.75)	Secondary Solids	3 - 5.75	08/16/2022	< 0.0893	< 0.0893	< 0.0268	< 0.0268	0.0158 J	NA	0.0661	0.426	0.0126 J	0.0221 J	< 0.0268	< 0.0268	< 0.0268	< 0.0268	< 0.0268	< 0.0268	< 0.0268	< 0.0268
D1	SOUTH ASB-01 (0-4')	Secondary Solids	0 - 4	08/15/2022	< 0.0978	< 0.0978	< 0.0294	< 0.0294	0.0183 J	NA	0.0656	1.68	0.0234 J	0.0215 J	< 0.0294	< 0.0294	< 0.0294	< 0.0294	< 0.0294	< 0.0294	< 0.0294	< 0.0294
D1	SUUTHASB-02 (0-4')	Secondary Solids	0 - 4	08/15/2022	< 0.0835	< 0.0835	< 0.0250	< 0.0250	< 0.0250	NA	0.0421	0.663	0.0216 J	0.0338	0.0100 J	< 0.0250	0.0173 J	0.0256	0.0126 J	0.0164 J	< 0.0250	< 0.0250
D1	SOUTH ASB-03 (0-4')	Secondary Solids	0 - 4	08/15/2022	< 0.0971	< 0.0971	< 0.0291	< 0.0291	0.0490	NA	0.170	0.199	0.0435	0.0402	0.0149 J	< 0.0291	0.0203 J	0.0334	0.0161 J	0.0292	< 0.0291	0.0106 J
D1	3001 T A3D-04 (0-4)	Secondary Solids	0 - 4	08/15/2022	< 0.429	< 0.429	< 0.129	< 0.129	< 0.129	NA	< 0.129	0.885	< 0.129	< 0.129	< 0.129	< 0.129	< 0.129	< 0.129	< 0.129	< 0.129	< 0.129	< 0.129

					Acute	Toxicity	Phy	vsical									
					(Ecolog	gy 80-12)	Charac	teristics				Other	Chemical Pa	arameters			
					Percent Mortality	Percent Mortality		Total							Cvanide		Sulfide
			Sample		[Concentration:	[Concentration:	Total	Volatile			Cvanide.	Sulfur.	Nitrogen		(reactive)		(reactive)
OA	Sample ID	Sample Method or Type	Depth	Sample Date	10 mg/Ll	100 mg/Ll	Solids	Solids	рΗ	Ignitability	WAD	Total	(TKN)	Cvanide	(c)	Sulfide	(i cuceive) (c)
			ft hss	Units	%	%	%	%	P	°F	nnm	nnm	nnm	mg/kg	mg/kg	mg/kg	mg/kg
Primary	Solids		11 033	01110	,,,	,,,	,,,	70			ppin	ppin	ppm		116/16		116/16
, D1	primary solids	Primary Solids		1/28/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	12202016.2- primary	,		, , ,													
D1	solids	Primary Solids		12/20/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	4252018.0	Primary Solids		4/25/2018	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	12172019	Primary solids		12/17/2019	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		·		• •													
D1	Camas-S1-S4_20200312	Primary solids (composite)		03/12/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	Camas-P1-N-W-20200312	Primary solids (composite)		03/12/2020	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Seconda	ry Solids																
D1	secondary solids	Secondary Solids		8/12/2003	NA	0	NA	NA	7.43	>200	NA	NA	NA	NA	< 3.0	NA	301
D1	secondary solids cake	Secondary Solids		4/14/2005	NA	NA	26.7	NA	NA	NA	< 0.4	55200	15200	NA	NA	NA	NA
D1	secondary solids	Secondary Solids		2/9/2006	NA	NA	NA	NA	7.48	NA	< 0.4	NA	NA	NA	NA	NA	< 8
D1	secondary solids	Secondary Solids		1/21/2008	NA	NA	19.8	59.7	7.36	NA	NA	NA	NA	NA	NA	NA	NA
D1	secondary solids	Secondary Solids		1/28/2010	NA	NA	16.9	NA	6.99	NA	NA	NA	NA	NA	NA	NA	NA
D1	secondary solids	Secondary Solids		6/2/2010	NA	NA	16.8	NA	6.98	NA	NA	NA	NA	NA	NA	NA	NA
D1	secondary solids	Secondary Solids		1/7/2010	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		Secondary Solids															
D1	NORTHASB-C-01	(composite)		08/16/2022	0	0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		Secondary Solids															
D1	SOUTHASB-C-01	(composite)		08/15/2022	0	0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	NORTH ASB-01 (0-3)	Secondary Solids	0 - 3	08/16/2022	NA	NA	7.77	25.4 J-	6.91 J	170	NA	NA	NA	< 3.22	NA	1370	NA
D1	NORTH ASB-01 (3-6)	Secondary Solids	3 - 6	08/16/2022	NA	NA	5.41	29.9 J-	6.49 J	170	NA	NA	NA	2.54 J	NA	1520	NA
D1	NORTH ASB-01 (6-9.25)	Secondary Solids	6 - 9.2	08/16/2022	NA	NA	37.5	11.4 J-	7.51 J	170	NA	NA	NA	< 2.00	NA	641	NA
D1	NORTH ASB-02 (0-2.5)	Secondary Solids	0 - 2.5	08/16/2022	NA	NA	13.3	18.2 J-	7.35 J	170	NA	NA	NA	< 1.88 R	NA	1900	NA
D1	NORTH ASB-02 (2.5-5)	Secondary Solids	2.5 - 5	08/16/2022	NA	NA	26.4	30.3 J-	7.14 J	170	NA	NA	NA	0.588 J	NA	1140	NA
D1	NORTH ASB-03 (0-3)	Secondary Solids	0 - 3	08/16/2022	NA	NA	5.88	37.4 J-	7.40 J	170	NA	NA	NA	< 4.25	NA	1310	NA
D1	DUP-01 (20220816)	Duplicate NORTH ASB-03	3 - 4.5	08/16/2022	NA	NA	19.9	39.9 J-	7.66 J	170	NA	NA	NA	7.02 J	NA	1660 J	NA
D1	NORTH ASB-03 (3-4.5)	Secondary Solids	3 - 4.5	08/16/2022	NA	NA	22.4	37.6 J-	7.60 J	170	NA	NA	NA	33.8 J	NA	995 J	NA
D1	NORTH ASB-04 (0-3)	Secondary Solids	0 - 3	08/16/2022	NA	NA	3.46	45.1 J-	7.43 J	170	NA	NA	NA	2.18 J	NA	1910 J	NA
D1	NORTH ASB-04 (3-5.75)	Secondary Solids	3 - 5.75	08/16/2022	NA	NA	22.4	43.6 J-	7.48 J	170	NA	NA	NA	13.3	NA	894	NA
D1	SOUTH ASB-01 (0-4')	Secondary Solids	0 - 4	08/15/2022	NA	NA	20.4	46.1 J-	7.24 J	170	NA	NA	NA	29.7	NA	688	NA
D1	SOUTHASB-02 (0-4')	Secondary Solids	0 - 4	08/15/2022	NA	NA	24.0	42.8 J-	7.23 J	170	NA	NA	NA	23.7	NA	741	NA
D1	SOUTH ASB-03 (0-4')	Secondary Solids	0 - 4	08/15/2022	NA	NA	20.6	44.4 J-	7.14 J	170	NA	NA	NA	9.79	NA	1020	NA
D1	SOUTH ASB-04 (0-4')	Secondary Solids	0 - 4	08/15/2022	NA	NA	4.67	51.5 J-	7.25 J	170	NA	NA	NA	7.05	NA	2840	NA

Previous Investigation Well Logs

Excerpt from: Arcadis. 2012. Data Summary Report Investigation of Black Liquor Release from No. 4 Swing Tank. Prepared for Georgia-Pacific Consumer Products LLC. October.

Date Sta Drilling Driller's Drilling Samplin Rig Type	nt/Fin Comp Name Metho g Met e: Gee	hish: bany: e: B bd: C thod: oprob	5/22 Cas rooke Geopi 2-ir ne 772	/12 scade King robe I nch M 20DT	Drilli Direct lacro	ng t Push core		Northing: NA Easting: NA Casing Elevation: NA Borehole Depth: 6.0' bgs Surface Elevation: NA Descriptions By: GRM	Well/Bori Client: Ge (C Location:	ng ID: B-2 eorgia-Pacific Consu amas), LLC Camas Mill, Camas	imer s Was	Products shington
рертн	PID (ppm)	Sample Run Number	Sample/Int/Type	Recovery (inches)	YSI pH Reading	Geologic Column		Stratigraphic Description		Well	/Borii	ng ion
- •		1		1			Acabolt					
-	d) dd gd gd <td< td=""><td>und, some Gravel, subround to subangular, little silt a</td><td>nd clay, moist, olive</td><td>-</td><td></td><td> Top plugged with cold-patch asphalt. </td></td<>							und, some Gravel, subround to subangular, little silt a	nd clay, moist, olive	-		 Top plugged with cold-patch asphalt.
-					0.00		SAND, subrou	und to subangular, some fine to medium Gravel, subr	ound, trace silt and			Dealefilled with
5	0.0	2	3-5	6/24	9.92		SAND, subrou trace silt and c	r. und to subangular, some fine to medium Gravel, subr clay, wet, gray. r from 3.0 - 5.0' bos.	round to subangular,			bentonite chips.
	0.0	3	5-6	6/12	9.52	илли	SAND, subrou clay, moist, gra	and to subangular, some fine to medium Gravel, subr	ound, little silt and			
L						ипии						

Excerpt from: Arcadis. 2015. Data Summary Report Investigation of Black Liquor Basement Release. Prepared for Georgia-Pacific Consumer Products LLC. January.

Date Exc Ope Equ Sam	e Star avati erator ipme npling	rt/Fin ion Co r's Na ent: D g Met	ish: ompa ime: Direct hod:	12/4/2 ny: C Kyle Push Grab	2014 Cascad King	de Drilling, L.P. ble	Northing: Not Surveyed Easting: Not Surveyed Ground Surface Elev: Not Surveyed Penetration Depth: 5.5 ft Water Depth: 5 ft Descriptions By: K. Williams	Boring ID: B-1 Client: Georgia-Pacific Consumer Producs (Camas) LLC Location: Georgia-Pacific Camas Mill, Camas, Washington DRAFT
DEPTH	ELEVATION	Odor	Staining	Hd	Geologic Column		Stratigraphic Des	scription
- 0				7.29		Concrete No Recovery		
5	-5 -	- odor	sheer	7.26	80808080	Dark Brown GRAVEL with Measure End of B	some Clay, wet. d Water Depth oring - Refusal at 5.5 feet	
Proje	frastru ct: B(00661	• Wate	C /	\D ronme	Rem Rem PIS nt · Buildings emplate: Sediment 200	parks: Weather: Heavy Rain. 45 degrees F	Page: 1 of 1

Date Start/Finisl Excavation Com Operator's Name	h: 12/4/2 1 pany: (e: Kyle	2014 Cascad King	le Drilling, L.P.	Northing: Not Surveyed Easting: Not Surveyed Ground Surface Elev: Not Surveyed	Boring ID: B-2 Client: Georgia-Pacific Consumer Producs									
Equipment: Dire Sampling Metho	ect Push od: Grab	o Samp	ble	Penetration Depth: 9.2 ft Water Depth: 4 ft	(Carnas) LLC Location: Georgia-Pacific Camas Mill, Camas, Washington									
				Descriptions By: K. Williams	DRAFT									
DEPTH ELEVATION Odor	Staining PH	Geologic Column		Stratigraphic Des	scription									
- 0 0			Asphalt surface, no recover	y										
			Measured	d Water Depth										
-5 -5 None	6.77		Dark Gray CLAY with some	e silt and sand, moist										
В	Black 8.70		Black CLAY with some san	d, wet										
			End of Bo	bring - Refusal at 9.2 feet										
Project: B0066141	RCA Vater · Envi	\D ironmei	Rem IS nt · Buildings emplate: Sediment 200	arks: Weather: Heavy Rain, 45 degrees F.	Page: 1 of 1									

Date Exc Ope Equ San	e Star avati erator ipme npling	rt/Finis on Cor 's Nan ent: Dir g Meth	sh: 12 mpany ne: k rect Pr od: (2/4/20 y: Ca (yle K ush Grab (14 ascade ing Sampl	e Drilling, L.P.	Northing: Not Surveyed Easting: Not Surveyed Ground Surface Elev: Not Surveyed Penetration Depth: 14 ft Water Depth: 7 ft Descriptions By: K. Williams	Boring ID: B-3 Client: Georgia-Pacific Consumer Producs (Camas) LLC Location: Georgia-Pacific Camas Mill, Camas, Washington DRAFT							
DEPTH	ELEVATION	Odor	Staining	Hd	Geologic Column		Stratigraphic Des	scription							
-	Concrete 0 10.82 Concrete 10.82 Provide and SAND, moist 9.18 X X X 7.65 X X X														
-	_			9.18	∠.:: ×`× ×`×	Brown FILL (GRAVEL, S.	AND and some Silt), moist								
-	_			7.65 7.31	× × × × × × × × × ×										
5	-5 -			7.65											
-	-					Minimal Recovery Measure	d Water Depth								
-	-			7.16		Dark Brown GRAVEL wit	h some Clay, wet								
-	_			7.47											
- 10	-10 -			6.90	0	Dark Brown and Gray CL	AY, wet								
	-			7.50		Dark Brown GRAVEL wit	h some Clay, wet								
-	_	Slight Organic Odor	Sheer	7.09		Dark Brown CLAY with tr	ace gravel, wet								
				7.15		End of Bo	pring - Refusal at 14 feet								
	frastru	A	RC Water -	CA Envirc		Rem Buildings	arks: Weather: Heavy Rain, 45 degrees F	Dogo: 1 of 1							
Data	File:E	3-3 Log	 	۲	rei	nplate. Secument 200	Date: 1/6/2015 Created/Edited by:	K. Williams							

Excerpt from: Arcadis. 2016. Summary Report Investigation of Hydrocarbon Release. Prepared for Georgia-Pacific Consumer Products LLC. January.

Date Star Drilling C Driller's I Drilling N Sampling	t/Finis Compai Name: Method I Metho	h: 10 ny: St Lars : Dire od: M	/8/2015 ratus C Llungqu ct Push lacro C	orpor uist, T u ores	ation homas Tipton	Northing: Not Surveyed Easting: Not Surveyed Penetration Depth: 15 Feet Water Depth: 7.33 Feet	Boring ID: B1 Client: Georgia-Pacific Consumer Products LLC Location: Camas Mill, Camas, Washington
						Descriptions By: Christopher Kochiss	
DEPTH	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic D	escription
- -					ASPHA GRAVE	(subgrade). Refusal with hand auger at 1,8 feet	
	B-1	3.0 - 3.5'	60%	0.3		id GRAVEL, poorly sorted, angular, dry, medium dense	
-5				0.7	WOOD	CHIPS, moist	
-			70%	0.2	WOOD	CHIPS, first water encountered at 6.3 feet	
- 10			100%	0.0	, woo	CHIPS, wet	
- 15				0.0	SILT	vet, very soft, dark gray, mottling of black, trace wood debris	
6				S	Design & Consultancy for natural and built assets	Remarks:	
Project	: B006	3141.0	003.00	002	Template:S	diment2015 015 MKA	Page: 1 of 1

Drilling Method: Direct Push Sampling Method: Macro Cores	Penetration Depth: 15 Feet	Client: Georgia-Pacific Consumer Products LLC Location: Camas Mill, Camas, Washington
	Water Depth: 6.53 Feet Descriptions By: Christopher Kochiss	
DEPTH Sample Run Number Sample/Int/Type Recovery (feet) PID Headspace (ppm) Geologic Column	Stratigraphic De	scription
GRAVEL (su	DNCRETE	
-5 B-2 4.5 - 5.0' 0.2 SAND and G WOOD CHIN	RAVEL, angular, poorly sorted, moist, medium dense, gray PS, moist PS, first water encountered at 10 feet	
0.5		
-10 0.1 WOOD CHI	PS, wet	
	D, fine to coarse sand, poorly sorted, moist medium dense,	gray with black mottling, trace wood debris
ARCADIS Decision & Constituency for natural and built assets	emarks:	Page: 1 of 1

Project: B0066141.0003.00002 Data File:Sediment2005.dat

Date Starf Drilling C Driller's N Drilling M Sampling	//Finisl ompar lame: ethod Metho	h: 10/ ny: St Lars1 : Direc od: M	/8/2015 ratus C Llungqu ct Push lacro C	orpor uist, T ores	ation homas Tipto	Northing: Not Surveyed Easting: Not Surveyed Penetration Depth: 15 Feet Water Depth: 6.37 Feet Descriptions By: Christopher Kochiss	Boring ID: B3 Client: Georgia-Pacific Consumer Products LLC Location: Camas Mill, Camas, Washington
OEPTH 	Sample Run Number	Sample/Init/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic De XCONCRETE, Refusal with hand auger at 1.8 feet	escription
	B-3	4.5 - 5.0°	70%	0.0		nd GRAVEL, dry, angular, poorly sorted, dense nd GRAVEL, dry, angular, poorly sorted, dense	
- 10			60%	0.1	D ::: W0	CHIPS, moist	
- 15			70%	0.1) CHIPS, moist, first water encountered at 13.5 feet EL, angular, some coarse sand, poorly sorted, wet, medium der wet, very soft, dark gray, mottling of black, trace wood debris	nse
9.		20/	\D	IS	Design & Consolti fornatural and built assets	Remarks:	Page: 1 of 1

Date Start/Finish: 10/8/2015 Drilling Company: Stratus Corporation Driller's Name: Lars Llungquist, Thomas Tipton Drilling Method: Direct Push Sampling Method: Macro Cores							Northing: Not Surveyed Easting: Not Surveyed Penetration Depth: 15 Feet	Boring ID: B4 Client: Georgia-Pacific Consumer Products LLC Location: Camas Mill, Camas, Washington		
							Descriptions By: Christopher Kochiss			
DEPTH ^{Manuary} Constraints States of the second	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column		Stratigraphic De	scription		
							NCRETE. Refusal with hand auger at 1,5 teet			
		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	60%	0.6		WOOD CHIPS	'S, moist (possible slough)			
			70%	0.2		WOOD CHIP	⊃S, moist			
- 10				0.4						
			70%	0.2		WOOD CHIR	IPS, wet			
-15	_			0.7						
G,					Besign & C for natural built asset	junsultancy Land Is	emarks:	Page: 1 of 1		

Date Start/Finish: 10/9/2015 Drilling Company: Stratus Corporation Driller's Name: Lars Llungquist, Thomas Tipton Drilling Method: Direct Push Sampling Method: Macro Cores							Northing: Not Surveyed Easting: Not Surveyed Penetration Depth: 20 Feet Water Depth: 8.40 Feet Descriptions By: Christopher Kochiss	Boring ID: B5 Client: Georgia-Pacific Consumer Products LLC Location: Camas Mill, Camas, Washington	
DEPTH	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description			
	B-5	2.0 - 5.0'	0%	0.3	0000 0000	WOOD CHIP, m SAND and GRA SAND and GRA WOOD CHIPS,	voist VEL, poorly sorted, angular, medium dense, gravel 0,5 - 2 VEL, poorly sorted, angular, medium dense, gravel 0,5 - 2 Well, poorly sorted, angular, medium dense, gravel 0,5 - 2 moist, Hand cleared with vacuum truck to 5 feet	inches in diameter, moist, dark gray inches in diameter, moist, dark gray	
- 10			40%	0,2		WOOD CHIPS, I	molst		
15			20%	0.5		WOOD CHIPS, I	molst, silty sand at 15 feet		
				0.3		SILTY SAND, we	ell sorted, fine to medium greined, loose, wet, gray, trace w ntent at 20 feet	cod chips	
Remarks:									

Project: B0066141.0003.00002 Data File:Sediment2005.dat

Excerpt from: SECOR. 2001. 2000 Site Investigation Report – Former Fort James Specialty Chemicals. 17 January.

FACILITY FT JAMES SPECIALTY CHEMICAL JOB # 015.08718.003 BORING/WELL GP-1 LOCATION CAMAS. WASHINGTON SURFACE ELEVATION _ ŃĂ START <u>0809 08/01/00</u> FINISH 0819 08/01/00 CASING TOP ELEVATION NA LOGGED BY DEC MONITORING DEVICE Mini RAE 2000 w/ 100 ppm isobutyiene SUBCONTRACTOR AND EQUIPMENT Geotech Geoprobe rig utilizing a 4' macrosampler lined COMMENTS w/ acrylic sleeve PENETRATION TO TO Below Below ŝ Soj' Classification ŝ Well Construction PID Reading Depth Be Surface, Depth B. Surface, Lithologic Description Unified . Sample Interval, Sheen Schematic BLOWS 6"/6"/6" 5 5 Grass 0 0 1.1.1 Gravelly SAND, orange, gravel is fine to very coarse, sand is 0.0 fine grained, loose, dry SP Boring terminated at 2.5 feet (refusal). (GP1B – refusal **0** 3.5' bgs.) (GP1C – refusal **0** 3.2' bgs.) 5 5 10 10 - 15 15 20 20 25 25 ZZZ Field Screen/Lithologic Description Sample 10/20 Colorado Silica Sand Groundwater Level at Time of Drilling 2" PVC ∇ Gradational Contact Concrete Blank Casing ¥ Static Groundwater Level Preserved Sample 2" PVC SD Sheen Detected Contact Localed No Recovery Screen Bentonite NS No Sheen Detected Casing (0.010 slots) Approximately Sample Submitted for Laboratory NT Not Tested End Cap (2.5Y 4/2) Munsell (1990) Soil Color Charts Analysis Contact

DWG: 15-8716-3L

	Internation FACILITI LOCATIC START LOGGED SUBCON COMMEN	FACILITY FT JAMES SPECIALTY CHEMICAL JOB # 015.08718.003 BORING/WELL GP-1 LOCATION CAMAS, WASHINGTON SURFACE ELEVATION NA START 0831 08/01/00 FINISH 0835 08/01/00 CASING TOP ELEVATION NA LOGGED BY DEC MONITORING DEVICE Mini RAE 2000 w/ 100 ppm isobutylene SUBCONTRACTOR AND EQUIPMENT Geotech Geoprobe rig utilizing a 4' macrosampler lined COMMENTS w/ acrylic sleeve													
aaaa Marro Willow and an and a	PENETRATIC RESULTS BLOWS 6"/6"/6"	Sample Depth Interval, feet	PID Reading	Sheen	under Below	Lithologic Description	Unified Soil Classification	T Depth Below C Surface, fee	Well Construction Schematic						
			2.9			Grass SAND w/ gravel, orange/tan, gravel is fine to coarse, sand is fine to medium grained, trace silt, toose, dry Boring terminated at 3.5 feet (refusal).	SP	0 1 1 1 1 1 1 1 1 1 1 1 1 1							
MANNAN MANANAN MANANAN MANANANAN MANANANAN		ield Scre escription reserved to Recove ior Labon nalysis	en/Litha Sample Sample ery ubmitted atory	logic e	↓ ↓ SD NS NT (2.5Y	Groundwater Level at Time of Drilling Static Groundwater Level Sheen Detected No Sheen Detected Not Tested /2) Munself (1990) Soil Color Charts Gradational Contact Located Approximately Contact Located Contact Located Contact Contact Located Contact	Concret	•	10/20 Colorado Silica Sand 2" PVC Blank Casing 2" PVC Screen (0.010 slots) End Cap DWG: 15-8718-3L						

FACILITY	<u> </u>	JAME	<u> </u>	PECI	ALTY CHEMICAL JOB #	015.	08718.00	<u>3</u>	BORING/WELL <u>GP-2B</u>
START	1700	08/0	2/00	<u>эпім</u>)	FINISH 1717 08/02/00	CASI	NG TOP	ELEVA	ATION NA
LOGGED	BY	DEC			MONITORING DEVICEMINI_RAE_200	00 w/	/ 100 ppm	Isob	utylene
SUBCONT	RAC	TOR A	ND	EQU	IPMENT <u>Geotech Geoprobe rig utilizing </u>	4' m	acrosampl	er line	ad
COMMEN	SN	/ acr	<u>ylic</u>	<u>8/887</u>	0				
			<u>г т</u>				1 ~	1	
RESULTS	Dept	51		fee a			Soil	Beloi	Well Construction
RIOWS	nd,	<u>Ö</u>	eeu	oth I	Lithologic Description		ified ssific	pth face	Schematic
6"/6"/6"	Sam	A S	ß	Sun Det			58	2 3	
				_ 5				- 5	
				-				F	
				-				F	
				-				F	
				-				F	
-		_		- 0	Grass			Ł o	
				-			000		
				-	No recovery in sampler		2000	Ł	
								Ł	
				-			GM DOG		
	$\not\vdash$	0.0		- 5	Sill Stall and another arguing are fine to comme		200	L 5	
	H			-	sand is fine—to medium—grained, mottled color, dense,	dry		Ł	
	$\underline{\ll}$			-			000	Ł	
-	\ge	-		-	Boring terminated at 7.5 feet (refusal).		900	<u>*</u>	
				-				F	
				. 10	(GP2C - refusal V 4.3 bgs)			E	
				- 10				E″	
				-				E	
				-				E	
								F	
				- - 15				F 15	
				- 15				F	
				-				F	
								F	
				-				F	
			-	-				F	
				20				F 20	
				-				F	
				-				F	
				-				F	
				- •				E	
				- 25				2 ²	
IZZZn Field	Scree	n/Lithok	sgic		<u>Groundwater Level at</u>	., [Caracter		10/20 2" PVC
Desc	ription www.d	Sample Sample	•	Ť	Time of Drilling / Gradation Static Groundwater Level / Contact	ai			Colorado Blank Silica Sand Cosing
	ecover	y Y		SD	Sheen Detected / Contact	ſ			E 2" PVC
Samu	de Sul	- bmitted		NS	No Sheen Detected Cocated Approxime	ately		,	Casing
* for L Analy	aborat sis	ory	6	NI 2.5Y 4,	rvot restea /2) Munsell (1990) Soil Color Charts Contact	E			End Cap

. (1

MAN PROVINCIAL STR

FACILITY LOCATION START LOGGED SUBCONT COMMENT PENETRATION RESULTS BLOWS 6"/6"/6"	FT CA Sample Depth Sample Depth Interval, feet M	JAME MAS. 08/0 DEC OR A / acry	Steen Streen	c Surface, feet 600	ALTY CHEMICAL JOB # 015. GTON SURF FINISHO900_08/01/00 CASII MONITORING DEVICEMINI RAE 2000 w, PMENTGeotech Geoprobe rig utilizing a 4' m.	Interview of the second	C Debth Below Below Below C Sources feet	BORING/WELL GP-3 NA TION NA tylene d Well Construction Schematic
		0.9 1.4 0.3 2.1 9.7 21.0 8.0		10	Grass SAND, orange/tan, fine-to medium-grained, few gravels, root debris present, loose, dry SAND and silt, green/gray, fine grained, firm, dry Becomes damp SILT, dark brown, root debris, firm, damp Becomes wet Color changes to brown/tan Gravel ² present at base of sampler Boring terminated at 14 feet (refusal).	SP SM ML	0 1 1 1 1 1 1 1 1 1 20 25	
Image: Constraint of the second secon	ld Scre scription served Recow mple St Labor alysis	en/Litho Sample Sample ary ubmittea atory	logic e	↓ ↓ SD NS NT (2.5)	Groundwater Level at Time of Drilling Static Groundwater Level Sheen Detected No Sheen Detected Not Tested 4/2) Munsetl (1990) Soil Color Charts Gradational Contact Located Approximately Contact Located Approximately Contact Contact Located Approximately Contact	Concre er Bento	sta nite	10/20 Colorado Silica Sand 2" PVC Blank Casing 2" PVC Screen Casing (0.010 stots End Cap DW0: 15-8716-3L

FACILITY	FT C	JAME MAS	<u>58</u> 5 WA	SPECI	U <mark>ALTY CHEMICAL</mark> JOB # _0 NGTON	15.0 RFA	CE ELEV	3 ATION	BORING/WELL <u>GP-4</u> N NA
START	<u>0915</u>	08/0	1/00)	FINISH CA	SIN	G TOP E	LEVA	TION_NA
LOGGED	BY _	DEC			MONITORING DEVICE Mini RAE 2000	w/	<u>100 ppm</u>	Isobu	itylene
SUBCONT	RAC	TOR A	AND	EQU	IIPMENT <u>Geotech Geoprobe rig utilizing a 4'</u>	mac	crosample	r line	<u>d</u>
COMMENT	<u>з и</u>	// ACT	YIIC	8/00V	<i>θ</i>				
	S 4.			<u> </u>		T	5	. *	
RESULTS	Depti feei	б		Selow fee		ľ	Sail	Beloi	Well Construction
PLOWS	ple val,	<u>Ö</u> ü	661	face, 1	Lithologic Description		ified ssific	foce	Schematic
6"/6"/6"	Sam Inte	L ex	Ś	Ser Det			58	5.6	
				_ 5				_ 5	
				-	•			F	
				-				F	
				-				<u> </u>	
				-				F	
				- ^	Grass			Ŀ	
	H	[- 0				Ŀ	
	ŢĄ	1.5		-			SM	-	
	ΨĤ			-	SAND and slit, tan, sand is tine grained, tirm, ary			-	
	Ŧ	3.1		-		Ī	.	-	
	HA.				SILI, gray, root debris present, tirm, damp				
	44	1.4		- 5		ľ			
	11			-	Sandy SILT, green/gray, sand is fine grained, trace small arayels, firm, damp			F	
	TA A			-	3			┣ - ┝-	
				_			SM	-	
	H	1.2		-				-	
	Ð	1.2		- 10	Silty SAND, dark brown, sand is fine grained, trace small aravel, root debris present, firm, damp			- 10 -	
	H						000	 -	
	H	0.6		-		ł		F	
	H			_				-	
	H	1.1		-	SILT, sand, gravel aggragate, dark brown, gravels are fine to medium, sand is fine to medium, a lot of root debris,			F	
	Ŧ			15	loose, wet			- 15	
	Ŧ	1.1		-		ſ	ML HOO	L.	
	Ű.			-	SILT grow/green firm damp	ł		F	
	\otimes	1.2		-	Silty SAND w/gravel, mottled, gravels are fine to medium,		GM 2000	F	
-	\otimes	1.7		-	sand is fine to medium, dense, damp		180	F	
				20	Boring terminated at 19 teet (refusai).			- 20	
				-				F	
				-				F	
				-				Ē	
				-				Ļ	
				25				- 25	
V77 Field	Scree	n/Lithol	ogic	7	Groundwater Level at	٦	Concrete	[5.57]	10/20 2" PVC
Desci Prese	ription irved 1	Sample Sample		Ť	Static Groundwater Level	÷			Silica Sand Casing
	ecover	, у		SD	Sheen Detected Contact	Ø			2" PVC Screen
Samp	he Sul	bmitted		NS	No Sheen Detected Approximately	۷ 🕅	8		E Casing (0.010 slots)
for L Analy	aborai sis	lory	(2.5Y 4	/2) Munsell (1990) Soil Color Charts Contact	ک			End Cop

FACILITY LOCATION START LOGGED SUBCONT COMMENT PENETRATION RESULTS BLOWS 6"/6"/6"	Sample Depth Sampl	JAME MAS. 08/0 DEC TOR A for acr	Sheen Sheen	C Surface, feet	Lithologic Description	5.08718.00 FACE ELEV ING TOP E V/ 100 ppm macrosample to Sample	2 Depth Below 2 Surface, feet 2 Surface, feet	BORING/WELL <u>GP-6</u> NA TION <u>NA</u> tylene d Well Construction Schematic
		1.3		0 	Asphalt surface Sity SAND, gravel, cobble aggregate, brown, brick debris present, dense, dry Boring terminated at 4.5 feet (refusal). (GP5B - refusal • 2.0' bgs) (GP5C - refusal • 5.6' bgs)	GM		
VZZ Fiek Des Pres No \$ San for Ano	I Scree cription nerved Recove Lobora ysis	en/Lithoi Sample Sample ry ibmitted tory	logic	∠ 25 ¥ SD NS NT (2.5Y 4	Groundwater Level at Time of Drilling Static Groundwater Level Sheen Detected No Sheen Detected Not Tested /2) Munself (1990) Soil Color Charte Contact Contact Contact Localed Approximately Contact	Concrete	- 25	10/20 Colorado Silica Sand 2" PVC Blank Casing 2" PVC Screen Casing (0.010 slots) End Cap DW0: 15-8716-3L

FACILITY FT JAMES SPECIALTY CHEMICAL JOB # 015.08718.003 BORING/WELL GP-6 SURFACE ELEVATION LOCATION CAMAS, WASHINGTON ŃA START <u>1257 08/01/00</u> CASING TOP ELEVATION_ _FINISH _1318 08/01/00 NA LOGGED BY DEC MONITORING DEVICE Mini RAE 2000 w/ 100 ppm isobutylene SUBCONTRACTOR AND EQUIPMENT <u>Geotech Geoprobe rig utilizing a 4' macrosampler lined</u> COMMENTS w/ acrylic sleeve PENETRATION Depth Below Unified Soil Classification Below , feet feet <u>J</u> Well Construction RESULTS PID Reading Depth B Surface, Depth B Surface, Sample I Interval, Lithologic Description Sheen Schematic BLOWS 6"/6"/6" 5 5 Asphalt surface 0 0 GM Silt, SAND, gravel aggregate, brown, medium dense, dry 1.9 5 5 1.6 SAND and silt, brown, sand is fine—to medium—grained, trace gravel, loose, soft (no good recovery in sampler) SM 10 10 ML 15 SILT, brown, damp, firm 15 1.6 GM SiLT w/ sand and gravel, gravels are fine to coarse, sand is fine, medium dense, damp 0.7 Boring terminated at 17.5 feet (refusal). 20 20 25 25 2" PVC Field Screen/Lithologic Description Sample Groundwater Level at Time of Drilling 10/20 ∇ Concrete Gradational Contact Blank Cólorado T Silica Sand Casing Static Groundwater Level Preserved Sample 2" PVC SD Sheen Detected Contact Localed] No Recovery Screen Bentonite NS No Sheen Detected Casing (0.010 slots) Approximatel Sample Submitted for Laboratory NT Not Tested Analysis (2.5Y 4/2) Munsell (1990) Soil Color Charls End Cop Contact

reading and the second second

	FACILITY LOCATION START LOGGED SUBCONT COMMENT	FT FT CA 1035 BY CA 1035 BY CA 1035 BY 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035 1035	JAME JAME MAS, 08/0 DEC TOR / v/ acr	WA WA 1/00 NND yllo	EQU	ALTY CHEMICAL JOB # 015 GTON SURI FINISH _1041 08/01/00 CASI MONITORING DEVICE Mini RAE 2000 w PMENT _Geotech Geoprobe rig utilizing # 4' m	5.08718.00 FACE ELEV ING TOP E 1/ 100 ppm macrosample	S ATION ELEVAT Isobu or line	BORING/WELL <u>GP-7</u> I <u>NA</u> TION <u>NA</u> Itylene d
	RESULTS BLOWS 6"/6"/6"	Sample Dep Interval, fe	PID Reading	Sheen	under the self of	Lithologic Description	Unified Sc Classificat	T Depth Bei Gurface, f	Schematic
And a second sec		Ĭ	2.6			Asphait surface Silt, SAND, gravel, cobble aggregate, brown, loose, dry	GM OCT	0 0	
		X			5	Boring terminated at 3 feet (refusal).		5 5	
					- - - - - - - - -			- - - - - - - - - -	
					- - - - - - - -			- 15 	
					20 			- - - - - - - - -	
	ZZZ Fiel Des Pre No	ld Scre cription served Recove	en/Litho Sample Sample	plogic	Z5 ↓ ↓ SD NS	Groundwater Level at Time of Drilling Static Groundwater Level Sheen Detected No Sheen Detected Contact Localed Approximately	Concret	- 25	10/20 Colorado Sillica Sand 2" PVC Blank Casing 2" PVC Screen Casing
and a second second	* San * for And	nple Si Labora niysis	ubmitted story	1	NT (2.5Y	Not Tested Not Tested N/2) Munsell (1990) Soil Color Charls Contact			(0.010 s ■ End Cap DWG: 15-8716-3L

FACILIT LOCATIC START LOGGED SUBCON	Y <u>FT</u> DN <u>CA</u> <u>1241</u> D BY NTRACT	JAME MAS. 08/01 DEC TOR A	<u>888</u> <u>W/</u> 1/00	EQU	ALTY CHEMICAL GTON FINISH <u>1347 08/01/00</u> MONITORING DEVICE IPMENT <u>Geotech Geoprobe</u>	JOB # _01 SUR CAS Mini RAE 2000 v rig utilizing a 4' v	5.08710.003 RFACE ELEV SING TOP E w/ 100 ppm macrosample	ATION LEVA Isobu r line	BORING/WELL <u>GP-7B</u> N <u>NA</u> TION <u>NA</u> Itylene d
COMMEI	NIS <u>H</u>	/ ACT	vilc	<u> 5/00V</u>	0				
PENETRATIC RESULTS BLOWS 6"/6"/6"	Sample Depth Interval, feet	PID Reading	Sheen	Depth Below Surface, feet	Lithologic Desc	cription	Unified Soil Classification	Depth Below Surface, feet	Well Construction Schematic
		0.5		- 5 - 0 - 5 - 10 - 15 - 20 - 25	Asphalt surface Silt, SAND, gravel, cobble aggregate, b Boring terminated at 2.5 feet (refusal	rown, loose, dry).	GM CON	- 5 	
Field Des Des Pro No * Sor And	ld Screen scription sserved S Recovery mple Sub Laborato alysis	n/Litholo Sample Sample Y mitted Sry	gic (1		Groundwater Level at Time of Drilling Static Groundwater Level Sheen Detected No Sheen Detected Not Tested '2) Munsell (1990) Soil Color Charts	Gradational Contact Located Approximately Contact	Concrete		10/20 Colorado Sillica Sand 2° PVC Gasing 2° PVC Screen Casing (0.010 slots) End Cap

	SE		<u></u> DF	2					PAGE 1 OF 1
	FACILITY	FT	JAME	s s	DPECI/	ILTY CHEMICAL JOB # _0	15.08718.00	3	BORING/WELL GP-7C
	LOCATION		MAS,	W/	SHIN	SU SU 1403 08/01/00 CA	RFACE ELEV SING TOP E	ATION	TION NA
	LOGGED	BY	DEC			MONITORING DEVICEMINI RAE 2000	w/ 100 ppm	laobu	tylene
	SUBCON		TOR A	WD WIC	EQUI	PMENT <u>Geotech Geoprobe rig utilizing & 4'</u>	macrosample	or line	<u>a</u>
	COMMEN	<u>ю_п</u>			01001				
	PENETRATION	spth feet	_		slow feet		Soil	Jelow feet	Well Construction
	RESULIS	ple D.	Ö	een	oth B. face,	Lithologic Description	nified	pth l	Schematic
	BLOWS 6"/6"/6"	Sam _l Intei	Ц е С	Ŝĥ	Dep Surt		58	88	
50 Y					5 			- 5 -	
					-			E	
0 1								-	
					-			-	
		777	ł		- o	Asphalt surface	digo	1 0	
		Ø			F		900		
						Silt, SAND, gravel, cobble aggragate, brown, medium dense		Ē	
5i					E		0000	<u>-</u>	
		K		ļ	5			5	
e		R	1			Boring terminated at 6 feet (refusal).	dălok	<u>н</u> -	
					-	-		Ē	
Ψ [X					E			Ę	
					E 10			- 10	
ngganger public					F			Ę	
9					F			F	
					-			E	
					L 15			-15	
					F			Ē	
<i>d</i> .)					F			F	
					-			Ē	
								- 20	
								E	
		l			Ē			-	
3 1					Ē			F	
			ļ		F			E 25	
z., J			1		²⁵				
() (EZZI Fie	id Scre scriptio	n Samp	ologic le	Ţ	Groundwater Level at Time of Drilling Gradationa Contact	Concret		Colorado Blank Silica Sand Casing
		eserved	Sample	ł	¥ s⊅	Static Groundwater Level / Contact Sheen Detected / Contact		teres.	
		mecov Imple S	wry Submittee	1	NS	No Sheen Detected / Located Approximat	ely 😸 bentoni		Casing (0.010 siots)
	* foi An	r Labor alysis	atory		(2.5Y	1/2) Munsell (1990) Soil Color Charts Contact	<u></u>		End Cop DWG: 15-8718-3L

AND Comparison of the second

FACILITY LOCATION START <u>1</u> LOGGED I SUBCONTI COMMENT	FACILITY FT JAMES SPECIALTY CHEMICAL JOB # 015.08716.003 BORING/WELL GP-8 LOCATION CAMAS, WASHINGTON SURFACE ELEVATION NA START 1050 08/01/00 FINISH 1150 08/01/00 CASING TOP ELEVATION NA START 1050 08/01/00 FINISH 1150 08/01/00 CASING TOP ELEVATION NA LOGGED BY DEC MONITORING DEVICE Mini RAE 2000 w/ 100 ppm isobutylene SUBCONTRACTOR AND EQUIPMENT Geotech Geoprobe rig utilizing a 4' macrosampler lined COMMENTS w/ acrylic sleeve														
PENETRATION RESULTS BLOWS 6"/6"/6"	Sample Depth interval, feet	PID Reading	Sheen	Depth Below Surface, feet	Lithologic Description		Unified Soil Classification	Depth Below Surface, feet	Well Construction Schematic						
		2.5 2.4 0.0 1.0		5 0 10 10 20 25	Asphalt surface SILT w/ sand and gravels, dark brown, gravels are fine to coarse, sand is fine grained, root debris present, firm, damp Silty SAND, orange/tan, sand is fine to medium, loose, dry SILT w/ trace small gravels SAND and silt, brown, sand is fine-to medium-grained, loose, dry Cobbles at base of sampler Very dense and hard - no cobbles SAND w/ silt and gravels, mottled orange, sand is fine-to medium-grained, very dense, hard		M								
Field Descri Presen No Re Sampi for Lo Analys	Screer iption rved S ecoverj le Sub aborati	n/Lithold Sample Sample Sample W W Witted Wy	ngic (↓ ↓ SO NS NT (2.5Y 4,	Groundwater Level at Time of Drilling Static Groundwater Level Sheen Detected No Sheen Detected Not Tested (2) Munsell (1990) Soil Color Charts Gradational Contact Located Approximately Contact		Concrete Bentonite		Colorado Silica Sand						

DWG: 15-8716-3L

		SEC	\Box) F	2					
		Internatio FACILITY	nal I <u>FT</u>	ncorpo JAME	rate SSS	ed SPECI/	ALTY CHEMICAL JOB	#_015.08716.00	3	PAGE 2 OF 2 BORING/WELL GP-8
		LOCATION		MAS.	WA	SHIN	9TON	SURFACE_ELE	/ATION ELEVAT	TION NA
Summary .		LOGGED	BY	DEC	////		MONITORING DEVICEMINI_RAE	2000 w/ 100 ppm	isobu	tylene
U	İ	SUBCON	TRACI	TOR A	ND vlic	EQUI	PMENT <u>Geotech Geoprobe rig utilizing</u> 9	a 4' macrosampl	er line	
			····							
U		PENETRATION	Jepth feet	5		leiow feet		Soil ation	Below feet	Well Construction
0000000		BLOWS	nple L erval,	PID	heen	pth E rface,	Lithologic Description	Inified lassified	lepth urface	Schematic
		6"/6"/6"	San	Re	Ś	Su			9 03 2 25	
10 mail	Ì					25 				
Constraint of the local diversion of the loca			\blacksquare			-			ŧ.	
Variation				0.4				6C 00		
- Clauser of La				0.5		-			3 3 4 30	
55	I		M			- 30	Clayey, gravelly, SILT, orange/brown, firm, moist			
				-		-	Boring terminated at 31.5 feet (refusal).		Ŧ	
81	1					F			E	
						- 35			_ 35	
						-			F	
	(-			E	
U	I N					Ē			F	
adata-terra						- 40			- 40	
1002									F	
						E			Ē	
						-			-	
1000						- 45			4 5 	
CONTRACT.	ļ					E				
	ł					F				
						-			F	
100	ł					- 50 -			E 50	
						E			-	
ή	ļ					È			F	
						-			55	
8	I					C 22				
100 (ALE 100 - 100 - 100 ALE 100 - 100 ALE 100										10/20 - 2" PVC
	. (EZZ Fiel Des	ld Scre Icription	en/Litho Sampl	logic a	▼	Groundwater Level at Time of Drilling Static Groundwater Level	dational Concret tact	•	Colorado Silica Sand Blank Casing
And Annal and An			Recove	sampie ery		SD	Sheen Detected	tact ated Benton	te	2" PVC Screen
£		* Sar * for	nole Si Labori	ubmitted story	1	NS NT	No Sneen Detected / Appr Not Tested	roximately		(0.010 slots)
		And	nlysis	-		(2.5Y 4	(1990) Soil Color Charles Cont	iact		DWG: 15-8716-3L

THE PARTY OF THE

015.08718.003 FACILITY FT JAMES SPECIALTY CHEMICAL JOB # BORING/WELL GP-9 SURFACE ELEVATION LOCATION CAMAS. WASHINGTON ŇA START <u>1420 08/01/00</u> _FINISH _1500 08/01/00 CASING TOP ELEVATION NA LOGGED BY DEC MONITORING DEVICE Mini RAE 2000 w/ 100 ppm isobutylene SUBCONTRACTOR AND EQUIPMENT <u>Geotech Geoprobe rig utilizing a 4' macrosampler lined</u> COMMENTS w/ acrylic sleeve PENETRATION Depth Below Unified Soil Classification Below 8 ŝ <u>ee</u> Well Construction RESULTS PID Reading Depth Br Surfoce, Surface, Lithologic Description Sample I Interval, Sheen Schematic Depth BLOWS 6*/6*/6* 5 5 Asphalt surface 0 0 0.0 Gravelly SILT w/ sand, brown, gravels are fine to coarse, sand is fine-to medium-grained, medium dense, wet 5 5 24.2 Silty SAND w/ gravels, tan/brown, gravel is fine to medium, sand is fine to medium, medium dense, damp 10 10 30.1 GM 2 15 15 14.8 1.4 - 20 20 Sandy SILT w/gravel, brown, wet 0.9 25 25 Field Screen/Lithologic Description Sample 10/20 2" PVC Groundwater Level at Time of Drilling ίn, ¥ Gradational Contact Concrete Blank Casing Colorado Silica Sand ¥ Static Groundwater Level Preserved Sample 2" PVC SD Sheen Detected Contact Located No Recovery Screen NS No Sheen Detected Casing (0.010 slots) Approximately Somple Submitted for Laboratory NT Not Tested End Cap (2.5Y 4/2) Munsell (1990) Soil Color Charts Analysis Contact DWG: 15-8718-3L

SEC	OR
International	Incorporated

0057-004

277205-0-777-0-021--6

Re-----

April 200 and and a second sec

And a subsection of the subsec

A MARIA MARIA MANA

Mintheologian

Maria Americana metro

1746174		44 1	icoi po	1410	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		··				
FACILITY <u>FT JAMES SPECIALTY CHEMICAL</u> JOB # <u>015.08716.003</u> BORING/WELL <u>GP-9</u>											
LOCA	TION		MAS.	WA	<u>SHIN</u>	GTON EINISH 1500 08/01/00	SURFA	IG TOP EL	EVAI	TION NA	
SIARI	/ <u></u>	<u>420</u>	00/0	1/00		FINISHOUU OU/OI/OU	Mini RAE 2000 w/	100 ppm	Isobu	tvlene	
	בט ב הראודו	77 2707	DEC TOP A	ND	FOU	MONTONING DEVICE	ria utilizina a 4' ma	crosamplei	- lined	1	
COM	JENT.	S w		vlic	sleev	0					
		5 2			<u>)</u>			i≊ 8	set of		1.
RESUL	TS	e Pe	6		Belo fe		orintian	c S S	Beli 9, fi	Well Const	ruction
		e je	<u>din</u>	u	th face,	Lithologic Desc	cription	ified	pth rfac	Schem	atic
6"/6"	45 7/6"	it i	Rec	Š	Dep			58	Se P		
	-	•,			- 25	Gravelly SAND, brown, gravel is fine to	o coarse, sand is fine to	e o o o	- 25	Г — Р ХХТ	
1	F				- 20	coarse, trace silt, medium dense, mo	ist	GM DO	-		
		\boxtimes	0.8		-				-		
	ļ	\ge	_		-				-		
						Boring terminated at 27.5 feet (refue	idi <i>)</i> .		-		
	1				_				-		
		Í			- 30				30 -		
									-		
					-				-		
					-				-		
					-				-		
									- 35		
					- 35				-		
									-		
					-		•				
					F						
					F				→		
					L 40				- 40		
					- ``				-		
					F				-		
1	5				F				-		
					F				-		
					F						
					- 45				- 45		
					F				<u> </u>		
					_				-		
				ł	F				F		
			1		F				Ľ		
				l	F				ᄂᇷ		
		1		1	F 50				╞╶╜		
			1		F				F		
ļ					F				F		
1					F				F		
					F				F		
					上 55				- 55		
									1		
			1		1						
<u> </u>	n 67-1-	L	en /i Hh-		L	Groundwater Level at	· · · · ·		- 	10/20	2" PVC
	Desc	ription	n Sampl	a	¥	Time of Drilling	/ Gradational / Contact			Colorado Silica Sand	tsiank Ca sing
] Pres	erved	Sample		¥	Stade Groundwater Laver	Contact	ului 1990	<u></u>		2" PVC
] No I	Recow	ну		50 NS	No Sheen Detected	Localed				Screen Casing
+	Sam for	p <mark>le</mark> Su Laborr	ubmitted story	1	NT	Not Tested		6223			(0.010 siols) End Can
	Anal	vsis			(2.5Y	4/2) Munsell (1990) Soil Color Charls	Contact			DWG: 15-8718-	
											e esta

BORING/WELL GP-10

FACILITY FT JAMES SPECIALTY CHEMICAL

LOCATION CAMAS, WASHINGTON

JOB # _015.08716.003

SURFACE ELEVATION ____ ŃA

CASING TOP ELEVATION NA START 1520 08/01/00 FINISH 1543 08/01/00 LOGGED BY DEC MONITORING DEVICE Mini RAE 2000 w/ 100 ppm isobutylene SUBCONTRACTOR AND EQUIPMENT <u>Geotech Geoprobe rig utilizing a 4' macrosampler lined</u> COMMENTS w/ acrylic sleeve

							····			
PENETRATION RESULTS BLOWS 6"/6"/6"	Sample Depth Interval, feet	PID Reading	Sheen	Depth Below	Surface, feet	Lithologic Description	Unified Soil	Classification	Depth Below Surface, feet	Well Construction Schematic
	;	0.5 1.1 0.5 0.0			5 0 10 15 20 25	Asphalt surface Sity SAND and gravel, mottled brown, gravels are fine to coarse, sand is fine to medium, dense, dry Sand grades coarser Same w/ cobbles present Sandy, silty GRAVELS w/cobbles, brown, gravels are fine to coarse, sand is fine to coarse, toose, dry Clayey, gravelly SILT, brown, gravels are fine to coarse, trace fine sand, firm, wet Boring terminated at 21.5 feet (refusal).	GM		5	
Field Descr Prese No R Samp for L Analy	Screen iption rved S ecover de Sut aborat	n/Lithold Sample Sample y y y mitted ory	ogic	(2.5	¥ SD NS NT Y 4,	Groundwater Level at Time of Drilling Static Groundwater Level Sheen Detected No Sheen Detected Not Tested (2) Munsell (1990) Soil Color Charts Gradational Contact Located Approximately Contact		ncrete ntonite		10/20 Colorado Silico Sand 2° FVC Biank Casing 2° FVC Screen Casing (0.010 stots) End Cap

SECOR International Incorporat FACILITY <u>FT JAMES</u> LOCATION <u>CAMAS. WI</u> START <u>1600 08/01/00</u> LOGGED BY <u>DEC</u> SUBCONTRACTOR AND COMMENTS <u>W/ acrylic</u>	SECOR PAGE 1 OF 1 FACILITY FT JAMES SPECIALTY CHEMICAL JOB # 015.08716.003 BORING/WELL GP-11 LOCATION CAMAS. WASHINGTON SURFACE ELEVATION NA START 1600 08/01/00 FINISH 08/01/00 CASING TOP ELEVATION NA LOGGED BY DEC MONITORING DEVICE Mini RAE 2000 w/ 100 ppm isobutylene SUBCONTRACTOR AND EQUIPMENT Geotech Geoprobe rig utilizing a 4' macrosampler lined COMMENTS w/ acrylic sleeve Well Construction											
Aceding Reading Sheen	Lithologic Descrip	Unified Soi	Well Construction Schematic									
0.5	Asphalt surface Silty SAND, brown, sand is medium grain to medium, loose, dry 5 No recovery (4–8' bgs) 5 10 Silty, sandy, GRAVEL, brown, gravel is me and is fine, loose, dry Boring terminated at 10.5 feet (refusal). 7 20 20 20 20 20 20 20 20 20 20	sd, few gravels fine dium to coarse, GM 5005 1										
Field Screen/Lithologic Description Sample Preserved Sample No Recovery Sample Submitted for Laboratory Anolysis	Groundwater Level at Time of Drilling ▼ Static Groundwater Level SD Sheen Detected NS No Sheen Detected NT Not Tested (2.5Y 4/2) Munself (1990) Soil Color Charts -	Gradational Contact Contact Located Approximately Contact	Colorado Silica Sand Z [*] PVC Screen Casing (0.010 slots) End Cap									

411100110110

200700

and and a second second

100000000000000

17197777

121111

1000-00-0

1

a para panén na mangangkan di

DWG: 15-8716-3L

FACILITY FT JAMES SPECIALTY CHEMICAL JOB # _015.08716.003 BORING/WELL GP-12 LOCATION CAMAS. WASHINGTON SURFACE ELEVATION ŃĂ FINISH 0815 08/02/00 START <u>0745 08/02/00</u> CASING TOP ELEVATION_ NA LOGGED BY DEC MONITORING DEVICE Mini RAE 2000 w/ 100 ppm isobutylene SUBCONTRACTOR AND EQUIPMENT <u>Geotech Geoprobe rig utilizing a 4' macrosampler lined</u> COMMENTS w/ acrylic sleeve Depth PENETRATION Below Below ŝ Classification feet Soil Well Construction PID Reading RESULTS Depth B. Surface, Lithologic Description Depth B Surface, Sample I Interval, Sheen Unified Schematic BLOWS 6"/6"/6" 5 5 Asphalt surface 0 0 Gravelly SAND, gray, sand is fine to medium, loose, dry GM 0.9 SILT, dark brown, trace fine sand, wood debris present, firm, 5 dry ML 5 1.0 SM SILT w/sand and gravel in varying quantities, multicolored, damp 10 10 SILT, brown, trace small to medium gravels, firm, damp ML 0.9 SILT w/ gravels, brown, gravel is fine to coarse, firm/dense, GM 1.0 damp 15 Boring terminated at 14.5 feet (refusal). 15 20 20 25 25 ZZZ Field Screen/Lithologic Description Sample 2" PVC 10/20 Colorado Groundwater Level at Time of Drilling ∇ Concrete Gradational Contact Blank 1 T Static Groundwater Level Silica Sand Casing Preserved Sample 2" PVC SD Sheen Detected Contact Localed No Recovery Screen Bentonite No Sheen Detected NS Casing (0.010 slots) Approximately Sample Submitted for Laboratory NT Not Tested End Cap Analysis (2.5Y 4/2) Munsell (1990) Soil Color Charts Contact

DWG: 15-8716-3L

	SECOR PAGE 1 OF 1 International Incorporated PAGE 1 OF 1 FACILITY FT JAMES SPECIALTY CHEMICAL JOB # 015.08718.003 BORING/WELL GP-13 LOCATION CAMAS. WASHINGTON SURFACE ELEVATION NA START 0830 08/02/00 FINISH 0848 08/02/00 CASING TOP ELEVATION NA LOGGED BY DEC MONITORING DEVICE Mini RAE 2000 w/ 100 ppm isobutyione SUBCONTRACTOR AND EQUIPMENT Geotech Geoprobe rig utilizing a 4' macrosampler lined COMMENTS_w/ acrylic sleeve SUBCONTRACTOR AND EQUIPMENT											OF 1 GP-13		
F	PENETRATIO RESULTS BLOWS 6"/6"/6	Sample Depth	PID Reading	Sheen	Depth Below Surface, feet	Lithologic Desc	riptio	n	Interd Car	Classification	Depth Below Surface, feet	Well Co Sch	onsi em	ruction atic
			0.0		5	Asphalt surface SILT, brown, some gravels and cobbles coarse, trace fine sand, soft, damp GRAVEL w/sand, gray, gravels are fine fine to medium, loose, dry Boring terminated at 6.5 feet (refusal (GP13B - refusal © 6.5' bgs) (GP13C - refusal © 6.3' bgs)	to coar	s are fine to se, sand is	ML					
		Tield Sci Descripti Preserve Vo Reco Somple for Labo Analysis	een/Lith on Samp d Samp very Submitte ratory	l ologic ola a	↓ ↓ SD NS NT (2.5Y 4)	Groundwater Level at Time of Drilling Static Groundwater Level Sheen Detected No Sheen Detected Not Tested /2) Munsett (1990) Soil Color Charts	/	Gradational Contact Located Approximately Contact		Concrete Bentonit		10/20 Colorado Silica Sand		2" PVC Blank Casing 2" PVC Screen Casing (0.010 slots) End Cop

Accession of the second se

20000

newcol.

00004

FACILITY LOCATIO	<u>_FT</u> VC/	<u>JAME</u> MAS.	<u>=s</u> W/	SPEC SHII	ALTY CHEMICAL JOB # 015. GTON SURFA	08718.003 ACE ELEV	ATION	BORING/WELL <u>GP-14</u>
START	0923	3 08/0	2/0	0	FINISHFINISHCASIN	IG TOP E	LEVA	TION NA
LOGGED	BY	DEC		501	MONITORING DEVICE <u>Mini RAE 2000 w/</u>	<u>' 100 ppm</u>	laobu r. Voo	<u>itylene</u>
COMMEN	TS M	vi acr	vlic	5/00	e	ici vəzinpið		<u> </u>
PENETRATION	is is			e t		oil ion	low eet	Wall Construction
RESULTS	4 D	D D Jing	S	, Be	Lithologic Description	ed S ificat	, Be	Schematic
BLOWS	ampl	P PI	Shee	Depti Surfa		Unifi	Depti Surfa	
0/0/0	S			5			5	
				- 1			- 3	
				-			-	
				-			-	
				-			-	
		-		0	Asphalt surface		_ 0	
				- *			-	
	\square			-	Clayey SILT, brown, trace medium gravels, firm, damp		-	
	s						-	
	\Rightarrow	22.8		-		000	-	
				- 5	SILT and gravels, gray, gravels are medium to coarse, dense/ firm, dry	GM 0000	- 5	
	H			-		30	- -	
	\boxtimes	25,4		-		T	-	
	\geq	-		-	Boring terminated at 8 feet (refusal).		-	
				-	(GP14B - refusal @ 7.0' bas)		-	
				— 10 -	(GP14C — refusal © 7.0' bgs)		10 -	
				-			-	
				-			-	
				-			-	
				- 15			- - 15	
				-		l	- IJ	
				-			-	
			ł	-				
			ŀ	-			-	
			ļ	20			- 20	
				-			-	
				-			-	
				• -			-	
			ļ	-			-	
			ļ	- 25			- 25	
ZZZ Field Desc	Scree ription	n∕ Lithold Sample	gic	Ţ	Groundwater Level at Time of Drilling Gradational Static Gradational	Concrete		Colorado Blank Silica Sand Carlon
	erved S	iample v			Sheen Detected		<u>स्टर</u> ्ग्स २	
Sami	scoverj de Sub	r mitted		NS	No Sheen Detected Localed Approximately	Bentonite		Casing
* for Laboratory Analysis (2.5				NT 2.5Y 4	(2) Munsell (1990) Soil Color Charts Contact			End Cop

.

	Internatio	nal I	ncorpo	rate	ea 📃					
	FACILITY	FT	JAME	S 8	SPECI	ALTY CHEMICAL JOB #JOB #JOB	.08716	<u>,003</u>	<i>t</i>	BORING/WELL_ GP-15
	IOCATION		MAS	W	SHIN	SURF	ACE	ELEV	ATION	<u> </u>
	STADT	4400	Ng//	2/0	Λ	EINISH 1420 08/02/00 CASI	NG TO	DP EI	EVAT	TION NA
		01	00/0	2/0	<u> </u>		/ 100		leahu	tylono
and VV All	LOGGED	Br	DEC			MONTORING DEVICE MILLI RAE 2000 W	/ 100	<u>ppin</u> mole	Nood	4
	SUBCONT	RACI	IOR A	ND	EQU	PMENT <u>Geotech Geoprode ng utilizing k 4 m</u>	aci 084	11111101	miou	
8 ¹ 1	COMMEN	S_M	/ acr	VIIC	8100V					· · · · · · · · · · · · · · · · · · ·
							· · · · · · · · · · · · · · · · · · ·			
	PENETRATION	\$ -			¥ ₩		13	8	s s	
	RESULTS	g ž	6		fe lo	1111 1 Decembration	S I	18	Bel	Well Construction
		g g	<u>Q</u> .5	S	cce, th	Lithologic Description	lied in	is:	£ ğ	Schematic
	BLOWS	ter j	μ	S,	Surf		ŝ	Ë	a s	
£ 1	0/0/0	S =							£	
6 1					- 5				- 3	
z uniga					E					
Common of the second se					-				-	
					-				-	
10					-				-	
26472					F.				-	
4 1					<u>ل</u> م ا	Concrete surface	_	10.90	_ 0	
	Ì	IA.			╞╹			K and		
		t d			F	Brick debris			-	
		H			┝	SILT w/aravel, dark brown, aravels are fine to medium, root	GM		-	
					L	debris present, medium dense, damp		Ĩ° și i	-	
1	1	H	1.8		-			BIPT	_	
		ZZ			F		·			
1000 T		H			- 5				- 5	
		\otimes			F		ML		-	
		Ř	0.8		╞	SILT, oxidized red/brown, trace gravels, hard, dry			-	
	· .	\bowtie	Ļ		F			шш	-	
ŧ., i 🔪					F	Boring terminated at 7.5 feet (refusal).			-	
					F.	(GP15B — refusal © 7.5' bgs)			-	
					L 10	(GP15C — refusal O 6.7' bgs)			10	
				l.	F ''				-	
		ļ	ĺ		F				-	
1					-				-	
					F				-	
					┢				-	
					F				- 46	
					- 15				13 -	
					F				-	
82 F				1	F				-	
a 1			ļ		F				-	
	1				F				-	
					F				-	
				1	上 20				- 20	
101				1	-				-	
CIRCLE 4 TOPS	1		ļ		L				-	
					\vdash				-	
					Ľ.				-	
				1	╞				_	
			ł		F					
					<u>⊢ 25</u>				- 25	
4 1					1					
and the second s				1					İ	
and the		1 5000	an /i litha	logia		Groundwater Level at	- ال خرا		L. A.	10/20 2" PVC
()	VZZ Des	cription	Sample		¥	Time of Drilling Gradational	⁰ ا بد ا	uncrete	1. Č.	Colorado Silica Sand Casina
	Pres	arvad	Sample		Ŧ	Static Groundwater Level	لنعسا		E. C.	
	Mo	Recove	ny		SD	Sheen Detected Contact	K k k	entonite		E Screen
8F	San	nole Su	ıbmilted		NS	No Sheen Detected Approximately				(0.010 slots)
á 1	* for	Labora	itory		NT (2 54 4	NOT 185180 (2) Munsell (1990) Sait Color Charles Contact	لمما			End Cap
(177 Permitte	Ano	y313			(2.01 -	12 million (1990) out out show Contact				DWG: 15-8716-3L

FACILITY _FT JAMES SPECIALTY CHEMICAL JOB # _______ BORING/WELL GP-18 SURFACE ELEVATION _ LOCATION CAMAS, WASHINGTON NA. CASING TOP ELEVATION NA START <u>0800 08/03/00</u> ____ FINISH _____ 0810_08/03/00____ LOGGED BY DEC MONITORING DEVICE Mini RAE 2000 w/ 100 ppm isobutyiene SUBCONTRACTOR AND EQUIPMENT Geotech Geoprobe rig utilizing a 4' macrosampler lined COMMENTS w/ acrylic sleeve PENETRATION TO THE PENETRATION Below Below <u>fe</u> Classification Š Soil Well Construction PID Reading Depth B. Surface, Depth B Surface, Lithologic Description Sample L Interval, Sheen Unified Schematic BLOWS 6"/6"/6" 5 5 Grass 0 0 Gravely SiLT, brown, gravels are fine to medium, loose, dry 0.7 GM Boring terminated at 2.7 feet (refusal). (GP16B - refusal **0** 2.5' bgs) (GP16C - refusal **0** 2.5' bgs) 5 5 10 - 10 15 15 20 20 25 25 ZZZ Field Screen/Lithologic Description Sample 10/20 2" PVC Groundwater Level at Time of Drilling ∇ Concrete Gradational Contact Colorado Blank T Static Groundwater Level Silica Sand Casing Preserved Sample 2" PVC SD Sheen Detected Contact Located No Recovery Screen Bentonite No Sheen Detected NS Casing (0.010 slots) Approximately Sample Submitted NT Not Tested End Cop Analysis (2.5Y 4/2) Munsell (1990) Soil Color Charts Contact

e de la compañía de

and subtraction in the

	FACILITY LOCATION START LOGGED SUBCONT COMMENT COMMENT PENETRATION RESULTS BLOWS 6"/6"/6"	FT CA Sample Depth Marchine Cast Marchine Cast Sample Depth Sample	JAME MAS. 08/02 DEC TOR A facty geoging	Streen Streen	Peptr Below Surface, feet	LTY CHEMICAL JOB # 015. STON SURF FINISH 1035 08/02/00 CASII MONITORING DEVICE Mini RAE 2000 w/ PMENT Geotech Geoprobe rig utilizing a 4' ma	0871 ACE NG T 100 Cros	Clossification	Contraction of the section of the se	BORING/WELL <u>GP-17</u> NA TION_NA tylene d Well Construction Schematic
			82.8 792 7.0		- 0 - 5 - 10 - 15 - 20	Concrete surface w/ fiberglass SILT and gravel, brown, gravels are fine to coarse, odor present, medium dense/firm, damp SILT, sand, and gravel, brown/gray, gravel is fine to coarse, sand is fine to medium, strong odor present, medium dense, damp Baring terminated at 9 feet (refusal). (GP178 - refusal © 7.5' bgs)	GM		10	
ans <u>principal di cumuna</u> 	VIII Field Desc Press No * San for Ana	l Scree cription served Recove hole Su Labora lysis	n/Lithol Sample Sample TY bmitted tory	ogic	↓ SD NS NT (2.5Y 4	Groundwater Level at Time of Drilling Static Groundwater Level Sheen Detected No Sheen Detected Not Tested (2) Munsell (1990) Soll Color Charts Contact Located Approximately Contact		Concrete Bentonite		10/20 Colorado Silica Sand 2° PVC Blank Casing 2° PVC Screen Casing (0.010 slots) End Cap

FACILITY FT JAMES SPECIALTY CHEMICAL JOB # 015.08718.003 BORING/WELL GP-17C LOCATION CAMAS, WASHINGTON SURFACE ELEVATION _ NA START <u>1115 08/02/00</u> FINISH <u>1150 08/02/00</u> CASING TOP ELEVATION___ NA LOGGED BY DEC MONITORING DEVICE Mini RAE 2000 w/ 100 ppm isobutyiene SUBCONTRACTOR AND EQUIPMENT <u>Geotech Geoprobe rig utilizing a 4' macrosampler lined</u> COMMENTS w/ acrylic sleeve PENETRATION Depth Below Below feet <u>Se</u> Classification Ē ĮS, Well Construction RESULTS PID Reading Depth B Surface, Sheen Depth B. Surface, Lithologic Description Unified Sample I Interval, Schematic BLOWS 6"/6"/6" 5 5 Asphalt/fiberglass_surface n 0 GM SILT, sand and gravel, brown/gray, gravel is fine to coarse, sand is fine to medium, no odor, medium dense, damp 5 5 1.2 Zeolite present ML. 17.1 10 10 SILT, black, some small gravels, hard, dry Boring terminated at 11.5 feet (refusal). (GP178 - refusal © 7.5' bgs) - 15 15 20 - 20 - 25 25 ZZZ Field Screen/Lithologic Description Sample 10/20 2" PVC Groundwater Level at Time of Drilling ∇ Concrete Gradational Contact Colorado Sílica Sand Blank Ŧ Casing Static Groundwater Level Preserved Sample 2" PVC SD Sheen Detected Contact Localed No Recovery Screen donite NS No Sheen Detected Casing (0.010 slots) Approximatel Sample Submitted for Laboratory NT Not Tested End Cop (2.5Y 4/2) Munsell (1990) Soil Color Charts Analysis Contact

Anna Anna Anna Anna Anna Anna Anna Anna	SEC	nal I	DF	C rate	d					PAGE 1 OF 1
Contraction of the second seco	FACILITY LOCATION START LOGGED SUBCONT COMMENT	_ <u>FT</u> <u>_C/</u> 08/0 BY RAC S_w	JAME MAS. 3/00 DEC TOR A	ND	EQUI	NLTY CHEMICAL JOB # <u>ATON</u> FINISH <u>08/03/00</u> MONITORING DEVICE <u>Mini RAE 20</u> PMENT <u>Geotech Geoprobe rig utilizing a</u>	_015.087 SURFACE CASING 00 w/ 10 4' macro	7 16.00 E ELEV TOP E 00 ppm 08ample	<u>3 </u>	BORING/WELL_ GP-18
	PENETRATION RESULTS BLOWS 6"/6"/6"	Sample Depth Interval, feet	PID Reading	Sheen -	Depth Below Surface, feet	Lithologic Description		Unified Soil Classification	Depth Below Surface, feet	Well Construction Schematic
			1.0		5 0 10 10 10 10 10	Basalt Sand, SILT w/gravel, loose, damp Boring terminated at 1.5 feet (refusal). (GP18B - refusal ● 1.5' bgs) (GP18C - refusal ● 1.5' bgs)	G	M		
	VZZ Fiek Des Pres No * Son Ana	d Scre cription served Recown ple Si Labord hysis	en/Litha Sample Sample ery ubmitted atory	logic	25 ↓ ↓ SD NS NT (2.5Y 4	Groundwater Level at Time of Drilling Static Groundwater Level Sheen Detected No Sheen Detected Not Tested /2) Munsell (1990) Soil Color Charts Contact Contact Approxit Contact	onal mately	Concrete Bentonit	- 25	10/20 Colorado Silica Sand 2° PVC Blank Casing 2° PVC Screen Casing (0.010 slots) End Cap

FACILITY LOCATION	FT C/	JAME MAS,	:s s W/	SPECI SHIN	ALTY CHE GTON	MICAL		J	юв # <u>0</u> sl	15.0	8718.00 CE ELEV	<mark>9</mark> /ATION	BORING/WE	TLL <u>GP-19</u>
START	08/0 PY	<u>3/00</u>			FINISH	08/03/00		Mini E	CA	ASING	5 TOP E	ELEVA Inchu	TION <u>NA</u>	
SUBCONT	RAC	TOR A	ND	EQU	IPMENT	Geotech Ge	poprobe	rig uti	lizing a 4	mac	rosample	or line	d	
COMMENT	Г <u>S_и</u>	/ acr	vlic	<u>sleev</u>	9									
	<u>.</u>			、 .						1			Γ	
BLOWS	mple Depti terval, feet	PID eading	heen	spth Below Irface, fee		Litholog	ic Desc	criptic	n		nified Soil assification	epth Below irface, fee	Well Con Schei	struction matic
6"/6"/6"	Ju Sar	à	Ś	2.2							55	4 3 -		
	X	0.6		- 5	Basolt Sandy SILT w Boring termi (GP19B – r (GP19C – r	r/gravel, loose, nated at 1 fee efusal ● 1.0' efusal ● 1.0'	, damp et (refusal). bgs) bgs)				GM BOOM	- 5 - 0 - 5 - 10 - 15 - 20		
			ļ	- -								Ē		I
				25								- 25		
ZZZ Field	Scree iption	n/Litholo Sample	gic	¥	Groundwal Time of L	er Level at Drilling			Gradational	[Concrete		10/20 Colorado	2" PVC Blank
Prese	rved S	Sample		¥	Static Gra	undwater Level	I	1,	contact				Silica Sand] Casing
No R Samp for L	ecover le Sul aborat	y omitted ory		SD NS NT	Sneen De No Sheen Not Teste	Detected Detected d	e Cherte	/	Contact Located Approximatel	× 🕅	Bentonite			Screen Cosing (0.010 slots) End Cao
Andiy	213		(2.UT 9/	~, munsen ()				Contact				DWG: 15-8718	-31

	SEC Internatio	mal I		erate	d PECU		.10R # 015 .	.08718.003	PAGE 1 OF 1 BORING/WELL GP-20			
	LOCATION		MAS.	WA	SHIN	BTON		ACE ELEVA	TION <u>NA</u>			
1	START	<u>0945</u> BY	<u>08/0</u> DEC	3/0	0	FINISH <u>1000 08/03/00</u> MONITORING DEVICE M I	CASI Ini RAE 2000 w	/ 100 ppm l	sobutylene			
	SUBCON	SUBCONTRACTOR AND EQUIPMENT <u>Geotech Geoprobe rig utilizing a 4' macrosampler lined</u>										
5 I	COMMENIS <u>w/ acrylic sieeve</u>											
	PENETRATION	18 5			š t			tion .	Well Construction			
<i>с.</i> 1	RESULTS	le De, ral, fe	ID ding	5	th Bel	Lithologic Descri	ption	fied S sifica	s g Schematic			
	BLOWS 6"/6"/6"	Samp Inter	Reo	She	Dept			Clos	Det Det			
177					5 				- 5			
					- 	Planter rocks over fabric screen			- 0			
			0.7		-	SILT, brown, trace small gravel, some or dry	rganic debris, loose,	ML				
		×							- 5			
CC0.v.mm		P	-		-	Boring terminated at 6 feet (refusal).	····	 				
		1				(GP208 - refusal 0 5.5' bgs) (GP200 - refusal 0 2.5' bgs)		F				
an an an an an an an an an an an an an a					-							
					- - - 10			-	- 10			
A ANTIGATION A					-			E	- -			
6 1					-				-			
					-			Ę				
¥					- 15			ŀ				
1.020702000					-							
					-			-				
					-				-			
A10000					- - 20			ŀ	- 20			
									-			
(1112-0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		l			F			ľ				
	2 2 2 2		•		- 25			-	- 25			
· · · · · · · · · · · · · · · · · · ·												
plicentaur	ZZZ Fiel	ld Scre cription	en/Litho Sampl	logic	Ţ	Groundwater Level at Time of Drilling	Gradational Contact	Concrete	10/20 Colorado Sillica Sand Casina			
		Recov	Sample erv		⊥ SD	Static Groundwater Level Sheen Detected	Contact		2" PVC Screen			
The state of the s	* Sai	mple S	ubmitted	ı	NS NT	No Sheen Detected Not Tested	Approximately		Casing (0.010 slots)			
1	And	Labon alysis	ulory		(2.5Y 4	/2) Munsell (1990) Soil Color Charts	Contoct		DWG: 15-8716-34			

Appendix C5

Excerpt from: BergerABAM. 2016. Phase II Environmental Site Assessment, Clark County Tax Parcel 82920000, Camas, Washington. Prepared for the City of Camas. August.

Figure 2 - Sample Locations and Groundwater Data For Chlorinated VOCs

Former Fort James Specialty Chemicals Phase II ESA Camas, Washington

		Volatile Organic Compounds (µg/L)									
Sample				1,1,1-	1,1-	cis-1,2-					
ID	Sample Date	PCE	TCE	trichloroethane	dichloroethene	DCE					
Monitorin	g Wells										
M\A/ 1	8/25/2000	23.6	<1.0	<1.0		2.39					
1010 0 - 1	7/19/2016	2.00	<1.00	8.32	4.54	<1.00					
M\\\/ 2	8/25/2000	2.32	<1.0	2.71		<1.0					
1010 0 -2	7/19/2016	<1.00	<1.00	<1.00	<1.00	<1.00					
MNA/ 2	8/25/2000	<1.0	17.5	<1.0		<1.0					
1010 0-3	7/19/2016	<1.00	6.23	<1.00	1.19	<1.00					
MAL A	11/10/2000	<1.0	<1.0	<1.0		<1.0					
1010 0 -4	7/19/2016	<1.00	<1.00	<1.00	<1.00	<1.00					
M\A/ 5	11/10/2000	<1.0	<1.0	<1.0		<1.0					
1010	7/20/2016	<1.00	1.25	<1.00	<1.00	<1.00					
Grab Sam	ple										
B-6(GW)	7/20/2016	<1.00	<1.00	<1.00	<1.00	<1.00					
MTCA CI	eanup Levels	54	54	200 ⁴	400 ⁵	16 ⁵					
Notes:											

MTCA = Washington State Model Toxics Control Act -- = not analyzed or not reported μ g/L = micrograms per liter PCE = Tetrachloroethene TCE = Trichloroethene

cis-1,2-DCE = cis-1,2-dichloroethene

Bold = indicates the analyte was detected at a concentration greater than the laboratory method reporting limit <1.00 = The analyte was not detected. The associated numerical value is the sample quantitation limit Blue shading indicates the reported concentration exceeds the MTCA Method A CUL

Legend

B-1	★	Geoprobe samples (
LS-1	•	Surface soil sample
GP-9	0	Geoprobe (Secor, 20
TP-3		Test Pit (Georgia Pa
MW-1 (129.13)	0	Monitoring Well (Gro
		Storm Drain

(BergerABAM, July 2016)		Storm Water
(BergerABAM, July 2016)		Assumed Groundwater Gradient
000)		City Storm Water Line
acific, 2002)		Project Site
ound Water Elevation in Fee	et Belo	ow Top of Casing)

	BergerABAM 33301 9th Ave S, Suite 300 Federal Way, WA 98003 Telephone: 206-431-2000 Fax: 206-431-2250							BORING NUMBE PAG	R B-1 = 1 OF 1
c	LIEN	IT City o	of Camas					PROJECT NAME Phase II Environmental Site Assessment	
Р	ROJ		IBER A16.0195.0	0				PROJECT LOCATION 965 NW Drake Street, Camas, WA	
	DATE	STARTE	D _7/19/16		COMP	LETE	D _7/19/16	GROUND ELEVATION HOLE SIZE _2 inches	
	RILL	ING CON	ITRACTOR Pacifi	c Soil	& Wat	er		GROUND WATER LEVELS:	
	RILL	ING MET	HOD Direct-push	Geop	robe			AT TIME OF DRILLING Groundwater not encountered	
L	.OGG	ED BY	CDR		CHEC	KED E	BY AR	AT END OF DRILLING	
N	IOTE	Samp	ler: 5' acrylic sleev	е				AFTER DRILLING None	
DEDTU	o UEPIN (ft)	SAMPLE ID	REMARKS	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRIPTION	ENVIRONMENTAL DATA
			NS Sample B-1(1')			0.5	- 6" Asphalt layer		
╞	-	<u>1</u>					(SM) Dark brown	sandy silt with gravel (moist) no odor	PID = 2.9
-	-		NS						PID = 3.5
AES).GPJ	5		NS						PID = 2.7
) (FT. JAN	-		NS						PID = 1.9
195.00	10		NS						PID = 3.6
V16.0 ⁻	10		Ne						PID = 3.4
CTSV	_		113						PID = 2.6
SOLE	-	$X \frac{55}{2}$	Sample B-1(13')	SM					
INT/P	-								PID = 3.6
EYG	15		NS						PID = 3.4
	-		NS						PID = 8
UTS/B	_		NO						PID = 7.6
	20		NS						
3LIC/D	_		NS				Becomes readish	brown sandy slit with gravel (moist) no odor	PID = 7.5 PID = 8
SPUE	_		NO						
LSER			NS						PID = 6.5
- -	25	S ss		-					
1:1		3	Sample B-1(26')			26.0		Refusal at 26.0 feet.	FID = 7.9
/17/16								Bottom of borehole at 26.0 feet.	
DT - 8									
AB.GI									
1 SU (
IT STI									
- GIN									
WELL									
/ TP /									
L BH									
NER									
Ч									

۲	Berger ABAM	BergerABAM 33301 9th Ave S Federal Way, W/ Telephone: 206- Eav: 206-431-22	Suite 980 431-2	e 300 03 000			BORING NUMBER PAGE	B-1B 1 OF 1	
CL	LIENT City	of Camas	50				PROJECT NAME Phase II Environmental Site Assessment		
PF		MBER A16.0195.0	C				PROJECT LOCATION 965 NW Drake Street, Camas, WA		
DA	ATE STARTE	D 7/20/16		СОМР	LETED	7/20/16	GROUND ELEVATION HOLE SIZE _2 inches		
DF	RILLING CO	NTRACTOR Pacific	: Soil	& Wa	ter		GROUND WATER LEVELS:		
DF	RILLING ME	THOD Direct-push	Geop	robe			AT TIME OF DRILLING Groundwater not encountered		
LC		CRW		CHEC	KED B	Y AR	AT END OF DRILLING		
NC	DTES Sam	pler: 5' acrylic sleev	е				_ AFTER DRILLING None		
DEPTH	(ft) SAMPLE ID	REMARKS	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRIPTION	ENVIRONMENTAL DATA	
	-X ss	NS Sample B-1B(1')			0.5	6" Asphalt layer			
╞						(SIVI) Brown silty :	sanu with gravels (dense, moist) no odor	PID = 5.6	
	-	NS					PID = 7.6		
GPJ	<u> </u>	NS						PID = 5.2	
AMES		NS			•			PID = 4.8	
95.00 (FT. J 1 1	-	NS						PID = 9.1	
16.015	0							PID = 9.5	
TSA	_	NS						PID = 6.8	
	SS 2	Sample B-1B(14')	SM					PID = 7	
	5	NS							PID = 7.4
S\BE	_	NS						PID = 8.4	
		NS							
	-	NS				4' Brown sandy si	ilt with large gravels (stiff, moist) no odor	PID = 9.4	
::\USERS\	-	NS						PID = 7.9	
2 2	.5	NS			26.0			PID = 10.1	
16 11:	_		CL			(CL) Becomes ree	d silty clay (stiff, moist) no odor	PID = 6.7	
8/17/	SS 3	Sample B-1B(28')			28.0		Defined at 29.0 feet	PID = 7	
ENERAL BH / TP / WELL - GINT STD US LAB.GDT							Bottom of borehole at 28.0 feet.		

	🕐 Berş	gerABAM	BergerABAM 33301 9th Ave S Federal Way, W/ Telephone: 206-	, Suite A 9800 431-2	e 300 03 000		BORING NUMBE PAGE	R B-2 1 OF 1
	CLIEN	IT Citv o	Fax. 200-431-22	.50			PROJECT NAME Phase II Environmental Site Assessment	
	PROJ		IBER A16.0195.00	0			PROJECT LOCATION 965 NW Drake Street, Camas, WA	
	DATE	STARTE	D 7/19/16	(COMP	ETED 7/20/16	GROUND ELEVATION HOLE SIZE 2 inches	
	DRILL		ITRACTOR Pacific	c Soil	& Wat	er	GROUND WATER LEVELS:	
	DRILL	ING MET	HOD Direct-push	Geop	robe		AT TIME OF DRILLING Groundwater not encountered	
	LOGO	ED BY	CDR		CHEC	ED BY AR	AT END OF DRILLING	
	NOTE	s Samp	ler: 5' acrylic sleeve	e			AFTER DRILLING None	
	o DEPTH (ft)	SAMPLE ID	REMARKS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	ENVIRONMENTAL DATA
		l ss				0.5 6" Asphalt layer (SM) Light brown sa	ndy silt with gravel (moist) no odor	
		λ 1	Sample B-2(2')	-			andy one with graver (molet) no odor	PID = 1.8
			NS					PID = 1.8
ſ	5							PID = 1.7
S).GF			NS	SM				PID = 1.9
(FT. JAME			NS					PID = 1.5
3.0195.00	10		NS					PID = 1 2
S\A16			NS			11.0 11.8 8" layer of asphalt fr	agments and large gravel	110 1.2
` \PROJECT			NS			(SM) Light brown sa	ndy silt with gravel (moist) no odor	
LEMGIN	15		NS					PID = 1.3
ENTS/BENT			NS					PID = 1
CUME	20	SS 2	Sample B-2(20')					PID = 2.2
JBLIC/DO			NS					
JSERS/PL			NS					PID = 2.7
1:10 - C:\l			NS	SM				PID = 2.1
8/17/16 1			NS					
AB.GDT -	30		NS					PID = 2
STD US L			NS					ו.נ – טו ז
L - GINT :			NS					PID = 2
/ WEL.	35		NS					PID = 1.6
L BH / TP			NS					PID = 2.3
GENERA	 40	SS 3	Sample B-2(40')	-		Becomes black 40.0 Becomes dark brow	'n	PID = 1.1 PID = 2

	BergerABAM 33301 9th Ave S	, Suite 3	300	BORING NUMBE	R B-3
🕖 BergerABAM	Federal Way, WA Telephone: 206- Fax: 206-431-22	4 98003 431-200 250	3 00		
CLIENT _City	of Camas			PROJECT NAME Phase II Environmental Site Assessment	
PROJECT NU	MBER	0		PROJECT LOCATION _965 NW Drake Street, Camas, WA	
DATE START	ED 7/19/16	C	OMPLETED	7/19/16 GROUND ELEVATION HOLE SIZE 2 inches	
DRILLING CO	NTRACTOR Pacific	c Soil &	Water	GROUND WATER LEVELS:	
DRILLING ME	THOD Direct-push	Geopro	be	AT TIME OF DRILLING Groundwater not encountered	
LOGGED BY	CDR	CH	HECKED BY	AR AT END OF DRILLING	
NOTES Sam	pler: 5' acrylic sleeve	e		AFTER DRILLING None	
	. ,				Ļ
o DEPTH (ft) SAMPLE ID	REMARKS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	ENVIRONMENTA DATA
	Sample B-3(1')		0.5	6" Asphalt layer	
	NS			(Sivi) Brown Sandy Silt with graver (moist) no odor	
					PID = 3.5
5	NS				PID = 2.6
		SM			PID = 2.8
	NS				
					PID = 2.6
10	NS				PID = 3.6
	NS		11.0		PID = 4.8
				Refusal at 11.0 feet.	
				Bollon of borenoie at 11.0 reel.	

🜒 Berg	ger ABAM	BergerABAM 33301 9th Ave S, Federal Way, WA Telephone: 206-4 Fax: 206-431-22	Suite 9800 431-2 50	e 300 03 :000			BORING NUMBER PAGE	B-3B 1 OF 1
CLIEN	T City c	of Camas					PROJECT NAME Phase II Environmental Site Assessment	
PROJ		IBER _A16.0195.00)				PROJECT LOCATION _965 NW Drake Street, Camas, WA	
DATE	STARTE	D _7/20/16	(COMP	LETED	7/20/16	GROUND ELEVATION HOLE SIZE _2 inches	
DRILL	ING CON	ITRACTOR Pacific	: Soil	& Wat	er		GROUND WATER LEVELS:	
DRILL	ING MET	HOD Direct-push	Geop	robe			AT TIME OF DRILLING Groundwater not encountered	
LOGG	ED BY	CDR	(CHEC	KED BY	AR	AT END OF DRILLING	
NOTE	Samp	ler: 5' acrylic sleeve	9				AFTER DRILLING None	
o DEPTH (ft)	SAMPLE ID	REMARKS	U.S.C.S.	GRAPHIC LOG	0.5		MATERIAL DESCRIPTION	ENVIRONMENTAL DATA
 - 5	SS 1	NS Sample B-3Bb(1')/ NS NS			0.5	<u>6"</u> Asphalt layer (SM) Brown sandy	silt with gravel (moist) no odor	PID = 8.3
		110	SM					PID = 7.3
		NS	Civi					PID = 7.4
10	2 2	Sample B-3B(10')						
		NS			11.5			PID = 7.5
				$\mathbb{N}//\mathbb{A}$	12.0	Bedrock: solid grey	لر y rock (dry) no odor	110 1.0
							Refusal at 12.0 feet. Bottom of borehole at 12.0 feet.	

🕑 Be	erger ABAM	BergerABAM 33301 9th Ave S Federal Way, W/ Telephone: 206- Fax: 206431-22	, Suite A 980 431-2	e 300 03 000	BORING NUME	BER B-4 AGE 1 OF 1								
CLIE	ENT _City of	of Camas	.50		PROJECT NAME Phase II Environmental Site Assessment									
PRO	JECT NUN	IBER _ A16.0195.00	0		PROJECT LOCATION _965 NW Drake Street, Camas, WA									
DAT	E STARTE	D _7/19/16		COMPL	ETED _7/19/16 GROUND ELEVATION HOLE SIZE _2 inche	s								
DRIL	LING CON	ITRACTOR Pacific	c Soil	& Wate	GROUND WATER LEVELS:									
DRII	LING MET	HOD Direct-push	Geop	robe	AT TIME OF DRILLING Groundwater not encountered	ed								
LOG	GED BY	CDR		CHECK	ED BY _AR AT END OF DRILLING									
NOT	ES Samp	oler: 5' acrylic sleeve	e		AFTER DRILLING None									
o DEPTH (ft)	SAMPLE ID	REMARKS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	ENVIRONMENTAL DATA								
_	1 22	NS			(SM) Brown sandy silt (moist) no odor	PID = 1.9								
-	SS 1	Sample B-4(2')	-											
-	-	NS				PID = 3.2								
C-15.	_	NS			Becomes light brown sandy silt (moist) no odor	PID = 4								
		Ne				PID = 7.3								
7 	_	113			Becomes dark brown sandy silt with large gravel (moist) no odor									
00.6	_	NS				PID = 3.4 PID = 4.6								
<u>10</u>	_					PID = 3.9								
	SS 2	Sample B-4(12')				PID = 2.6								
		NS				PID = 3.3								
15	_	NS												PID = 3.9
	_	NS				PID = 3.5								
20	_	NS	SM			PID = 1.2								
	-	NS				PID = 3.7 PID = 2.7								
	-	NS				PID = 1.5								
<u>25</u> ان	-	NS				PID = 3.4								
	-	NS				PID = 3.5								
	-	NS				PID = 2.4								
90 20 20		NS				PID = 4.2								
		NS				PID = 3.2								
ש - 	_	NG				PID = 3.7								
≷ ⊥ -		GVI				PID = 2								
	X 3	Sample B-4(37')			37.0 Refusal at 37.0 feet	PID = 3.1								
GENERAL					Bottom of borehole at 37.0 feet.									

🕑 Ве	erger ABAM	BergerABAM 33301 9th Ave S Federal Way, W/ Telephone: 206- Fax: 206-431-22	, Suite A 9800 431-2 50	e 300 03 000		BORING NUMBE PAGE	R B-5
CLIE	ENT City of	of Camas			PROJECT NAME _ Phase II Er	nvironmental Site Assessment	
PRC	JECT NUN	IBER _ A16.0195.00	0		PROJECT LOCATION _965 N	IW Drake Street, Camas, WA	
DAT	E STARTE	D _7/19/16	(СОМРІ	GROUND ELEVATION	HOLE SIZE 2 inches	
DRII		ITRACTOR Pacific	c Soil	& Wat	GROUND WATER LEVELS:		
DRII	LING MET	HOD Direct-push	Geop	robe	AT TIME OF DRILLING	Groundwater not encountered	
LOG	GED BY	CDR	(CHECH	D BY AR AT END OF DRILLING		
NOT	ES Samp	ler: 5' acrylic sleev	e		AFTER DRILLING N	lone	
DEPTH (#)	SAMPLE ID	REMARKS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIP	TION	4VIRONMENTAL DATA
0							Ш
\vdash	-	NS NS			(טוט) שמוג brown sandy slit with pea gravel (moist)) NO OQOF	PID = 0.4
╞	ss s	Sample B 5(2')					PID = 0.4
-	1	Sample B-5(5)			Becomes light brown sandy silt (moist) no odor		PID = 2.3
- 5	-	NS					PID = 1.8
3).GF	_	NS			Becomes grey sandy silt with gravel (moist) no ode	or	PID = 1.7
00 (FT. JAME	-	NS	SM				PID = 2.2
10	SS 2	Sample B-5(10')					PID = 2.7
A16.0		NS					
CTSV	_	NS			2.0		PID = 1.7
SOL				1.4//2	2.5 Bedrock: grey rocks with fragmented fines (moist) Refusal at 12.5 fer	no odor	PID = 2.1
ERAL BH / TP / WELL - GINT STD US LAB.GDT - 8/17/16 11:10 - C.\USERS\PUBLIC\DOCUMENTS\BENTLEY\GINT							

🜒 Berg	gerABAM	BergerABAM 33301 9th Ave S, Federal Way, WA Telephone: 206- Fax: 206-431-22	Suite 9800 431-2 50	e 300 03 000	BORING NUMBER PAGE	B-5B 1 OF 1
CLIEN	T City c	of Camas			PROJECT NAME Phase II Environmental Site Assessment	
PROJ		BER _ A16.0195.00)		PROJECT LOCATION 965 NW Drake Street, Camas, WA	
DATE	STARTE	D 7/20/16	(COMPL	ETED 7/20/16 GROUND ELEVATION HOLE SIZE 2 inches	
DRILL	ING CON	ITRACTOR Pacific	c Soil	& Wate	GROUND WATER LEVELS:	
DRILL	ING MET	HOD Direct-push	Geop	robe	AT TIME OF DRILLING Groundwater not encountered	
LOGG	ED BY	CRW		CHECK	ED BY _AR AT END OF DRILLING	
NOTE	S Samp	er: 5' acrylic sleeve	e		AFTER DRILLING None	
o DEPTH (ft)	SAMPLE ID	REMARKS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	ENVIRONMENTAL DATA
	SS 1	Sample B-5B(1')	SM	666	0.5 (SM) 2" Brown sandy silt (moist) no odor	PID = 9.9
		NS	GP	00	2.0 (GP) 2' layer of gravel	
		NS	SM		3.0 (SM) 1' brown sandy silt with gravel (moist) no odor	
5		NS	GP	000	(GP) 1.5' layer of pea gravel with silt	PID = 11.9
		Sample B-5B(6')	CP	600	5.5 2" layer of asphalt	PID = 12
		NC	GP		6.5 (GP) 1' layer of grey gravel	PID = 3.7
		СVI С	SM		(SM) Brown sandy slit (moist) no odor 8.0	PID = 6.7

Refusal at 8.0 feet. Bottom of borehole at 8.0 feet.

🜒 Bei	rger ABAM	BergerABAM 33301 9th Ave S Federal Way, W/ Telephone: 206- Fax: 206-431-22	, Suite A 980 431-2	e 300 03 2000		BORING NUI	MBER B-6 PAGE 1 OF 1		
CLIE	NT City o	of Camas				PROJECT NAME Phase II Environmental Site Assessme	nt		
PRO	JECT NUN	BER	0			PROJECT LOCATION _965 NW Drake Street, Camas, WA	4		
DATE	E STARTE	D 7/20/16		СОМР	LETED	7/20/16 GROUND ELEVATION HOLE SIZE 2 in	ches		
DRIL	LING CON	ITRACTOR Pacific	c Soil	& Wat	ter	GROUND WATER LEVELS:			
DRIL	LING MET	HOD Direct-push	Geop	robe		AT TIME OF DRILLING 31' (end of boring)			
LOG	GED BY	CRW		CHEC	KED BY	AR AT END OF DRILLING 31'			
NOTI	ES Samp	ler: 5' acrylic sleeve	е			AFTER DRILLING 31'			
o DEPTH (ft)	SAMPLE ID	REMARKS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	ENVIRONMENTAL DATA		
-		Sample B-6(1')	1	500	0.0	(GP) 2' Light brown gravel and rock (dry) no odor			
-	-		GP		3.0				
		NS				(ML) Dark grey silt with gravel (moist) no odor	PID = 6.7		
5	_	NS							
	_						PID = 7.6		
	-	NS	ML				PID = 4.2		
00- <u>6</u> 2	-	NS							
	-	NS					PID = 4.1 PID = 6.2		
		NS	GP		12.5	(GP) 6" Pea gravel with 1" rock (moist) no odor			
		INS I		1111		(ML) Brown silt with occasional gravel (stiff, moist) no odor	PID = 6.8		
<u>15</u>		Sample B-6(15')					PID = 8.5		
	-		ML				PID = 8.6		
	-	NS							
	-	NC							
20		113	GP	₩Ų	19.5 20.3	(GP) 9" Brown gravel and rock (moist) no odor			
	_	NS	ML		21.3	(ML) 1' Greyish brown silt (stiff, moist) no odor	PID = 5.3		
	-		GP		22.0	(GP) 9" Brown gravel and rock (moist) no odor			
	-	NS				(Sim) Grangish brown sandy silt with occassional fock (still, moist) no odor			
j 25 25		NO							
		NS					PID = 6.3		
01/		NS	SM				PID = 7.6		
/2 -	-						PID = 8.2		
30	-	NS							
	SS 1	Sample B-6(31')	CW		30.5	2" Wood chin laver	PID = 9.5		
			GM		31.0/	(GW-GM) 4" Black fine gravel with silt (wet) no odor	PID = 8.6		
					·	Refusal at 31.0 feet.			
ף -									
AL BH									
NEK									
5									
🕑 Berger ABAM	BergerABAM 33301 9th Ave S, Federal Way, WA Telephone: 206- Fax: 206-431-22	Suite 9800 431-2 50	e 300 03 000		BORING NUMBER I PAGE	B-7A 1 OF 1			
------------------------------	---	------------------------------	--------------------	-----------------------	---	-----------------------	--	--	--
CLIENT City of	of Camas				PROJECT NAME Phase II Environmental Site Assessment				
PROJECT NUN	IBER _ A16.0195.00)			PROJECT LOCATION 965 NW Drake Street, Camas, WA				
DATE STARTE	D 7/19/16	(COMPL	ETED 7/19/16	GROUND ELEVATION HOLE SIZE _2 inches				
DRILLING CON	ITRACTOR Pacific	: Soil	& Wate	er	GROUND WATER LEVELS:				
DRILLING MET	HOD Direct-push	Geop	robe		AT TIME OF DRILLING Groundwater not encountered				
LOGGED BY	CDR	(CHECK	KED BY AR	AT END OF DRILLING				
NOTES Samp	oler: 5' acrylic sleeve	9			AFTER DRILLING None				
o DEPTH (ft) SAMPLE ID	REMARKS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	ENVIRONMENTAL DATA			
X ss 1	NS Sample B-7A(1')			0.5 6" Concrete layer	Ind rook with cond (moist) no oder	PID = 3.8			
	Sample B-7A(5')	GM		5.0		PID = 2.9 PID = 4			
					Refusal at 5.0 feet.				

Bottom of borehole at 5.0 feet.

🜒 Berş	ger ABAM	BergerABAM 33301 9th Ave S, Federal Way, WA Telephone: 206- Fax: 206-431-22	Suite \ 9800 431-2 50	300 3 000		BORING NUMBER PAGE	B-7B			
CLIEN	T City c	of Camas				PROJECT NAME Phase II Environmental Site Assessment				
PROJ	ECT NUN	IBER _ A16.0195.00)			PROJECT LOCATION 965 NW Drake Street, Camas, WA				
DATE STARTED _7/19/16 COMPLETED _7/19/16						GROUND ELEVATION HOLE SIZE _2 inches				
DRILLING CONTRACTOR Pacific Soil & Water						GROUND WATER LEVELS:				
DRILL	ING MET	HOD Direct-push	Geop	robe		AT TIME OF DRILLING Groundwater not encoutered				
LOGG	ED BY	CDR	(CHECK	KED BY AR	AT END OF DRILLING				
NOTE	Samp	ler: 5' acrylic sleeve	e			_ AFTER DRILLING None				
o DEPTH (ft)	SAMPLE ID	REMARKS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	ENVIRONMENTAL DATA			
		NS	SM		0.5 6" Ashphalt layer (SM) Dark brown s	illty sand (moist) no odor	PID = 1.7			
	X ss 1	Sample B-7B(3')			3.0		PID = 2.4			

Refusal at 3.0 feet. Bottom of borehole at 3.0 feet.

BergerABAM 33301 9th Ave S, Suite 300 Federal Way, WA 98003 Telephone: 206-431-2000 Fax: 206-431-2250	BORING NUMBER B-7C PAGE 1 OF 1				
CLIENT City of Camas	PROJECT NAME Phase II Environmental Site Assessment				
PROJECT NUMBER A16.0195.00	PROJECT LOCATION 965 NW Drake Street, Camas, WA				
DATE STARTED _7/20/16 COMPLETED _7/20/16	GROUND ELEVATION HOLE SIZE 2 inches				
DRILLING CONTRACTOR Pacific Soil & Water	GROUND WATER LEVELS:				
DRILLING METHOD Direct-push Geoprobe	AT TIME OF DRILLING Groundwater not encountered				
LOGGED BY _CDR CHECKED BY _AR	AT END OF DRILLING				
NOTES Sampler: 5' acrylic sleeve	AFTER DRILLING None				
o DEPTH (ff) (ff) (ff) SAMPLE ID U.S.C.S. U LOG LOG	MATERIAL DESCRIPTION				
X s NS (ML) Dark b	rown silt (stiff, dry) no odor PID = 7.6				
NS ML	PID = 9.2				
5 NS GP 0. (GP) 9" Bro	PID = 7.9 PID = 7.7				

Refusal at 6.0 feet. Bottom of borehole at 6.0 feet.

🜒 Berg	gerABAM	BergerABAM 33301 9th Ave S, Federal Way, WA Telephone: 206- Fax: 206-431-22	, Suite A 980 431-2 50	e 300 03 2000				BORING NUMBER PAGE	B-7D 1 OF 1		
CLIEN	T City o	of Camas					PROJECT NAME Phase II En	vironmental Site Assessment			
PROJ	ECT NUN	IBER _ A16.0195.00	0				PROJECT LOCATION _965 NW Drake Street, Camas, WA				
DATE	STARTE	D 7/20/16		COMP	ETED	7/20/16	GROUND ELEVATION	HOLE SIZE 2 inches			
DRILL	ING CON	ITRACTOR Pacific	c Soil	& Wat	er		GROUND WATER LEVELS:				
DRILL	ING MET	HOD Direct-push	Geop	robe			AT TIME OF DRILLING	Groundwater not encountered			
LOGG	SED BY	CDR		CHEC	CED BY	AR	AT END OF DRILLING				
NOTE	Samp	ler: 5' acrylic sleeve	е				AFTER DRILLING No	one			
o DEPTH (ft)	SAMPLE ID	REMARKS	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRIPT	TON	ENVIRONMENTAL DATA		
	-	NS	SM		0.5	6" Ashpalt layer		/	PID = 7.3		
 - 5	SS 1	NS Sample B-7D(5')	<u>GP</u> SM		5.0	(GP) 6" Gray gra (SM) Light brown	vel (dry) no odor sandy silt with gravel (moist) no o	dor	PID = 8.1		
	<u> </u>						Refusal at 5.0 feet Bottom of borehole at 5.	0 feet.			

() Berger ABAM	BergerABAM 33301 9th Ave S, Suite 300 Federal Way, WA 98003 Telephone: 206-431-2000 Fax: 206-431-2250	BORING NUMBER B-8A PAGE 1 OF 1
CLIENT City of	Camas	PROJECT NAME Phase II Environmental Site Assessment
PROJECT NUM	BER A16.0195.00	PROJECT LOCATION _965 NW Drake Street, Camas, WA
DATE STARTED	7/19/16 COMPLETED _7/19/16	GROUND ELEVATION HOLE SIZE _2 inches
DRILLING CONT	RACTOR Pacific Soil & Water	GROUND WATER LEVELS:
DRILLING METH	IOD Direct-push Geoprobe	AT TIME OF DRILLING
LOGGED BY C	DR CHECKED BY AR	AT END OF DRILLING
NOTES Sample	er: 5' acrylic sleeve	AFTER DRILLING
o DEPTH (ft) SAMPLE ID	COG LOG	MATERIAL DESCRIPTION
	0.5 No core extracted due to refusal.	/
		Refusal at 0.5 feet. Bottom of borehole at 0.5 feet.

GENERAL BH / TP / WELL - GINT STD US LAB.GDT - 8/17/16 11:10 - C:/USERS/PUBLIC/DOCUMENTS/BENTLEY/GINT/PROJECTS/A16.0195.00 (FT. JAMES), GPJ

🜒 Berg	gerABAM	BergerABAM 33301 9th Ave S, Federal Way, WA Telephone: 206- Fax: 206-431-22	Suite 9800 431-2 50	e 300 03 000	BORING NUMBER PAGE	B-8B 1 OF 1				
CLIEN	IT City o	of Camas			PROJECT NAME Phase II Environmental Site Assessment					
PROJ		IBER _ A16.0195.00)		PROJECT LOCATION 965 NW Drake Street, Camas, WA					
DATE	STARTE	D 7/19/16	(COMPL	ETED7/19/16 GROUND ELEVATION HOLE SIZE2 inches					
DRILL	ING CON	ITRACTOR Pacific	: Soil	& Wate	GROUND WATER LEVELS:					
DRILL	ING MET	HOD Direct-push	Geop	robe	AT TIME OF DRILLING Groundwater not encountered					
LOGG	ED BY	CDR	(CHECK	ED BY _AR AT END OF DRILLING	AT END OF DRILLING				
NOTE	Samp	ler: 5' acrylic sleeve	9		AFTER DRILLING None	AFTER DRILLING None				
o DEPTH (ft)	SAMPLE ID	REMARKS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	ENVIRONMENTAL DATA				
		NS			(SM) Dark brown sandy silt with pea gravel (moist) no odor	PID = 4.2				
		NS				PID = 4.3				
	SS 1	Sample	SM			PID = 3.7				
5		<u> </u>				PID = 4.5				
	SS 2	Sample B-8B(6')			6.0	PID = 4.1				

Refusal at 6.0 feet. Bottom of borehole at 6.0 feet.

🜒 Berş	gerABAM	BergerABAM 33301 9th Ave S, Federal Way, WA Telephone: 206- Fax: 206-431-22	Suite 9800 431-2 50	e 300 03 000	BORING NUMBER PAGE	B-8C 1 OF 1
CLIEN	IT City c	of Camas			PROJECT NAME Phase II Environmental Site Assessment	
PROJ		BER _ A16.0195.00)		PROJECT LOCATION 965 NW Drake Street, Camas, WA	
DATE	STARTE	D 7/19/16	(COMPL	ETED _7/19/16 GROUND ELEVATION HOLE SIZE _2 inches	
DRILL	ING CON	ITRACTOR Pacific	c Soil	& Wate	er GROUND WATER LEVELS:	
DRILL	ING MET	HOD Direct-push	Geop	robe	AT TIME OF DRILLING Groundwater not encountered	
LOGG	ED BY	CDR	(CHECK	ED BY _AR AT END OF DRILLING	
NOTE	Samp	oler: 5' acrylic sleeve	9		AFTER DRILLING None	
o DEPTH (ft)	SAMPLE ID	REMARKS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	ENVIRONMENTAL DATA
	SS 1	NS Sample B-8C(1') NS			(SM) Dark brown silty sand with pea gravel (moist) no odor	PID = 1.5
 5	SS 2	Sample B-8C(3-4') NS	SM			PID = 4.1
		NS				PID = 3.6 PID = 3.4
	SS 3	Sample B-8C(9')			9.0 Betweel et 0.0 feet	PID = 3.2

Refusal at 9.0 feet. Bottom of borehole at 9.0 feet.

🜒 Berg	ger ABAM	BergerABAM 33301 9th Ave S Federal Way, WA Telephone: 206- Fax: 206-431-22	, Suite A 980 431-2 250	e 300 03 000		BORING NUMBE PAGE	R B-9 E 1 OF 1			
CLIEN	T City c	of Camas				PROJECT NAME Phase II Environmental Site Assessment				
PROJ		BER _A16.0195.00	0			PROJECT LOCATION 965 NW Drake Street, Camas, WA				
DATE	STARTE	D <u>7/20/16</u>		СОМР	LETED 7/20/16	GROUND ELEVATION HOLE SIZE _2 inches				
DRILL	ING CON	ITRACTOR Pacific	c Soil	& Wat	er	GROUND WATER LEVELS:				
DRILL	ING MET	HOD Direct-push	Geop	robe		AT TIME OF DRILLING Groundwater not encountered				
LOGG	ED BY	CRW	(CHECI	KED BY AR	AT END OF DRILLING				
NOTE	Samp	oler: 5' acrylic sleeve	е			AFTER DRILLING None				
o DEPTH (ft)	SAMPLE ID	REMARKS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	ENVIRONMENTAL DATA			
	S ss	Light Sheen			0.5 6" Asphalt layer	Γ	PID = 6.2			
		Light Sheen			(SM) Reddish brov Becomes orangisł	(SM) Reddish brown silty sand (stiff, moist) no odor Becomes orangish brown				
5		Light Sheen					PID = 9.3			
	SS 2	Sample B-9(6')	SM				PID = 7			
		Light Sheen NS					PID = 6 PID = 5.9 PID = 7.3			
	SS 3	Sample B-9(12')			Becomes dark gre	ey	PID = 6.9			
						Refusal at 12.0 feet.				

Bottom of borehole at 12.0 feet.

🜒 Berş	gerABAM	BergerABAM 33301 9th Ave S Federal Way, WA Telephone: 206- Fax: 206-431-22	, Suite A 980 431-2	≥ 300 03 000		BORING NUMBER PAGE	B-10 1 OF 1
CLIEN	T City o	of Camas				PROJECT NAME Phase II Environmental Site Assessment	
PROJ	ECT NUN	IBER _ A16.0195.0	0			PROJECT LOCATION 965 NW Drake Street, Camas, WA	
DATE	STARTE	D 7/20/16	(COMPLETED	7/20/16	GROUND ELEVATION HOLE SIZE 2 inches	
DRILL		ITRACTOR Pacific	c Soil	& Water		GROUND WATER LEVELS:	
DRILL	ING MET	HOD Direct-push	Geop	robe		AT TIME OF DRILLING None	
LOGG	ED BY				(AR	AT END OF DRILLING	
NOTE	Same	ler: 5' acrvlic sleeve	e			AFTER DRILLING None	
							TAL
o DEPTH (ft)	SAMPLE ID	REMARKS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	ENVIRONMEN DATA
	ss ss	NS Sample B-10(1')		0.5	6" Asphalt layer	л	PID = 2.3
		NS	-		(SM) Brown silty	sand (moist, no odor)	
	-	NS					PID = 6.5
2 5	-						PID = 3.7
	-	Very Light Sheen					PID = 2.2
		Very Light Sheen	SM				PID = 2.7
<u> </u>	-	Very Light Sheen					PID = 5.5
	-	NS					PID = 3.3 PID = 7.3
	-						110 7.0
S	-	NS					PID = 5.3
	-			15.0			PID = 5.7
	SS 1	NS		16.0	Bedrock: solid gre	ey rock (dry, no odor)	PID = 6
						Refusal at 16.0 feet. Bottom of borebole at 16.0 feet	
סטע כיני							
- 01//1/0 -							
WELL - GIN							
GEINERAL							

🜒 Ber	ger ABAM	BergerABAM 33301 9th Ave S, Federal Way, WA Telephone: 206- Fax: 206-431-22	, Suite A 980 431-2 250	e 300 03 2000		BORING NUMBI	ER B-11 AGE 1 OF 1
CLIEI	NT City o	of Camas				PROJECT NAME Phase II Environmental Site Assessment	
PRO.		IBER _ A16.0195.00	0			PROJECT LOCATION _965 NW Drake Street, Camas, WA	
DATE	STARTE	D 7/19/16		сомр	PLETED 7/19/16	GROUND ELEVATION HOLE SIZE 2 inche	s
DRIL		TRACTOR Pacific	c Soil	& Wa	ter	GROUND WATER LEVELS:	
DRIL	LING MET	HOD Direct-push	Geop	robe		AT TIME OF DRILLING Groundwater not encountered	ed
LOGO	GED BY	CDR		CHEC	KED BY AR	AT END OF DRILLING	
NOTE	S Samp	ler: 5' acrylic sleeve	e			AFTER DRILLING None	
DEPTH (ft)	SAMPLE ID	REMARKS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	ENVIRONMENTAL DATA
0	20 1	NS			(SM) Dark brov	wn sandy silt with gravel (moist, no odor)	
Ľ.		Sample B-11(1')	-				PID = 6.5
	-	NS					PID = 7.8
<u>අ</u> 5	-	NS					PID = 6.5
	-		SM				112 0.0
IFL -	-	NS					
ц 8		NC					
10		IN5					PID = 6.2
- 16.0	22						PID = 5.1
ECTS		Sample B-11(12')			12.0	Refusal at 12.0 feet	PID = 7
ROJ						Bottom of borehole at 12.0 feet.	
INTV							
E Y G							
ENTL							
ITS/B							
JMEN							
200							
BLICV							
S/PUE							
JSER							
- C:/L							
1:10							
7/16 1							
- 8/1							
GDT							
SLAB							
D OL							
S LINT 8							
- C							
/ WEI							
/ TP /							
L BH							
IERA							
C III							

🜒 Berş	gerABAM	BergerABAM 33301 9th Ave S, Federal Way, WA Telephone: 206- Fax: 206-431-22	Suite 980 431-2 50	e 300 03 2000		I	BORING NUMBER	B-11B E 1 OF 1
	T Citvo	of Camas	00			PROJECT NAME Phase II Env	vironmental Site Assessment	
PROJ		IBER A16.0195.00)			PROJECT LOCATION 965 NV	V Drake Street, Camas, WA	
	STARTE	D 7/20/16		COMP	LETED 7/20/16	GROUND ELEVATION	HOLE SIZE 2 inches	
DRILL		ITRACTOR Pacific	: Soil	& Wat	er	GROUND WATER LEVELS:		
DRILL	ING MET	HOD Direct-push	Geop	orobe		AT TIME OF DRILLING	Groundwater not encountered	
LOGO	ED BY	CRW		CHECI	KED BY AR	AT END OF DRILLING		
NOTE	Samp	oler: 5' acrylic sleeve	9			AFTER DRILLING No	one	
o DEPTH (ft)	SAMPLE ID	REMARKS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPT	ION	ENVIRONMENT# DATA
	ss	NS Sample B-11B(1')		0.0	0.5 6" Asphalt layer		/	PID = 5.9
L -				0	(SP) Brown sand	with gravels (moist) no odor		
	-	NS	SP	20				
	-			0				PID = 8.5
5	-	NS			5.3 (MH) Dark grov o	lavov silt (stiff moist) no odor		
	-		мн		(INIT) Dark grey c	layey siit (still, moist) no odol		
	SS 2	Sample B-11B(8')	10111		83			PID = 9.4
[NS		0	(SP) Grey sand w	vith gravels (moist) no odor		
_ 10	-			• 🔿				PID = 9.4
	-	NS) Ø				PID = 7.9
	-		SP	¢ O				110 - 7.5
	-	NS		• 🔿				PID = 6.1
15	-			0	15.0 Becomes brown			
]	NS			(SM) Brown silty	sand (stiff, moist) no odor		PID = 6.7
[]			SM		47.5			PID = 7
	SS 3	Sample B-11(18')			(MH) Reddish bro	wn clayey silt (moist) no odor		PID = 5.4
	-		MH		, ,			PID = 6.1
20					20.0	Pofueal at 20.0 foo	4	
						Bottom of borehole at 20	.0 feet.	

Appendix C6

Excerpt from: Arcadis. 2011. Memo from Shannon Dunn and Ryan Shatt, Arcadis, to David Massengill, Georgia-Pacific LLC, RE: Investigation of Weak Black Liquor Release, Georgia-Pacific Consumer Products LLC, Camas Mill, Camas, Washington. 7 June.

Approximate Graphic Scale: 1 = 500'

NOTES: 1. Basemap from Georgia-Pacific.

2. All boring locations are approximate.

SOIL BORING LOCATIONS

GEORGIA-PACIFIC CAMAS MILL INVESTIGATION OF WEAK BLACK LIQUOR RELEASE

Date Start/Finish: 08/24/2011 Drilling Company: Cascade Drilling Driller's Name: Brooke King Drilling Method: Geoprobe Direct Push Sampling Method: 2-inch Macrocore Rig Type: Geoprobe							Northing: NA Easting: NA Casing Elevation: NA Borehole Depth: 15' bgs. Surface Elevation: NA Descriptions By: GRM		Well/Boring Client: Geo (Ca Location: (Well/Boring ID: 1B Client: Georgia-Pacific Consumer Products (Camas), LLC Location: Camas Mill, Camas Washington		
DЕРТН	Sample Run Number	Sample/Int/Type	Recovery (inches)	YSI pH Reading	Geologic Column		Stratigraphic Desc	Well/Boring Construction				
-0												
	1	0-5	8/12	9.37		0 - 0.6: Used o 0.6 - 4: Hand a 4 - 5: Gray fin (engineered fil No Recovery.	erbide drill bit to break through concre augered through engineered fill*, dry. e to medium subangular to angular GF I*), wet.	ete ~ 6 - 8 inches thick	k.			 Top plugged with cement
- 10	2	5-10	36/60	 9.04 8.09 7.80 8.38 8.34	××××	7 - 8: Brown fi (engineered fi 8 - 10: Dark bi 9: Dark brown 10 - 12.5: Dar GRAVEL, trac	ne to coarse subangular to angular S/ "), wet. "own sandy SILT, wet. silty SAND becoming sandy SILT, we k brown medium to coarse angular SA e fines, wet.	ND and GRAVEL, tra	ace fines			 Backfilled with bentonite chips.
-	3	10-15	60/60	7.88 7.50 7.38		12.5 - 13.5: Br 13.5 - 14.5: Br 14.5 - 15: Bro Réfusa	own silty SAND, trace fine to medium own fine to medium SAND, trace fines wn to black fine to coarse angular GR/ at 15 bgs.	subround to subangu s, wet. AVEL, trace sand (bat	ılar gravel, wet.			

Date Start/Finish: 08/24/2011 Drilling Company: Cascade Drilling Driller's Name: Brooke King Drilling Method: Geoprobe Direct Push Sampling Method: 2-inch Macrocore Rig Type: Geoprobe						Northing: NA Easting: NA Casing Elevation: NA Borehole Depth: 18' bgs. Surface Elevation: NA Descriptions By: GRM	Well/Boring Client: Geo (Car Location: (ID: 1D Irgia-Pacific Consu mas), LLC Camas Mill, Camas	ımer ; Wa	Products shington		
БЕРТН	Sample Run Number	Sample/Int/Type	Recovery (inches)	YSI pH Reading	Geologic Column	Well/B Stratigraphic Description Constru				Il/Boring		
- 0	1	1	1	1	102020				~~~			
	1	0-5	11/60			 0 - 0.6: Used carbide drill bit to break through concrete ~ 6 to 8 inches thick 0.6 - 4: Hand augered through engineered fill*, dry. ~0.8 - 1.2: Used carbide bit to break through a second layer of concrete. 4 - 4.5: Light tan SILT, some fine to coarse subround to subangular gravel concrete / engineered fill*), dry. 4.5 - 5: Brown fine to coarse subround to subangular GRAVEL, trace fines fill*), wet. No Recovery. 	k. (crushed (engineered		000	 Top plugged with cement 		
- 10	3	5-10	22/60 52/60	 9.64 8.86 9.21 8.15 8.93 8.06 8.36 7.97 7.80 7.68	2000 00 00 00 000000000000000000000000	 8 - 9: Brown fine to medium subround to subangular GRAVEL and fine to n SAND, little silt, wet. 9 - 9.5: Brown silty SAND and fine to medium subround to subangular GRA 9.5 - 10: Brown medium subround to subangular GRAVEL and medium to wet. 10 - 12: Brown to black SILT, some sand, little fine to medium round to subround gravet. 12 - 12.5: Orangish brown silty SAND, little fine to medium round to subrou wet. 12.5 - 15: Dark brown to reddish brown fine to coarse subangular to angular little silty sand, wet. 15 - 17: Brown fine to coarse angular SAND and fine to medium subangula GRAVEL, wet. 	nedium AVEL, wet. coarse SAND, avel, wet. avel, wet. ar GRAVEL, ar GRAVEL,			 Backfilled with bentonite chips. 		
-	4	15-18	26/36	7.74	00C	GRAVEL, wet. 17 - 18: Brown to black fine SAND, little fine to medium angular gravel, trac Refusal at 18' bgs. Basalt.	ce silt.					

Template: H:\Georgia Pacific - Camas\Boring Logs Date:10/4/2011 GRM

Date Start/Finish: 08/24/2011 Drilling Company: Cascade Drilling Driller's Name: Brooke King Drilling Method: Geoprobe Direct Push Sampling Method: 2-inch Macrocore Rig Type: Geoprobe						Northing: NAWeEasting: NACliCasing Elevation: NACliBorehole Depth: 15' bgs.LorSurface Elevation: NADescriptions By: GRM	Well/Boring ID: 2G Client: Georgia-Pacific Consumer Products (Camas), LLC Location: Camas Mill, Camas Washington			Products
DЕРТН	Sample Run Number	Sample/Int/Type	Recovery (inches)	YSI pH Reading	Geologic Column	Stratigraphic Description	Well/Boring Construction			
r -0		1	1	1						
	1	0-5	8/12	11.20		0 - 0.6: Used carbide drill bit to break through concrete. 0.6 - 4: Hand augered through engineered fill*, dry. 4 - 5: Tan silty SAND, little fine to medium subangular gravel (engineered fill*), d No Recovery.	dry.		000 000	 Top plugged with cement.
- 10	2	5-10	36/60	8.70 7.90 8.86 10.84		 7 - 9: Dark brown fine to coarse subangular to angular SAND, little fine to mediu subangular gravel, trace silt (engineered fill*), moist. 9 - 9.5: Light brown fine to coarse angular GRAVEL (possible fractured cobble or grave), dry. 1: Brown fine to coarse subangular to angular SAND, little fine to medium subangular gravel, trace silt (engineered fill*), moist. 	ium 9 or coarse m	\bigtriangledown		Backfilled with bentonite chips.
-	3	10-15	60/60	9.85 9.79 9.04 9.70	00000000000000000000000000000000000000	 11 - 13: Black medium to coarse subround to subangular GRAVEL and fine to coangular SAND, trace wood fibers, wet, slight organic odor. 13 - 13.5: Light brown fine to coarse SAND, little fine subangular gravel, wet. 13.5 - 14.5: Black medium to coarse subround to subangular GRAVEL and fine to angular SAND, trace wood fibers, wet, slight organic odor. 14.5 - 15: Gray fine to coarse angular GRAVEL, trace fine to coarse sand, wet. Refusal at 15.0' bos. Basalt. 	coarse e to coarse			

Template: H:\Georgia Pacific - Camas\Boring Logs Date: 10/4/2011 GRM

Date Start/Finish:08/24/2011Northing: NA Easting: NA Casing Elevation:Well/Boring ID: 21Drilling Company:Cascade Drilling Driller's Name:Brooke King Casing Elevation:Well/Boring ID: 21Drilling Method:Geoprobe Direct Push Sampling Method:Casing Elevation:NASampling Method:2-inch Macrocore Rig Type:Borehole Depth:19' bgs. Surface Elevation:Location:Camas Mill, Camas WashDescriptions By:GRM						Products					
рертн	Sample Run Number	Sample/Int/Type	Recovery (inches)	YSI pH Reading	Geologic Column	Stratigrap	Well/Boring Construction				
0	1	1	1			0 - 0 6: Used carbide drill hit to break thro	ugh asphalt			्रव	
- - 5	1	0-5	16/24	8.95 		 0 - 0.6: Used carbide drill bit to break thro 0.6 - 4: Hand augered through engineered 4 - 5: Brown fine to medium silty SAND, s gravel (engineered fill¹), dry to moist. No Recovery. 	ugh asphalt.	to angular			 Top plugged with cold patch asphalt.
-	2	5-10	36/60	8.98 8.96 8.92		7 - 10: Brown fine to medium SAND, som trace silt (engineered fill*), dry to moist.	e fine to medium subangular to a	angular gravel,	\bigtriangledown		- Boolfilled with
-						No Recovery.					bentonite chips.
-	3	10-15	36/60	9.06 9.34	0000	12 - 14.5: Dark brown fine to coarse suba SAND (engineered fill*), trace silt / clay, n	ngular GRAVEL and fine to coal noist to wet.	rse subangular			
- 15	4	15-19	48/48	9.21 9.08 9.55 9.51	000000000	 14.5 - 15: Black fine to coarse subangular to angular GRAVEL, little sand, wet. 15 - 16.3: Brown fine to coarse subangular to angular SAND and GRAVEL, trace silt, vet. 16.3 - 16.8: Black fine to coarse subangular to angular GRAVEL, little sand, wet. 16.8 - 17.3: Brown fine to coarse, subangular to angular GRAVEL, trace sand, wet. 17.3 - 19: Brown fine to coarse subangular to angular SAND, some fine to coarse gravel, race silt / ace, wet. 					
				9.51 9.54	000	17.3 - 19: Brown fine to coarse subangula trace silt / clay, wet. Refusal at 19' bgs. Basalt.	ar to angular SAND, some fine to	o coarse gravel,			

Date Start/Finish: 8/25/11 Drilling Company: Cascade Drilling Driller's Name: Shane Cormick Drilling Method: Geoprobe Direct Push Sampling Method: 2-inch Macrocore Rig Type: Geoprobe					ng Push core	Northing: NA Easting: NA Casing Elevation: NA Borehole Depth: 25' bgs. Surface Elevation: NA Descriptions By: GRM	Well/Boring Client: Geo (Ca Location: (Nell/Boring ID: 4M Client: Georgia-Pacific Consumer Products (Camas), LLC Location: Camas Mill, Camas Washington		
DEPTH	Sample Run Number	Sample/Int/Type	Recovery (inches)	YSI pH Reading	Geologic Column	Stratigraphic Description	Well/Boring Construction			
- - - - - 5	1	0-5	6/12	10.48	888888 88888 888888 888888 888888 888888	 0 - 1.8: Used carbide drill bit to break through concrete. 1.8 - 4: Hand augered through engineered fill*, dry to moist. 4 - 5: Brown fine to medium subangular to angular GRAVEL and fine to r SAND (engineered fill*), moist. No Recovery. 	nedium silty		2000 0000	 Top plugged with cement.
	2	5-10	8/60	 8.10		9 - 10: Brown fine to coarse sandy SILT, little fine to medium subround g wet.	ravel, moist to	∇		
15	3	10-15	56/60	 9.29 10.56 9.17 		 10 - 12.5: Dark gray to black fine to medium SAND and SILT, some orga wet. PID = 0.0 ppm. 12.5 - 13.5: Brown fine to medium subangular to angular GRAVEL, trace fit sand, wet. 14.5 - 17: Brown to gray SILT / CLAY, high plasticity, wet. 	nics, sheen, silt / clay, wet. ne to coarse			 Backfilled with bentonite chips.
-	4	15-20	42/60	 8.07 7.66 7.37		17 - 18: Brown sandy SILT, low plasticity, wet. 18 - 20: Brown sandy SILT becoming brown fine SAND, trace to little silt,	wet.			

Remarks: Soil descriptions based on visual/manual classification using Burmister system. -- = not available / applicable; bgs = below ground surface; ft = feet; SAA = same as above

*Material designated "engineered fill" was consistently encountered immediately below concrete and asphalt surfaces and did not appear to be native. It did not contain significant portions of fines, and the gravel was typically angular.

Date Start/Finish: 8/25/11 Drilling Company: Cascade Drilling Driller's Name: Shane Cormick Drilling Method: Geoprobe Direct Push Sampling Method: 2-inch Macrocore Rig Type: Geoprobe						Northing: NA Easting: NA Casing Elevation: NA Borehole Depth: 25' bgs. Surface Elevation: NA Descriptions By: GRM	Well/Boring Client: Gec (Ca Location: (g ID: 4M orgia-Pacific Consumer Products mas), LLC Camas Mill, Camas Washington
ДЕРТН	Sample Run Number	Sample/Int/Type	Recovery (inches)	YSI pH Reading	Geologic Column	Stratigraphic Description	Well/Boring Construction	
	5	20-25	60/60	7.53 7.13 6.96 6.93 7.13	••••••••••••••••••••••••••••••••••••••	 20 - 20.7: Brown fine SAND, trace to little silt, wet. 20.7 - 21.3: Brown sandy SILT, medium to high plasticity, wet. 21.3 - 24: Brown fine SAND, trace to little silt, wet. 24 - 25: Brown fine SAND, trace silt, wet. Boring terminated at 25' bos 		

Boring terminated at 25' bgs.

Remarks: Soil descriptions based on visual/manual classification using Burmister system. -- = not available / applicable; bgs = below ground surface; ft = feet; SAA = same as above

> *Material designated "engineered fill" was consistently encountered immediately below concrete and asphalt surfaces and did not appear to be native. It did not contain significant portions of fines, and the gravel was typically angular.

Project: B0066141.0000 Data File: Camas 4M

Template: H:\Georgia Pacific - Camas\Boring Logs Date: 10/4/2011 GRM

Date Start/Finish: 8/25/11 Drilling Company: Cascade Drilling Driller's Name: Shane Cormick Drilling Method: Geoprobe Direct Push Sampling Method: 2-inch Macrocore Rig Type: Geoprobe						Northing: NA Easting: NA Casing Elevation: NA Borehole Depth: 11' bgs. Surface Elevation: NA Descriptions By: GRM	Well/Boring ID: 4N Client: Georgia-Pacific Consumer Products (Camas), LLC Location: Camas Mill, Camas Washington		
DEPTH	Sample Run Number	Sample/Int/Type	Recovery (inches)	YSI pH Reading	Geologic Column	Stratigraphic Description		Well/ Const	Boring truction
-	1	0-5	0/12	_		0 - 0.5: Used carbide bit to break through asphalt. 0.5 - 4: Hand augered through engineered fill*. No Recovery.			Top plugged with cold patch asphalt.
-5	2	5-10	13/60	7.51 	× × × × × ×	 5 - 6: Brown sitty SAND, little fine to medium subround to subangular grav engineered fill"). 6: Wood, tar-like odor, sheen. During installation core advanced to 6 ft then encountered an obstruction. penetrating the obstruction, core advanced easily from 6 ft to 10 ft below g No Recovery 	el (sluff, After grade.		Backfilled with bentonite chips.

Refusal at 11' bgs. Boring offset 1' to 4N Offset (see boring log for 4N Offset).

SAA: Wood in core shoe, tar-like odor, sheen.

3

10-11 10/12

Date Start/Finish: 8/25/11 Drilling Company: Cascade Drilling Driller's Name: Shane Cormick Drilling Method: Geoprobe Direct Push Sampling Method: 2-inch Macrocore Rig Type: Geoprobe					ng Push core	Northing: NA Easting: NA Casing Elevation: NA Borehole Depth: 20' bgs. Surface Elevation: NA Descriptions By: GRM	Well/Borin Client: Ge (Ca Location:	g ID: 4N Offset orgia-Pacific Consu imas), LLC Camas Mill, Camas	umer Products s Washington
DЕРТН	Sample Run Number	Sample/Int/Type	Recovery (inches)	YSI pH Reading	Geologic Column	Stratigraphic Description	Well/Boring Construction		
	2	0-5	4/12			0 - 0.5: Used carbide drill bit to break through asphalt. 0.5 - 4: Hand augered through engineered fill*, dry. 4 - 5: Brown fine SAND, some subangular to angular gravel, little si fill*), moist. No Recovery. 9 - 10: Brown SILT, some fine to medium subround gravel, trace fir wet. No Recovery	It (sluff, engineered		Top plugged with cold patch asphalt. Backfilled with bentonite chips.
- 15 	3	10-15	28/60	7.83 7.84 7.50 7.85 7.39		 12.5 - 13.7: Dark brown fine to medium subround to subangular GF coarse sand, little silt, wet. 13.7 - 14: Wood, trace sand, trace silt / clay, wet, tar-like odor, sheet 14 - 15: Brown SILT and decomposed organics, trace wood particle wet. No Recovery. 18 - 19: Dark brown fine to coarse subround to subangular SAND a subround to subangular GRAVEL, some silt, wet, trace sheen. 19 - 20: Dark brown SILT, wet. Boring terminated at 20' bos. 	AVEL, some fine to en. es (1" x 1/2" x 1/8"), and fine to coarse		

Remarks: Soil descriptions based on visual/manual classification using Burmister system. -- = not available / applicable; bgs = below ground surface; ft = feet; SAA = same as above

*Material designated "engineered fill" was consistently encountered immediately below concrete and asphalt surfaces and did not appear to be native. It did not contain significant portions of fines, and the gravel was typically angular.

Appendix D

Summary of Spills

Appendix D: Summary of Spills

SOU	OA	Operational Feature	Date Range	Type of Spill or Leak
A	A1	First Woodmill and Wood Chip Plles	2000-2001	diesel fuel and lube oil
A	A1	Dock Warehosue	2002	oil
A	A1	Second Woodmill	2001	lube oil
A	A1	Former Cat Shop, Electric Shop, and USTs	1999, 2015, 2018	diesel fuel and lube oil
В	B1	Kraft Mill	2014, 2016	black liquor
В	B1	Black Liquor Area	1997, 1998, 2000, 2001, 2002, 2001, 2012, 2014, 2018	black liquor or green liquor, K6 sewer overflow
В	B1	Former Bag Factory	2011, 2016	weak black liquor, process sewer
В	B1	Former Sulfite Mill	2013	black liquor mix
В	B1	Lime Kiln	1998, 1999, 2006	lime dust, green liquor
В	B2	Power House	2015	black liquor
В	В3	Kraft Pulp Bleaching	2000	sodium chlorate & sodium bichromate
В	В3	K4 Bleach Plant	2002	sodium chlorate (sodium dichromate)
В	B4	Fuel Oil Day Tank	2018	petroleum hydrocarbons
В	B6	Warehouse/Product Storage- North	2012	hydraulic oil
С	C1	Fuel Oil Storage	2003, 2020	petroleum hydrocarbon fuel
С	C2	Warehouse/product storage- South	1994, 2011, 2015	diesel fuel, hydraulic oil

Appendix D: Summary of Spills

SOU	OA	Operational Feature	Date Range	Type of Spill or Leak
С	C3	Waste Handling Area and Fueling Station	2018	diesel fuel, petroleum hydrocrbons
С	C3	Former Sulfur Pile	1999, 2006	hydraulic oil
С	C4	River Bank Pump House	1999, 2003, 2006, 2017	wastewater, diesel fuel, lube oil
С	C4	Effluent Pump Station	1977, 1982, 1983, 2006, 2012	process wastewater
D	D1	Landfill	1996, 1999, 2018	landfill leachate (seeps)
D	D1	Wastewater Treatment Plant	2004, 2005, 2015	TCDD (dioxin), diesel fuel, sulfuric acid
E	E1	Former Service Station	1991	petroleum hydrocarbons
F	F1	CBC Area	1988-1998	CZ 777, hydrogen chloride, dimethyl sulfide, dimethyl sulfoxide (DMSO), hydraulic fluid, wastewater with dilute thiodiphenol, process water, sewage, heptane, sulfur monochloride, caustic (50% sodium hydroxide)

Notes:

(a) Summary of spills is based on a review of available records. A complete, detailed description of site operational history, is difficult due to the lengthy operating history of mill and availability of site information and operating records.

Appendix E

SPCC Tank and Equipment Inventory Tables

Excerpt from: SPCC Plan, December 2022 Update

Table 1: Oil Storage Containers and Oil-Containing Operational Equipment

Storage Tanks^(a)

ID	Location (Grid)	Capacity ^(b) (gallons)	Contents	Material of Construction	Transfer Operations	Alarm System or Level Indicator?	Discharge or Draina
3	Fuel Station	1,000	Diesel	Steel	In: Pumped from tank truck	Level Indicator	Double-walled tank with additional tertiary
		-			Out: Pumped to vehicles or equipment		Approximate dimensions: 2011 X 2311 X 0.4
4	Riverbank Pump	693	Diesel	Steel	In: Pumped from tank truck	Float	Double-walled tank
	Generator	000	Biotori	0.001	Out: N/A	- loat	
5	Skid-Mounted Fire Pump	572	Diesel	Steel	In: Pumped from tank truck	Float	Double-walled tank
0	Engine	072	Dieser	01001	Out: N/A	riout	
6	Effluent Pump Station	250	Diesel	Steel	In: Pumped from tank truck	Float	Double-walled tank
0	Generator	250	Diesei	Oleel	Out: N/A	Tioat	Double-walled talk
7	Crit Sump Conorator	205	Diasol	Stool	In: Pumped from tank truck	Elect	Double welled tank
1	Gill Sump Generator	205	Diesei	Sleer	Out: N/A	Filoat	Double-walled talk
0	Main Fuel Station	5 000	Gasolino	Stool	In: Pumped from tank truck	Loval Indicator	Double-walled tank with additional tertiary
9	Wall Fuel Station	5,000	Gasoline	Sleer	Out: Pumped to vehicles or equipment	Level indicator	Approximate dimensions: 20ft X 23ft X 0.4
15	Turbine Generator Main Tank	3500	Lube Oil	Steel	In: Truck	Gauge/alarm	5400 gallon in-ground sump Approximate Dimensions: 10ft X 12ft X 6ft

Notes

(a) Storage Tank locations are illustrated on Figure 3

(b) Quantity provided is shell capacity or typical oil quantity for vessels with a small proportion of oil.

(c) Minimum required containment size calculated as the sum of the volume of the largest container within the containment plus sufficient freeboard for precipitation defined as a 25-year 24-hour reference event for uncovered areas. Sized containment requirements apply only to bulk storage tanks, mobile/portable storage containers, and loading/unloading racks.

(d) Alternative requirements instead of secondary containment for oil-containing operational equipment include documented procedures in place for inspection and monitoring of equipment to detect failure and/or discharge, and a Spill Contingency Plan.

Discharge or Drainage Control^(c,d)

nk with additional tertiary containment area ensions: 20ft X 23ft X 0.46ft
nk
nk
nk
nk
nk with additional tertiary containment area ensions: 20ft X 23ft X 0.46ft

Table 2: Oil Storage Containers and Oil-Containing Operational Equipment

Mobile/Portable Storage Containers ^(a)								
		_	Quantity ^(b)					
ID	Location	Туре	(gallons)	Contents	Discharge or Drainage Control ^(c,a)			
20	Additives – 15 M/C Basement	Totes	20 x 275 gallons	Release Oil	Trench drain with weir provides containment Approx dimensions (inches): (42 x 12 x 8) + (308 x 18 x 8) + (114 x 12 x 8) + (211 x 18 x 8) = 52 ft³ = 388 gallons			
21	Compressor Building- Compressor Room East	Drum	1 x 60 gallon	Mobile oil	Inside building. Containment in place.			
		Tote	3 x 55 gallon,	Miscellaneous Oil	Concrete containment inside building			
23	Car Barn (W of Will I) Main Lube Room	Tote	2 x 250 gallon	Miscellaneous Oil	A provincto dimonsiono: 44 ft X 26 ft X 0.2 ft = 229.9 ft 3 / 1.712 collopo			
		Drums	90 x 55 gallon	Miscellaneous Oil	Approximate dimensions. 44 It \times 26 It \times 0.2 It – 226.6 It $^{\circ}$ 1,7 I2 gallons			
24	Converting Maintenance	Totes/Drums	4 x 55 gallon	Miscellaneous Oil	Inside building. Containment in place.			
05	Lizitizar Suzzki (SAA # 62)	Drum	1x 55 gallon	Miscellaneous Oil,	Incide huilding. Containment in place			
25	Unilizer Supply (SAA # 62)	Drum	1x 55 gallon	Used oil	inside building. Containment in place.			
		Drum	1 x 55 gallon	Hydraulic Oil	Inside building. Containment in place.			
26	#1 M/C Basement	Tote (stack)	3 x 55 gallon	Miscellaneous Oil	Incide building. Containment in place			
		Tote	1x 250 gallon	Lube oil	inside building. Containment in place.			
	Lady Island Cali Plant Bldg.	Drum	3 x 55 gallon	Kerosene 450	Inside building. Containment in place.			
31		Drum	8 x 55 gallon	Miscellaneous Oil	Inside building. Containment in place.			
		Tote	1 x 250 gallon	Used Oil	Inside building. Containment in place.			
32	Bleach Plant/Stock Prep (SAA # 17)	Drum	1 x 55 gallon	Used Oil	Inside building. Containment in place.			
33	No. 11 PM Basement (SAA # 27)	Drum	1 x 55 gallon	Used Oil	Inside. Containment in place			
34	Converting Plant Mtce Shop (SAA # 32)	Drum	1 x 55 gallon	Used Oil	Inside. Containment in place			
	Mobile Mtce (SAA # 39)	Tote	1 x 250 gallon	Used Oil	Inside building. Oppleingenet in place, there do due the container			
35			2 x 250 gallon	Miscellaneous Oil	Inside building. Containment in place. Hose threaded to the container			
36	Car Barn (SAA # 40)	Drum	1 x 55 gallon	Used Oil	Inside building. Containment in place.			
	Dangerous Waste Staging Area (SAA # 49)	Totes	12 x 350 gallon	Used Oil	Local sump with automatic float and alarm – active containment vs. passive containment (operator shutoff power to			
37		D			pump in event of oil release)			
		Drums	12 x 55 gallon	Used OII	Approximate dimensions: 6 ft X 4 ft X 3 ft = 72 ft ³ / 538 gallons			
40	Mobile Maintenance	Drum	4 x 55 gallon	Misc. Oil	Outside. Containment in place			
40		Drum	1 x 55 gallon	Lube Oil	Inside building. Containment in place.			
41	#9 Air Compressor (20 PM basement)	Drum	1 x 55 gallon	Lube Oil	Inside, Containment = basement. Containment in place			
42	#11PM hydrapulper gearbox area	Drum	2 x 55 gallon	Lube Oil	Inside building. Containment in place.			
43	#11PM "rudder" shop	Tote	4 x 275 gallon	Release Oil	Inside, on containment totes			
44	#11PM Machine Floor	Tote	3 x 55 gallon	Miscellaneous Oil	Inside building. Containment in place.			
45	North side maintenance shop (below outside repulper)	Drum	2 x 55 gallon	Miscellaneous Oil	Inside building. Containment in place.			
231	Cali Building – Fournier Press	Tote	2 x 250 gallon	Polymer	Inside building. Containment in place.			
				,				

<u>Notes</u>

(a) Mobile/Portable Storage Container locations are illustrated on Figure 4

(b) Quantity provided is shell capacity or typical oil quantity for vessels with a small proportion of oil.

(c) Minimum required containment size calculated as the sum of the volume of the largest container within the containment plus sufficient freeboard for precipitation defined as a 25-year 24-hour reference event for uncovered areas. Sized containment requirements apply only to bulk storage tanks, mobile/portable storage containers, and loading/unloading racks.

(d) Alternative requirements instead of secondary containment for oil-containing operational equipment include documented procedures in place for inspection and monitoring of equipment to detect failure and/or discharge, and a Spill Contingency Plan.

Oil-Containing Operational Equipment^(a)

			Quantity ^(b)			
ID	Description	Location	(gallons)	Contents	Material of Construction	Discharge or Drainage Control ^(c,d)
52	#8 Air Compressor	5PB BASEMENT	55+	Oil	Steel	No containment
55	#19 Air Compressor	COMPRESSOR ROOM	130	Oil	Steel	No containment
56	#20 Air Compressor	COMPRESSOR ROOM	130	Oil	Steel	No containment
59	#11 Main Lube Oil System	11 PM Basement (NE corner)	600	Oil	Steel	Containment (needs calculated) (150 gallons)
60	#11 PM Main Hydraulic	Two reservoirs	150/each	Oil DTE24	Steel	Containment but needs plug
61	Unitizer hydraulic tanks for palletizer	Unitizer (two total)	100/each	Hydraulic	Steel	Inside building
62	OFEE 112	#1 SUB, N OF OFFICES	363	Oil	Steel	No containment out of service
63	OFEE 113	#1 SUB, N OF OFFICES	363	Oil	Steel	No containment out of service
64	OFEE 117	#5 SUB, S OF OFFICES	363	Oil	Steel	No containment
65	OFEE 118	#10 SUB, S OF CLAR	363	Oil	Steel	No containment out of service
66	OFEE 119A	#5 SUB, S OF OFFICES	363	Oil	Steel	No containment
67	OFEE 119B	#5 SUB, S OF OFFICES	363	Oil	Steel	No containment out of service
68	OFEE 120	#5 SUB, S OF OFFICES	363	Oil	Steel	No containment out of service
69	OFEE 121	#5 SUB, S OF OFFICES	363	Oil	Steel	No containment out of service
70	OFEE 123	#5 SUB, S OF OFFICES	363	Oil	Steel	No containment
71	OFEE 125	#6 SUB, W OF LIME KILN	255	Oil	Steel	No containment
72	OFEE 126	#6 SUB, W OF LIME KILN	255	Oil	Steel	No containment
73	OFEE 127	#6 SUB, W OF LIME KILN	205	Oil	Steel	No containment
74	OFEE 128	#6 SUB, W OF LIME KILN	255	Oil	Steel	No containment
75	OFEE 129	#6 SUB, W OF LIME KILN	255	Oil	Steel	No containment
76	OFEE 136	#8 SUB, BY N GATE	363	Oil	Steel	No containment
77	OFEE 137	#8 SUB, BY N GATE	363	Oil	Steel	No containment
78	OFEE 138	#8 SUB, BY N GATE	363	Oil	Steel	No containment
79	OFEE 139	#9 SUB, S OF #20 M/C	363	Oil	Steel	No containment
80	OFEE 140	#9 SUB, S OF #20 M/C	363	Oil	Steel	No containment
81	OFEE 141	#9 SUB, S OF #20 M/C	363	Oil	Steel	No containment
84	TRANSFORMER 1001T	#5 SUB, S OF OFFICES	2935	Oil	Steel	No containment
85	TRANSFORMER 1078T	#4 R.F. PREC.	76	Oil	Steel	No containment
86	TRANSFORMER 1267T	SEC. TREATMENT POND	215	Oil	Steel	Containment wall
87	TRANSFORMER 1377T	#5 SUB, S OF OFFICES	2285	Oil	Steel	No containment
88	TRANSFORMER 1406T	#8 SUB, BY N GATE	5935	Oil	Steel	No containment
89	TRANSFORMER 1407T	#8 SUB, BY N GATE	2700	Oil	Steel	No containment
90	TRANSFORMER 1479T	SEC. TREATMENT POND	332	Oil	Steel	No containment
91	TRANSFORMER 268T	#5 SUB, S OF OFFICES	1130	Oil	Steel	No containment
92	TRANSFORMER 272T	#2 SUB, NW OF SMO	1237	Oil	Steel	No containment
93	TRANSFORMER 353T	#10 SUB, S OF CLAR	1160	Oil	Steel	No containment
94	TRANSFORMER 354T	#10 SUB, S OF CLAR	1160	Oil	Steel	No containment
96	TRANSFORMER 418T	#5 SUB, S OF OFFICES	1060	Oil	Steel	No containment
97	TRANSFORMER 420T	#5 SUB, S OF OFFICES	1060	Oil	Steel	No containment
99	TRANSFORMER 441T	#5 SUB, S OF OFFICES	1010	Oil	Steel	No containment
100	TRANSFORMER 442T	#5 SUB, S OF OFFICES	1010	Oil	Steel	No containment

Spill Prevention Control and Countermeasure Plan, Georgia-Pacific Consumer Operations LLC (Camas Mill)

п	Description	Location	Quantity ^(b)	Contents	Material of Construction	Discharge or Drainage Control ^(c,d)
101			1010	Oil	Steel	No containment
101	TRANSFORMER 486T	#6 SUB_W_OF_LIME_KILN	1590	Oil	01001	No containment
102	TRANSFORMER 513T	#1 SUB_N OF OFFICES	1885	Oil		No containment
100	TRANSFORMER 529T	#6 SUB_W_OF LIME KILN	1140	Oil	Steel	No containment
105	TRANSFORMER 633T	SEC_TREATMENT POND	340	Oil	01001	No containment
106	TRANSFORMER 634T	SEC_TREATMENT POND	340	Oil		No containment
107	TRANSFORMER 635T	SEC_TREATMENT POND	340	Oil		No containment
108	TRANSFORMER 666T	#1 SUB. N OF OFFICES	2309	Oil		No containment
109	TRANSFORMER 687T	L.K. #4 F. E. XFMR VAULT	216	Oil		No containment
110	TRANSFORMER 872T	SEC. TREATMENT POND	415	Oil	Steel	No containment
111	TRANSFORMER 873T	SEC. TREATMENT POND	415	Oil	Steel	No containment
112	TRANSFORMER 901T	#8 SUB, BY N GATE	1934	Oil	Steel	No containment
113	TRANSFORMER 916T	#9 SUB. S OF #20 M/C	1934	Oil	Steel	No containment
114	TRANSFORMER 917T	#9 SUB, S OF #20 M/C	1934	Oil	Steel	No containment
115	TRANSFORMER 918T	#9 SUB, S OF #20 M/C	3060	Oil	Steel	No containment
116	TRANSFORMER 1019T	NAPKIN BLDG NW	195	Oil		No containment
117	TRANSFORMER 1036T	#10 P/M SW	187	Oil		No containment
118	TRANSFORMER 1037T	CONVERTING PLANT N.	186	Oil		No containment
119	TRANSFORMER 1038T	#1 P/M (OVER WINDER)	186	Oil		No containment
120	TRANSFORMER 1043T	#3 F.R. ON MEZZINE	206	Oil		No containment
121	TRANSFORMER 1094T	SOUTH END CDC BLDG.	371	Oil		No containment
123	TRANSFORMER 1142T	OVER #5 RACK ROOM	184	Oil		No containment
124	TRANSFORMER 1143T	15 P/M JORDANELL SW. RM.	226	Oil		No containment
125	TRANSFORMER 1145T	#12 P/M XFMR VAULT (BSMT)	184	Oil		No containment
126	TRANSFORMER 1146T	#4A SW. RM.	184	Oil	Steel	No containment
127	TRANSFORMER 1148T	K-4 SW. RM.	178	Oil		No containment
128	TRANSFORMER 1149T	K-4 SW. RM.	178	Oil		No containment
129	TRANSFORMER 1150T	K-4 SW. RM.	178	Oil		No containment
130	TRANSFORMER 1159T	TOP OF RAMP SE OF PULP MILL	192	Oil		No containment
131	TRANSFORMER 1160T	H.D. SW. RM. (KM)	178	Oil		No containment
132	TRANSFORMER 1164T	15 P/M JORDANELL SW. RM.	226	Oil		No containment
133	TRANSFORMER 1178T	10 P/M SW. RM.	189	Oil		No containment
134	TRANSFORMER 1179T	XFMR VAULT OVER PULP DRYER	182	Oil		No containment
135	TRANSFORMER 1182T	#4A SW. RM.	189	Oil		No containment
136	TRANSFORMER 1216T	K-3 XFMR VAULT (2 FL)	178	Oil		No containment
137	TRANSFORMER 1219T	K-3 XFMR VAULT (2 FL)	178	Oil		No containment
138	TRANSFORMER 1220T	K-3 XFMR VAULT (2 FL)	178	Oil		No containment
139	TRANSFORMER 1228T	#12 P/M SW. RM.	229	Oil		No containment
140	TRANSFORMER 1229T	2ND FLOOR K4 BLEACH	178	Oil		No containment
141	TRANSFORMER 1232T	#5 PB 1ST FLOOR	186	Oil		No containment
142	TRANSFORMER 1233T	#5 PB 1ST FLOOR	186	Oil		No containment
143	TRANSFORMER 1246T	#4 SW.RM.	172	Oil		No containment
144	TRANSFORMER 1252T	#4A SW. RM.	186	Oil		No containment

Spill Prevention Control and Countermeasure Plan, Georgia-Pacific Consumer Operations LLC (Camas Mill)

	Description	Location	Quantity ^(b)	Contonto	Motorial of Construction	
			(gallons)	Contents	Material of Construction	Discharge of Drainage Control ⁽³⁾
145	TRANSFORMER 12531		1/6			No containment
140		#77 SVV. RIVI.	180			No containment
147	TRANSFORMER 12591		180			No containment
148	TRANSFORMER 12011		179			No containment
149		7 P/IVI DOIVI (0-7 OVV. RIVI.) 7 D/M PSMT (5 7 SW/ DM)	109			No containment
150		#4A SM/ DM	109			No containment
151			171	Oil		No containment
155	TRANSFORMER 1308T		120			No containment
155	TRANSFORMER 1300T		120			No containment
150	TRANSFORMER 1310T		120			No containment
158			/10			No containment
150	TRANSFORMER 1321T	#3 SUB_1ST FLOOR	/10			No containment
160	TRANSFORMER 1337T	3PB PRECIP ROOF	120			No containment
161	TRANSFORMER 1330T		120	Oil		No containment
162	TRANSFORMER 1340T	3PB PRECIP ROOF	120	Oil		No containment
163	TRANSFORMER 1373T		350	Oil		No containment
164	TRANSFORMER 1379T	E OF STM PLT & RAMP	622	Oil		No containment
165	TRANSFORMER 1391T	UNIT SUB US 3PB-3	217	Oil		No containment
166	TRANSFORMER 722T		179	Oil		No containment
167	TRANSFORMER 756T	ON ROOF SO, SIDE-CONV	202	Oil		No containment
168	TRANSFORMER 903T	UNIT SUB US KRPW-2	196	Oil		No containment
169	TRANSFORMER 905T	UNIT SUB US K5-1	196	Oil		No containment
170	TRANSFORMER 906T	UNIT SUB US K5-2	196	Oil		No containment
171	TRANSFORMER 907T	UNIT SUB US MGO PS-1	196	Oil		No containment
172	TRANSFORMER 908T	UNIT SUB US MGO-DIG-1	196	Oil		No containment
173	TRANSFORMER 909T	UNIT SUB US MGO-DIG-2	196	Oil		No containment
174	TRANSFORMER 919T	20 P/M XFMR VAULT D.E.	283	Oil		No containment
175	TRANSFORMER 920T	20 P/M XFMR VAULT D.E.	283	Oil		No containment
176	TRANSFORMER 921T	20 P/M XFMR VAULT D.E.	283	Oil		No containment
177	TRANSFORMER 922T	20 P/M XFMR VAULT D.E.	283	Oil		No containment
178	TRANSFORMER 926T	20 P/M XFMR VAULT D.E.	196	Oil		No containment
179	TRANSFORMER 927T	20 P/M XFMR VAULT D.E.	196	Oil		No containment
180	TRANSFORMER 928T	20 P/M XFMR VAULT D.E.	196	Oil		No containment
181	TRANSFORMER 929T	20 P/M XFMR VAULT D.E.	196	Oil		No containment
182	TRANSFORMER 930T	20 P/M XFMR VAULT D.E.	130	Oil		No containment
183	TRANSFORMER 931T	20 P/M XFMR VAULT D.E.	117	Oil		No containment
184	TRANSFORMER 955T	15 P/M JORDANELL SW. RM.	196	Oil		No containment
185	TRANSFORMER 956T	LURGI BSMT.	196	Oil		No containment
186	TRANSFORMER 971T	CHIP SCRN. RM. SW. RM.	196	Oil		No containment
187	TRANSFORMER 997T	CHIP SCRN. RM. SW. RM.	183	Oil		No containment
188	TRANSFORMER 998T	CHIP SCRN. RM. SW. RM.	196	Oil		No containment
191	TRANSFORMER UNIT 1324T	USPO-1 SWRM 130B TC284	270	Oil		Containment

חו	Description	Location	Quantity ^(b)	Contonte	Matorial of Construction	Dischargo or Drainago Control ^(c,d)
102		#1 Sub N of Offices	(galions)			No containment
192		#1 Sub, N. of Offices	363	Oil		No containment
190	OFEE 124	#6 Sub W of Lime Kiln	205			No containment
105	OFEE 130	#6 Sub W of Lime Kiln	200	Oil		No containment
196	OFEE 131	#6 Sub W of Lime Kiln	255	Oil		No containment
197	OFEE 132	#6 Sub W of Lime Kiln	255	Oil		No containment
198	OFEE 129	#6 Sub W of Lime Kiln	205	Oil		No containment
199	TRANSFORMER UNIT 900T	#8 Sub, By N, Gate	1934	Oil		No containment
200	TRANSFORMER UNIT 902T	#8 Sub, By N. Gate	3060	Oil		No containment
201	TRANSFORMER UNIT 904T	Unit Sub US KRPW-1	196	Oil		Containment
202	TRANSFORMER UNIT 923T	20 P/M XFMR Vault D.E	283	Oil		Containment
203	TRANSFORMER UNIT 924T	20 P/M XFMR Vault D.E	196	Oil		Containment
204	TRANSFORMER UNIT 925T	20 P/M XFMR Vault D.E	196	Oil		Containment
205	TRANSFORMER UNIT 271T	#2 Sub NW of SMO	1305	Oil		No containment
206	TRANSFORMER UNIT 270T	#2 Sub NW of SMO	1305	Oil		No containment
207	TRANSFORMER UNIT 269T	#2 Sub NW of SMO	1305	Oil		No containment
208	CLARIFIER OFEE	#10 Sub, S. of Clarifier OFEE	363	Oil		No containment
209	TRANSFORMER UNIT 355T	#10 Sub S. of Clarifier	1160	Oil		No containment
210	TRANSFORMER UNIT 485T	#6 Sub, W of Lime Kiln	2429	Oil		No containment
211	TRANSFORMER UNIT 1422T	USST4-1 TC289	489	Oil		Containment
212	TRANSFORMER UNIT 1218T	TC9023	178	Oil		Containment
213	TRANSFORMER UNIT 1217T	TC9022	178	Oil		Containment
214	TRANSFORMER UNIT 1250T	4RF TC312	176	Oil		Containment
215	TRANSFORMER UNIT 1251T	4RF TC311	287	Oil		Containment
216	TRANSFORMER UNIT 1249T	4RF TC310	176	Oil		Containment
218	TRANSFORMER UNIT 1158T	4RF TC347	100	Oil		Containment
219	TRANSFORMER UNIT 1155T	4RF TC345	100	Oil		Containment
220	TRANSFORMER UNIT 861T	4RF TC209	75	Oil		Containment
221	TRANSFORMER UNIT 1157T	4RF TC344	100	Oil		Containment
222	TRANSFORMER UNIT 863T	4RF TC210	76	Oil		Containment
223	TRANSFORMER UNIT 874T	4RF TC212	76	Oil		Containment
224	TRANSFORMER UNIT #2TR-A6B	4RF	125	Oil		Containment
225	I RANSFORMER UNIT 1257T	3RF TC317	176	Oil		Containment
226	IRANSFORMER UNIT 1239T	3RF TC316	242	Oil		Containment
227	I KANSFORMER UNIT 1240T	<u>3KF [C315</u>	242	Oil		Containment
228		3KF 1C318	207	OIL		Containment
229			1/6	OIL		Containment
230	IRANSFORMER UNIT 13051	3RF 1C326	120	Oil		Containment

Notes

- (a) Oil Filled Operating Equipment locations are illustrated on Figures 5 through 8.
- (b) Quantity provided is shell capacity or typical oil quantity for vessels with a small proportion of oil.
- (c) Minimum required containment size calculated as the sum of the volume of the largest container within the containment plus sufficient freeboard for precipitation defined as a 25-year 24-hour reference event for uncovered areas. Sized containment requirements apply only to bulk storage tanks, mobile/portable storage containers, and loading/unloading racks.
- (d) Alternative requirements instead of secondary containment for oil-containing operational equipment include documented procedures in place for inspection and monitoring of equipment to detect failure and/or discharge, MERT response, and a Spill Contingency Plan (Appendix B).

Potential Event	Maximum Volume Released (Gallons)	Maximum Discharge Rate	Direction of Flow Outside Containment	Secc Pe
Bulk Storage Tanks (Aboveground Storage Tanks 3-15)				
3 - Fuel Station				
Failure of AST (collapse or puncture below product level)	1.000	Gradual to instantaneous		D
Tank Overfill	10	10 gal/min		CO
Pipe Failure during transfer	20	Gradual	Inside concrete containment	CO
Leaking Pipe or Valve Packing	5	Gradual	-	CO
4 - Riverbank Pump Generator				
Failure of AST (collapse or puncture below product level)	693	Gradual to instantaneous		D
Tank Overfill	10	10 gal/min		_
Pipe Failure during transfer	20	Gradual	- Paved area to process sewer	
Leaking Pipe or Valve Packing	5	Gradual	-	
5 - Skid-Mounted Fire Pump Engine	· · ·	•		
Failure of AST (collapse or puncture below product level)	572	Gradual to instantaneous		D
Tank Overfill	10	10 gal/min	- Boyad area to process cower	
Pipe Failure during transfer	20	Gradual to instantaneous	- Paved area to process sewer	
Leaking Pipe or Valve Packing	5	Gradual		
6 - Effluent Pump Station Generator				
Failure of AST (collapse or puncture below product level)	250	Gradual to instantaneous		D
Tank Overfill	10	10 gal/min	Inside building to process	
Pipe Failure during transfer	20	Gradual	sewer	
Leaking Pipe or Valve Packing	5	Gradual	7	
7 - Grit Sump Generator				
Failure of AST (collapse or puncture below product level)	205	Gradual to instantaneous		D
Tank Overfill	10	10 gal/min	- Boyad area to process cower	
Pipe Failure during transfer	20	Gradual	- Faved area to process sewer	
Leaking Pipe or Valve Packing	5	Gradual		
9 - Main Fuel Station				
Failure of AST (collapse or puncture below product level)	5.000	Gradual to instantaneous		D
Tank Overfill	10	10 gal/min		CO
Pipe Failure during transfer	20	Gradual		CO
Leaking Pipe or Valve Packing	5	Gradual	7	CO
Bulk Storage Tanks (Aboveground Storage Tanks 3-15) (continu	Jed)			
15 - Turbine Generator Main Tank				
Failure of AST (collapse or puncture below product level)	3,500	Gradual to instantaneous		
Tank Overfill	40	40 gal/min	Incide in ground cump	E 400
Pipe Failure during transfer	20	Gradual	Inside in-ground sump	5,400-
Leaking Pipe or Valve Packing	5	Gradual		
Portable Storage - Tank, Totes, and Drums				
Leak or Failure of Tote	Max tote volume; varies by container	Gradual to instantaneous	Drains to process sewer	Sec
Leak or Failure of Drum	55	Gradual to instantaneous	Drains to process sewer	Sec

ondary Containment er 40 CFR 112.7(b)

Oouble-walled tank ncrete containment ncrete containment ncrete containment

ouble-walled tank MERT MERT

process sewer

ouble-walled tank MERT MERT process sewer

Double-walled tank MERT MERT process sewer

ouble-walled tank MERT MERT process sewer

Oouble-walled tank ncrete containment ncrete containment ncrete containment

-gallon in-ground sump

condary containment

condary containment